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Abstract 
An essential simplification of approach to the Schrödinger perturbation series 
for energy does hold when the perturbation events are arranged along a cir-
cular scale of time. The aim of the present paper is to demonstrate how such a 
scale of time leads to the recurrence calculation process of the Schrödinger 
energy terms belonging to an arbitrary perturbation order N. This process 
seems to have never been represented before. Only a non-degenerate quantum 
state and its perturbation due to the space-dependent potential are considered 
in the paper. 
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1. Introduction 

In science an identical result obtained in two different ways does not necessarily 
mean an effect of a secondary importance. An example is the Schrödinger 
perturbation formalism. In order to get it Schrödinger elaborated a special 
treatment of the inhomogeneous differential equations in course of which the 
energies and wave functions of a stationary quantum state perturbed by a 
time-independent potential could be calculated with the aid of the energies and 
wave functions representing the unperturbed quantum states of a given system 
[1]. Usually the unperturbed system was less complicated than a perturbed one, 
and the perturbation was limited to the potentials difference entering the 
perturbed and original state. 

An effective formalism leading to the Schrödinger results is based usually on 
an iterative process; see e.g. [2]. When an original Hamiltonian 0Ĥ  is 
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perturbed by Ĥλ ′ , we have to solve the time-independent Schrödinger 
equation given in the form 

per per per perˆ ,H Eψ ψ=                      (1) 

the problem is approached by a substitution 
per

0
ˆ ˆ ˆ ,H H Hλ ′= +                       (2) 

per 2
0 1 2ψ ψ λψ λ ψ= + + +                   (3) 

and 
per 2

0 1 2 .E E E Eλ λ= + + +                    (4) 

The 0Ĥ , 0E  and 0ψ  are respectively the unperturbed Hamiltonian, energy 
and wave function, whereas Ĥλ ′ , 2

1 2, ,E Eλ λ   and 2
1 2, ,λψ λ ψ   represent 

respectively the perturbed quantities. The solution of (4) can be obtained 
gradually for different powers of λ. In the next step the size of the parameter λ is 
put equal to 1; see [2]. 

This rather tedious procedure does not apply time, which makes it similar to 
the original Schrödinger approach [1]. For 1λ =  the notation of (4) is usually 
changed into the expression 

per
0 1 2 3E E E E E− = ∆ + ∆ + ∆ +               (4a) 

where 1 2 3, , ,E E E∆ ∆ ∆   are the perturbation energies corresponding to the 
so-called perturbation orders N equal respectively to N = 1, N = 2, N = 3, etc. 

The time entered the Schrödinger perturbation theory—limited to the stationary 
quantum states—with the development of diagrams introduced by Feynman [3] 
[4]. But these diagrams were based on a different kind of the time scale than 
applied in the present paper. In order to clarify the origin of a difference 
between the Feynman and present perturbation formalism, a step towards the 
time backround entering both methods seems to be of use. 

2. Physics of a Quantum System and the Notion of Time 
Both physical and philosophical features connected with the notion of time are 
combined systematically with scientific experience and observations of everyday 
life. A separate component of our view on time is provided by human 
imagination. In effect the idea of the time notion is extended—with a variable 
degree of certainty—from the atomic world to universe. 

In fact time is a parameter the knowledge of which depends both on the 
properties of the examined object as well as the abilities possessed by an observer. 
If we limit our “universe” to a single hydrogen atom and the observer’s ability to 
distinguish between the atomic nucleus and electron together with the possibility 
to estimate the size of a distance between these two objects, we can obtain two 
kinds of observations. One of them is created by assuming that a constant 
distant does hold between the nucleus and electron. This situation cannot serve 
to establish any notion of time because no change of the distance parameter can 
be detected and observed. However another situation is obtained when the 
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distance between two particles changes systematically in a planar motion of the 
electron particle, which has its trajectory say along an ellipse. In this case the 
observer’s measurements are spread along the interval length which is equal to a 
difference between the larger and smaller semiaxis of the ellipse. If the motion is 
perfectly periodic, any point observed within the interval length repeats after the 
same period of the motion time T. 

In effect all time points accessible by observations are enclosed within the 
interval 

0 ,t T< <                           (5) 

which repeats incessibly because no limit is imposed on the electron motion 
along the ellipse. 

But a huge amount of everyday observations is evidently against the limit 
given in (5). In fact a finite amount of T is replaced by infinity, so 

0 .t< < ∞                             (6) 

On the other hand, an analysis of the contemporary situation as an effect of an 
earlier situation combined with imagination implies the past events qualitatively 
separated from the present situation by a time interval which can be also of an 
infinite size. This gives the interval 

t−∞ < < ∞                            (7) 

where t = 0 can be assumed to be close to the present time. 
The interval (7) encloses practically all possible events in nature but does not 

explain much what happens, will happen, or has happened, within (6) or (7). A 
characteristics of time is often expected to be obtained from physics. In fact we 
look for an objective method to define this character. Perhaps the best known 
result is given by the second law of thermodynamics which applies the notion of 
entropy and states that “later” means systematically a larger entropy than the 
entropy at an “earlier” time. An objection which can be raised here is connected 
mainly with the fact of applying the thermodynamics and entropy: these notions 
concern macroscopic systems built up regularly from a huge number of individual 
components. 

But difficulties with a physical approach to time concern also the quantum 
domain. First the time intervals of numerous quantum processes are too short to 
be satisfactorily controlled on both the theoretical and experimental level. 
However opposite cases can be also considered. If an atom is in its lowest energy 
state, called also a ground state, and no external forces or collisions act on it, this 
atomic state can be preserved infinitely with no change. Therefore—according to 
the present state of our knowledge—no idea or scale of time can be applied in 
describing such an atom. However, a different situation is obtained when—at 
some moment—the atom is perturbed, for example by an action of an external 
field which can be chosen to be independent of time. If the time moment of 
inclusion of the perturbation potential is denoted by 

,bt t=                               (8) 

https://doi.org/10.4236/jmp.2018.98093


S. Olszewski 
 

 

DOI: 10.4236/jmp.2018.98093 1494 Journal of Modern Physics 
 

at any time moment 

bt t>                              (9) 

the properties of the atom are changed in comparison to those possessed in (8). 
But we can assume that in effect of the action of the perturbation potential 

perV                             (10) 

till some 

,e bt t                           (11) 

the atom will approach another stationary state. In effect of that the atom 
properties at 

et t                            (12) 

will be not much different than those possessed near 

.et t=                            (13) 

In other words the atom behaves at (12) as an unchanged object equal to that 
obtained at (13), therefore the notion of time looses again its sense. But a 
question arises now how the time is going on between bt t=  and et t= . An 
attempt to answer this question became a major subject of the paper. 

The answer is obtained with the aid of an analysis of the events which 
accompany the perturbation process. According to Leibniz [5] [6] it is the 
sequence of events which is legitimate to provide us with a knowledge of the 
character of the time scale associated with a given process. In this case the 
problem of the size of the time intervals between subsequent events becomes of a 
secondary importance, but the accent is put on the properties (regularities) of 
the changes of the system exhibited in course of the time flow. 

One of the aims of the present paper is to compare two scales of time applied 
to the case of the perturbation process. The first—based on a linear scale 
extended from the minus to plus infinity [see (6) and (7)]—was involved in the 
Feynman’s approach to quantum mechanics [3] [4], another scale—of an 
essentially circular character—has been developed by the author [7]-[14]. 

3. Feynman’s Approach and Present Approach to the 
Schrödinger Perturbation Energy 

An essential difference between these two approaches is that in a majority of 
calculations postulated according to the Feynman’s scheme of diagrams— 
especially for a large perturbation order N—there exists no reference between 
the energy terms provided by the Schrödinger perturbation theory and the 
Feynman diagrams. A reason of that is the fact that for large N the number of 
the Feynman diagrams equal to 

( )1 !NP N= −                            (14) 

does exceed dramatically the number of the Schrödinger terms given by the 
formula [15] [16]: 
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( )
( )

2 2 !
.

! 1 !N
N

S
N N

−
=

−
                       (15) 

The ratio between NP  and NS  is 

( )
( )

2
! 1 !

;
2 2 !

N

N

N NP
S N

−  =
−

                     (16) 

evidently it increases rapidly with N. For example for 20N =  the ratio (16) 
attains the number of 

820

20

0.688 10 .
P
S

= ×                      (16a) 

This means that in average about 80.7 10×  results of the integration 
prescribed by the Feynman diagrams should be combined in order to obtain one 
Schrödinger energy term. The task seems to be complicated even with the use of 
computers. 

On the other hand, an evident advantage of the circular time scale is that it 
can provide us with a one-to-one correspondence between the diagrams based 
on the scale and the Schrödinger energy terms. This facilitates enormously any 
development of the Schrödinger perturbation calculation and serves to control 
its results. 

4. Basic Characteristics of the Circular Scale of Time 

The first rule concerning diagrams of the present theory is that they can be 
classified according to the perturbation orders 

1,2,3,4,N =                        (17) 

characteristic for the Schrödinger perturbation scheme. This means that the 
number of time points taken into account on any diagram belonging to N is 
equal to N. But only one diagram for each N is represented by N uncontracted 
time points labelled successively by 

1,2,3,4, , .N                        (18) 

From the number N of time points entering any diagram the points 

1,2,3,4, 1M N= = −                    (19) 

should be taken into account in formation of contractions of the time points 
characteristic for that diagram. A reason for that limitation is due to the fact that 
the point N, which is considered as a beginning-end point of the scale, does not 
enter contractions. 

The contractions can be simple, i.e. between two points of time, viz. 

1 2: 1: 2,t t =  

1 3: 1: 3,t t =  

1 4: 1: 4,t t =                          (20) 

or 
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2 3: 1: 3,t t =  

2 4: 2 : 4,t t =                         (20a) 

or 
3 4: 3 : 4, ,t t =                        (20b) 

but also double contractions like 

1 2 3: : 1: 2 : 3,t t t =  

1 2 4: : 1: 2 : 4,t t t =  

1 3 4: : 1: 3 : 4, ,t t t =                      (20c) 

and still more extended contractions with more than three time points involved 
in them can exist. 

Evidently the time points are arranged on the scale, as well as in contraction 
ensembles, according to their rise in time: 

1 2 3 4t t t t< < < <                       (21) 

There are also possible combined time-points contractions, for example 

1 2 3 4: : 1: 2 3: 4t t t t =                     (22) 

or 

1 4 2 3: : 1: 4 2 : 3,t t t t =                    (23) 

which indicate a simultaneous presence of two different contractions. The rule, 
however, for formation of such combined sets of contractions is that the loops 
created by them on a diagram cannot cross (see e.g. [7]). This means that, for 
example, such contractions combination like 

1 3 2 4: : 1: 3 2 : 4t t t t =                     (24) 

cannot exist. 
Physically any contraction of the time points creates one or more loops of 

time supplementary to the main—single for a given diagram—loop of time. 
These supplementary loops will be called the side loops of time. They can be 
regularly represented by the energy perturbation terms of the order lower than 
the actually examined N. The main loop of time should contain the beginning-end 
point characteristic for any considered N. This special time point—as it is stated 
above—does not participate in contractions. 

5. Loops of Time and Schrödinger Perturbation Terms for 
Energy 

In this Section the loops of time obtained for the circular-scale diagrams are 
referred to the Schrödinger perturbation terms for energy. A single diagram 
without contractions is present for any N; for the case of N = 7 such diagram is 
drawn on Figure 1. The energy term corresponding to this diagram is 

.VPVPVPVPVPVPV                         (25) 

The number of V is 7, but the number of P is 6. 
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Figure 1. Diagram representing the energy term for the 
perturbation order N = 7 having no contractions of the 
time points. 

 

In general the symbol V represents the matrix element 
per .a V b                          (26) 

The expression (25) begins with the matrix element (26) taken for a n=  and 
b p n= ≠  where n is the index of quantum state submitted to perturbation. The 
next V represent the matrix elements 

per per per per per, , , , ,p V q q V r r V s s V t t V u       (27) 

and the last V in (25) is 
per .u V n                        (27a) 

The successive symbols P in (25) are respectively 

1 1 1, , ,
n p n q n r

P P P
E E E E E E

= = =
− − −

 

1 1 1, , ,
n s n t n u

P P P
E E E E E E

= = =
− − −

           (28) 

and the whole expression (25) is a multiple sum performed over the 
quantum-state indices 

, , , , , , .p q r s t u n≠
                      (29) 

The indices change from state 1 to infinity with the omission of state n in each 
sum. 

A contraction of two points, say 

: 1: 2,p q =                          (30) 

means creation of a side loop of time on the diagram of Figure 1 between the 
points 1 and 2; see Figure 2. In this case the perturbation term (25) changes into  

2VP VPVPVPVPV V                    (31) 

where 

( ) ( )
2

2 2

1 1

n p n q

P
E E E E

= =
− −

                (32) 
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(a) 

https://doi.org/10.4236/jmp.2018.98093


S. Olszewski 
 

 

DOI: 10.4236/jmp.2018.98093 1499 Journal of Modern Physics 
 

 
(b) 

Figure 2. Diagrams representing the energy perturbation terms for N = 7 obtained from a small modification of 
diagrams valid for the perturbation order N = 6. The numbers below diagrams indicate the time contraction and 
energy term given in Table 1. 
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and 

1V E= ∆                          (32a) 

which is the first-order perturbation energy. 
Contractions 2 : 3 , 3: 4 , 4 : 5  and 5 : 6  give respectively the perturbation 

terms: 
2VPVP VPVPVPV V                     (33) 

with 

( ) ( )
2

2 2

1 1 ,
n rn q

P
E EE E

= =
−−

                (33a) 

the term 
2VPVPVP VPVPV V                     (34) 

with 

( ) ( )
2

2 2

1 1 ,
n r n s

P
E E E E

= =
− −

               (34a) 

the term 
2VPVPVPVP VPV V                   (35) 

with 

( ) ( )
2

2 2

1 1 ,
n s n t

P
E E E E

= =
− −

              (35a) 

the term 
2VPVPVPVPVP V V                   (36) 

with 

( ) ( )
2

2 2

1 1 .
n t n u

P
E E E E

= =
− −

               (36a) 

The summations entering (33)-(36) are extended respectively over  
, , , , ,p q r s t u n= ≠                   (33b) 

, , , , ,p q r s t u n= ≠                   (34b) 

, , , , ,p q r s t u n= ≠                   (35b) 

, , , , .p q r s t u n= ≠                   (36b) 

Similar notation applies for other contractions than presented above. For 
example a double contraction 

: : 1: 2 : 3p q r =                     (37) 

gives for the energy term coming from the main loop the expression 

( )23 .VP VPVPVPV V                (38) 

The term 
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( ) ( )2 2
1V E= ∆                        (39) 

is due to the side loops 1:2 and 2:3 separately. The term due to the main loop is 
represented by 

3VP VPVPVPV                      (40) 

where 

( ) ( ) ( )
3

3 3 3

1 1 1 .
n rn p n q

P
E EE E E E

= = =
−− −

          (41) 

Three other P present in (40) are those given in (28) and summations concern 
the states 

, , .s t u                         (42) 

In total the summations entering the brackets in (40) are extended over the 
states 

, , , .p q r s t u n= = ≠                   (43) 

It is easy to prolongate the above notation to other contractions of the time 
points than considered between (30) and (43). 

The sign of a perturbation term is dictated by the number of the bracket pairs 
which enter that term. For an odd number of the bracket pairs [see (25), (38)] 
the whole energy term should be taken with a positive sign, for an even number 
of the bracket pairs [see (31), (33)-(36)] the perturbation term should be taken 
with a minus sign. 

6. Recurrence Procedure for Calculating the Schrödinger 
Perturbation Terms Belonging to Arbitrary N 

It seems that the best way to represent this procedure is to apply it to an example. 
A particular task let be to derive the perturbation terms belonging to N = 7 from 
the terms belonging to 

7.N <                             (44) 

The energy perturbation terms corresponding to N entering (44) are briefly 
derived and given in Appendix. A question which can arise may be how similar 
terms should be calculated in the case of N = 7. 

The choice of N = 7 means that a new free time point on the scale which can 
be submitted to contractions is 

1 6.N − =                             (45) 

This implies that 6 42S =  terms belonging to N = 6 should be modified in 
order to take into account the presence of a free time point 6 absent in the case 
of N = 6. In practice this means that all contributions coming to energy from the 
main loop of time for N = 6 can be made valid also for N = 7 on condition—at 
the end of any bracket term corresponding to the mentioned main loop of 
time—the product 
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PV                             (46) 

is added; see Table 1. The diagrams corresponding to the energy terms obtained 
in the way outlined below (45) are presented in Figure 2. This reduces the 
number of unknown terms for N = 7, namely 

7 132,S =                           (47) 

to 

7 6 132 42 90.S S− = − =                      (48) 

But the presence of point 6 on the time scale implies that this point has also to 
participate in contractions. The number of these contractions is obtained when 
contraction 

1: 6,                            (49) 

together with all admissible contractions of the time points on a circular scale 
between 1 and 6, are taken into account. The contraction (49) and its energy 
terms are 

2
51: 6 Δ .VP V E→−                     (50) 

This contraction provides us with contribution equal to 14 Schrödinger 
energy terms because the number of terms in 5E∆  is 5 14S = . In the next step 
we obtain 5 terms, viz. 

3
1 41: 2 : 6 Δ Δ ,VP V E E→                   (51) 

because of 1 1S =  and 4 5S = . Two perturbation terms are given by 
3

2 31: 3 : 6 Δ Δ ,VP V E E→                   (52) 

because of 2 1S =  and 3 2S = ; the same number of terms holds for contraction 
3

3 21: 4 : 6 Δ Δ .VP V E E→                  (53) 

Contraction 
3

4 11: 5 : 6 Δ ΔVP V E E→                  (54) 

gives 4 5S =  terms since it is by symmetry similar to (51); 

( )24
1 31: 2 : 3 : 6 Δ ΔVP V E E→−               (55) 

gives two terms because of 3 2S = ; 

( )24
1 21: 2 : 4 : 6 Δ ΔVP V E E→−               (56) 

is a one-term contraction ( )1 2 1S S= = ; 
4

1 3 11: 2 : 5 : 6 Δ Δ ΔVP V E E E→−                (57) 

gives two terms because of 3 2S = ; 
4

2 1 21: 3 : 4 : 6 Δ Δ ΔVP V E E E→−               (58) 

is a one-term contraction; 

( )24
2 11: 3 : 5 : 6 Δ ΔVP V E E→−                (59) 
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Table 1. Energy perturbation terms belonging to N = 7 obtained by adding the product 
PV from (46) into the main bracket terms entering the perturbation energy for N = 6. The 

terms 15, 25, 26, 27 and 28 can combine into 2
4VP VPV E− ∆ ; the terms 6 and 7, 16 and 

17, 19 and 20, and 29 and 30 combine into four terms containing the factor of 3E∆ . 

 contraction energy term 

1 no contraction VPVPVPVPVPVPV  

2 1: 2  2
1ΔVP VPVPVPVPV E−  

3 1: 3  2
2ΔVP VPVPVPV E−  

4 1: 2 : 3  ( )23
1ΔVP VPVPVPV E  

5 2 : 3  2
1ΔVPVP VPVPVPV E−  

6 1: 4  
2

3ΔVP VPVPV E−  
7 1: 4 2 : 3  

8 1: 2 : 4  3
1 2Δ ΔVP VPVPV E E  

9 1: 3 : 4  3
2 1Δ ΔVP VPVPV E E  

10 1: 2 : 3 : 4  ( )34
1ΔVP VPVPV E−  

11 2 : 4  2
2ΔVPVP VPVPV E−  

12 2 : 3 : 4  ( )23
1ΔVPVP VPVPV E  

13 3 : 4  2
1ΔVPVPVP VPVPV E−  

14 1: 2 3 : 4  ( )22 2
1ΔVP VP VPVPV E  

15 1: 5  2VP VPVVPVPVPV−  

16 1: 2 : 5  
3

1 3Δ ΔVP VPV E E  
17 1: 2 : 5 3 : 4  

18 1: 3 : 5  ( )23
2ΔVP VPV E  

19 1: 4 : 5  
3

3 1Δ ΔVP VPV E E  
20 1: 4 : 5 2 : 3  

21 1: 2 : 3 : 5  ( )24
1 2Δ ΔVP VPV E E−  

22 1: 2 : 4 : 5  4
1 2 1Δ Δ ΔVP VPV E E E−  

23 1: 3 : 4 : 5  ( )24
2 1Δ ΔVP VPV E E−  

24 1: 2 : 3 : 4 : 5  ( )45
1ΔVP VPV E  

25 1: 5 2 : 3  2 2
1ΔVP VPV VP VPV E  

26 1: 5 2 : 4  2 2
2ΔVP VPV VP V E  

27 1: 5 2 : 3 : 4  ( )22 3
1ΔVP VPV VP V E  

28 1: 5 3 : 4  2 2
1ΔVP VPV VPVP V E  

29 2 : 5  
2

3ΔVPVP VPV E−  
30 2 : 5 3 : 4  

31 2 : 3 : 5  3
1 2Δ ΔVPVP VPV E E  

32 2 : 3 : 4 : 5  ( )34
1ΔVPVP VPV E−  

33 2 : 4 : 5  3
2 1Δ ΔVPVP VPV E E  
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Continued 

34 3 : 5  2
2ΔVPVPVP VPV E−  

35 1: 2 3 : 5  2 2
1 2Δ ΔVP VP VPV E E  

36 3 : 4 : 5  ( )23
1ΔVPVPVP VPV E  

37 1: 2 3 : 4 : 5  ( )32 3
1ΔVP VP VPV E−  

38 4 : 5  2
1ΔVPVPVPVP VPV E−  

39 1: 2 4 : 5  ( )22 2
1ΔVP VPVP VPV E  

40 1: 3 4 : 5  2 2
2 1Δ ΔVP VP VPV E E  

41 1: 2 : 3 4 : 5  ( )33 2
1ΔVP VP VPV E−  

42 2 : 3 4 : 5  ( )22 2
1ΔVPVP VP VPV E  

 
gives also one term; 

( )24
3 11: 4 : 5 : 6 Δ ΔVP V E E→−                (60) 

is a two-terms contraction symmetrical to (55). The remaining one-term 
contractions joining points 1 and 6 are 

( )35
1 21: 2 : 3 : 4 : 6 Δ Δ ,VP V E E→                  (61) 

( )25
1 2 11: 2 : 3 : 5 : 6 Δ Δ Δ ,VP V E E E→                (62) 

( )25
1 2 11: 2 : 4 : 5 : 6 Δ Δ Δ ,VP V E E E→                (63) 

( )35
2 11: 3 : 4 : 5 : 6 Δ Δ ,VP V E E→                 (64) 

( )56
11: 2 : 3 : 4 : 5 : 6 Δ .VP V E→−                  (65) 

In total we obtain from (50)-(65) the number of terms connected with the 
interaction between the time points 1 and 6 equal to: 

14 5 2 2 5 2 1 2 1 1 2 1 1 1 1 1 42.+ + + + + + + + + + + + + + + =        (66) 

In fact this is a number of the Schrödinger energy terms equal to 

6 42.S =                           (67) 

The diagrams corresponding to the terms obtained in (66), or (67), are 
represented in Figure 3. The calculation of the energy terms corresponding to 
diagrams entering (67) reduces the unknown number of the energy terms for N 
= 7 to 

7 62 132 84 48.S S− × = − =                  (68) 

In order to present the terms (68)—see Figure 4—we take into account that 
the “interaction” of the time point 6 with point 1 can be extended by the 
“interaction” of point 2 with 6 in the absence of the interaction with point 1. 
This provides us with contraction 

2
42 : 6 Δ ;VPVP V E→−                    (69) 

because of 4 5S =  this formula contains five Schrödinger terms. 

https://doi.org/10.4236/jmp.2018.98093


S. Olszewski 
 

 

DOI: 10.4236/jmp.2018.98093 1505 Journal of Modern Physics 
 

 
(a) 

https://doi.org/10.4236/jmp.2018.98093


S. Olszewski 
 

 

DOI: 10.4236/jmp.2018.98093 1506 Journal of Modern Physics 
 

 
(b) 

Figure 3. Diagrams representing the energy perturbation terms for N = 7 obtained from 
contractions of the time points 1 and 6, as well as contractions done together with the points 
between 1 and 6. The numbers below diagrams refer to the formulae in the text. 
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(b) 

Figure 4. Diagrams representing the energy perturbation terms for N = 7 which did not enter Figure 2 and Figure 3. Numbers 
below diagrams refer to the formulae presented in the text. 
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If beyond of (69) we take into account also all possible contractions of the 
time points which are between 2 and 6 (see Figure 4), we obtain 

3
1 32 : 3 : 6 Δ ΔVPVP V E E→                     (70) 

which contributes two energy terms, 

( )23
22 : 4 : 6 ΔVPVP V E→                     (71) 

which gives a single energy term, 
3

3 12 : 5 : 6 Δ ΔVPVP V E E→                    (72) 

which is again a combination of two terms, and 

( )24
1 22 : 3 : 4 : 6 ,VPVP V E E→− ∆ ∆                (73) 

4
1 2 12 : 3 : 5 : 6 ,VPVP V E E E→− ∆ ∆ ∆                (74) 

( )24
2 12 : 4 : 5 : 6 ,VPVP V E E→ − ∆ ∆                (75) 

( )45
12 : 3 : 4 : 5 : 6 ,VPVP V E→ ∆                 (76) 

which are all single energy terms. Together with contraction 2 : 6  in (69) all 
interactions containing points 2 and 6 [equations (69)-(76)] give the number of 
energy terms equal to 

55 2 1 2 1 1 1 1 14 .S+ + + + + + + = =               (77) 

In effect the lacking number of diagrams for N = 7 is reduced to 

7 6 52 48 14 34.S S S− × − = − =                 (78) 

A new “interaction” which is between points 3 and 6, symbolized by 

3: 6,                           (79) 

but involving also contractions with the points 4 and 5 placed between 3 and 6, 
gives 

4 5S =                           (80) 

new energy diagrams corresponding to contractions 
2

33 : 6 ,VPVPVP V E→− ∆                   (81) 

3
1 23 : 4 : 6 ,VPVPVP V E E→ ∆ ∆                 (82) 

3
2 13 : 5 : 6 ,VPVPVP V E E→ ∆ ∆                 (83) 

( )1
4 33 : 4 : 5 : 6 .VPVPVP V E→ − ∆                (84) 

In fact the formulae (81)-(84) give 

42 1 1 1 5 S+ + + = =                      (85) 

energy terms. 
But this situation ignores a mutual relation between points 1 and 2 being 

outside contraction 3: 6 . This relation is represented by contraction of 1 and 2 
given in (86) below. In effect we have two possibilities which have to be 
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considered: one is when 1 and 2 remain free, but another one is when 1 and 2 
“interact” in the form of contraction 

1: 2                               (86) 

independently of the presence of (79) and (80). In result the number of diagrams 
represented by (80) should be taken twice: once it should be combined with free 
time points 1 and 2 [the terms (81)-(84)], otherwise it should be combined with 
the “interaction” of 1 and 2 given by contraction 1: 2 . In this second case the 
following 5 energy terms are obtained: 

2 2
1 31: 2 3: 6 ,VP VP V E E→ ∆ ∆                (87) 

( )22 3
1 21: 2 3: 4 : 6 ,VP VP V E E→− ∆ ∆             (88) 

2 3
1 2 11: 2 3: 5 : 6 ,VP VP V E E E→− ∆ ∆ ∆             (89) 

( )42 4
11: 2 3: 4 : 5 : 6 ,VP VP V E→ ∆              (90) 

if we note that 3E∆  in (87) combines two terms. 
The number of diagrams still necessary to calculate is 

7 6 5 42 2 34 10 24.S S S S− × − − × = − =              (91) 

The last but one step is “interaction” of point 6 with point 4, namely 

4 : 6.                           (92) 

Since point 5 should not be isolated from the “interaction” with 4 and 6, still 
one contraction, namely 

4 : 5 : 6,                         (93) 

has to be considered together with (92). But because the points 1, 2, and 3 are 
remaining free beyond of 4 and 6, the two energy diagrams which correspond 
respectively to (92) and (93) should combine with situations due to the presence 
of 1, 2, and 3. These points give 4 5S =  cases: 

1,2,3 are free                       (94) 

and four contractions of (94) which are 
1: 2, 1: 3, 1: 2 : 3 and 2 : 3.                 (95) 

The five situations given in (94) and (95) combined with two cases presented 
in (92) and (93) give in total 

42 10S× =                         (96) 

of new energy terms belonging to N = 7. These are: 
2

24 : 6 ,VPVPVPVP V E→− ∆                   (97) 

( )23
14 : 5 : 6 ,VPVPVPVP V E→ ∆                 (98) 

2 2
1 21: 2 4 : 6 ,VP VPVP V E E→ ∆ ∆                (99) 

( )32 3
11: 2 4 : 5 : 6 ,VP VPVP V E→− ∆              (100) 

( )22 2
21: 3 4 : 6 ,VP VP V E→ ∆                (101) 
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( )22 3
2 11: 3 4 : 5 : 6 ,VP VP V E E→− ∆ ∆            (102) 

2 2
1 22 : 3 4 : 6 ,VPVP VP V E E→ ∆ ∆              (103) 

( )32 3
12 : 3 4 : 5 : 6 ,VPVP VP V E→− ∆             (104) 

( )23 2
1 21: 2 : 3 4 : 6 ,VP VP V E E→− ∆ ∆             (105) 

( )43 3
11: 2 : 3 4 : 5 : 6 .VP VP V E→ ∆              (106) 

The effect of (92)-(106) is reduction of the unknown terms to the number  

7 6 5 42 4 24 10 14.S S S S− × − − × = − =              (107) 

But the number 14 in (107) can be obtained from a single contraction which 
remains to be considered, namely that between 6 and 5: 

5 : 6.                            (108) 

For in case of (108) four time points remain free on the scale: 1, 2 , 3 and 4. 
Their combinations are: 

1,2,3, and 4 remain free                      (109) 

or the points give contractions: 
1: 2, 1: 3, 1: 4, 2 : 3, 2 : 4, 3 : 4,  

1: 2 : 3, 1: 2 : 4, 1: 3 : 4, 2 : 3 : 4,  

1: 2 : 3 : 4, 1: 2 3: 4, 1: 4 2 : 3.                 (110) 

The effect of (109) and (110) is that they give precisely 5 14S =  configurations 
of the time points 1, 2, 3 and 4 necessary to construct the remainder of energy 
diagrams dictated by the result in (107). The energy terms due to (108)-(110) 
are: 

2
15 : 6 ,VPVPVPVPVP V E→− ∆                (111) 

( )22 2
11: 2 5 : 6 ,VP VPVPVP V E→ ∆              (112) 

2 2
2 11: 3 5 : 6 ,VP VPVP V E E→ ∆ ∆                (113) 

2 2
3 11: 4 5 : 6 and 1: 4 2 : 3 5 : 6 ,VP VP V E E→ ∆ ∆          (114) 

which is a combination of two energy terms, 

( )22 2
12 : 3 5 : 6 ,VPVP VPVP V E→ ∆                (115) 

( )33 2
11: 2 : 3 5 : 6 ,VP VPVP V E→− ∆                (116) 

3 2
1 2 11: 2 : 4 5 : 6 ,VP VP V E E E→− ∆ ∆ ∆               (117) 

( )23 2
2 11: 3 : 4 5 : 6 ,VP VP V E E→− ∆ ∆               (118) 

( )44 2
11: 2 : 3 : 4 5 : 6 ,VP VP V E→ ∆                 (119) 

2 2
2 12 : 4 5 : 6 ,VPVP VP V E E→ ∆ ∆                 (120) 

( )22 2
13 : 4 5 : 6 ,VPVPVP VP V E→ ∆                 (121) 
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( )33 2
12 : 3 : 4 5 : 6 ,VPVP VP V E→− ∆             (122) 

( )32 2 2
11: 2 3: 4 5 : 6 .VP VP VP V E→− ∆            (123) 

In Table 2 we collect the Schrödinger terms belonging to N = 7 which are due 
to the time contractions given below (78). 

In effect the total value of the Schrödinger perturbation energy belonging to N 
= 7 is given by a sum of: (a) the terms present in Table 1, (b) the terms given in 
formulae (50)-(65), (c) the terms in the formulae (69)-(76), (d) the terms 
collected in Table 2. 

In the next section we present the balance of the Huby-Tong number of the 
perturbation energy terms with the total number of energy diagrams obtained— 
for a given N—from contractions of the time points on the circular scale. 

7. Balance of the Number of Perturbation Energy Terms 
Obtained from the Huby-Tong Formula and within the 
Framework of the Present Theory 

Let us take the perturbation orders N = 8, 9 and 10 for which the number of the 
Schrödinger perturbation terms calculated from the Huby-Tong formula [see 
(15)] is respectively equal to: 

( )
8

2 8 2 !
429,

8!7!
S

× −
= =                    (124) 

( )
9

2 9 2 !
1430,

9!8!
S

× −
= =                   (125) 

( )
10

2 10 2 !
4862.

10!9!
S

× −
= =                   (126) 

These results will be compared with the number of time diagrams obtained on 
the circular scale taken for the same N as quoted above. The calculations 
performed with the aid of the circular scale are of a recurrent character which 
means that the knowledge of diagrams for N − 1, N − 2, etc., is used for 
calculation of the diagrams characteristic for N. The general rule is the same as 
presented in the preceding Section: we consider for a given N the time scale 
characteristic by the presence of the number of N − 1 time points suitable to 
contractions and add one time point to that ensemble. 

Beginning with N = 8 we have 7 time points “active” on the scale because the 
8th point is the beginning-end point which cannot participate in contractions. 
The time point 7 is new for the “active” part of the scale for N = 7 which had 
only 6 points of an active kind; see Section 6. The presence of point 7 gives 

7 132S =                           (127) 

new diagrams valid for N = 8 on condition a modification of the diagrams 
energy by PV present in formula (46) is taken into account. 

The next set of 7S  diagrams participating in calculation of the terms 
belonging to N = 8 is obtained from contraction 
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Table 2. The 34 Schrödinger energy terms belonging to N = 7 due to the time 
contractions presented below the formula (78). Each of expressions having 3E∆  
combines two Schrödinger terms. 

2
3VPVPVP V E∆−  [see (81)], 

3
1 2VPVPVP V E E∆ ∆  [see (82)], 

3
2 1VPVPVP V E E∆ ∆  [see (83)], 

( )32
1VPVPVP V E∆−  [see (84)], 

2 2
1 3VP VP V E E∆ ∆  [see (87)], 

( )22 3
1 2VP VP V E E− ∆ ∆  [see (88)], 

2 3
1 2 1VP VP V E E E− ∆ ∆ ∆  [see (89)], 

( )42 4
1VP VP V E∆  [see (90)], 

2
2VPVPVPVP V E∆−  [see (97)], 

( )23
1VPVPVPVP V E∆  [see (98)], 

2 2
1 2VP VPVP V E E∆ ∆  [see (99)], 

( )32 3
1 VP V PVP V E∆−  [see (100)], 

( )22 2
2VP VP V E∆  [see (101)], 

( )22 3
2 1VP VP V E E− ∆ ∆  [see (102)], 

2 2
1 2VPVP VP V E E∆ ∆  [see (103)], 

( )32 3
1VPVP VP V E− ∆  [see (104)], 

( )23 2
1 2VP VP V E E− ∆ ∆  [see (105)], 

( )43 3
1VP VP V E∆  [see (106)], 

2
1VPVPVPVPVP V E∆−  [see (111)], 

( )22 2
1VP VPVPVP V E∆  [see (112)], 

2 2
2 1VP VPVP V E E∆ ∆  [see (113)], 

2 2
3 1VP VP V E E∆ ∆  [see (114)], 

( )22 2
1VPVP VPVP V E∆  [see (115)], 

( )33 2
1VP VPVP V E− ∆  [see (116)], 

3 2
1 2 1VP VP V E E E− ∆ ∆ ∆  [see (117)], 

( )23 2
2 1VP VP V E E− ∆ ∆  [see (118)], 

( )44 2
1VP VP V E∆  [see (119)], 

2 2
2 1VPVP VP V E E∆ ∆  [see (120)], 

( )22 2
1VPVPVP VP V E∆  [see (121)], 

( )33 2
1VPVP VP V E− ∆  [see (122)], 

( )32 2 2
1VP VP VP V E− ∆  [see (123)]. 

 

1: 7                             (128) 

done together with contractions of the time points between 1 and 7 (namely 2, 3, 
4 , 5 and 6). 

Other components of 8S  are given by 
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6 42S =                          (129) 

diagrams due to contraction 2 : 7  combined with points 3, 4 , 5 and 6 enclosed 
between 2 and 7. Only one set of terms equal to (129) is obtained in this way 
because the only free time point 1 on the scale does not combine with any other 
time point. 

The situation becomes different for contraction 

3: 7                             (130) 

which—together with points 4, 5, and 6—can give 

5 14S =                           (131) 

diagrams for any arrangement of points 1 and 2. Since two such arrangements 
are possible (for contracted and free pair see Sec. 6), so in fact contraction (130) 
gives 52 28S =  energy terms. 

The contraction 

4 : 7,                           (132) 

together with its associates, gives only 4 5S =  terms but these terms apply to 

5 5S =  situations dictated by the arrangement of the time points 1, 2, and 3. In 
effect 5 5 25× =  energy terms are obtained. 

The remaining situations are given by contractions 

5 : 7                           (133) 

and 

6 : 7.                           (134) 

The contraction in (133) has its associate in contraction 

5 : 6 : 7,                         (133a) 

so two diagrams given by (133) and (133a) should be multiplied by 

5 14S =  

arrangements of the time points 1, 2, 3, and 4 which are outside of 
contractions (133) and (133a). This gives 2 14×  new energy terms. 

Finally a single contraction (134) corresponds to 

6 42S =                           (135) 

arrangements of the points 1, 2, 3, 4, and 5 outside 6 : 7  giving the number of 
energy terms equal to 6S  in (135). 

The total number of terms for N = 8 due to contractions taken into account 
between the formulae (127) and (135) becomes: 

7 6 5 4 4 5 62 2 2
264 42 28 25 28 42 429

S S S S S S S× + + × + × + × +

= + + + + + =
             (136) 

which is the result equal to that given in (124). This implies a complete number 
of necessary contractions considered in the N = 8 case. 

Calculations similar to those for N = 8 can be done for other N, too. The 
components entering them can be arranged in a more transparent way than in 

https://doi.org/10.4236/jmp.2018.98093


S. Olszewski 
 

 

DOI: 10.4236/jmp.2018.98093 1515 Journal of Modern Physics 
 

the case of (136); see Table 3. The results fully agree with those obtained in (125), 
(126) and those calculated from (15). 

8. Summary 

The present paper considers the well-known Schrödinger perturbation series for 
energy of a non-degenerate quantum state; the applied perturbation potential 
does not depend on time. 

A usual problem of the Schrödinger perturbation theory is that their formulae 
are derived in a tediously obtainable and complicated way. This concerns 
especially the case when a large order N of the perturbation energy is examined. 
A difficulty concerns also the Schrödinger perturbation calculation developed 
with the aid of the Feynman diagrams. Here large N imply a huge number of 
diagrams which have to be derived and considered in calculations; in effect the 
number of the Feynman diagrams can exceed by several orders of times the 
number of kinds of the perturbation terms entering the Schrödinger theory [3]. 
It should be noted that the scale of time applied by Feynman is a conventional 
scale extended from minus to plus infinity; see Section 2. 

The paper demonstrates that a difficulty connected with construction of the 
Schrödinger perturbation terms can be overcomed with the aid of a circular scale 
of time. According to Leibniz, time is a successive sequence of events, or sets of 
events. In such a picture the time intervals between separate events, or their sets, 
play a secondary role. The history of a system is built up by following the 
development in time of the system configurations. 

In case of the Schrödinger theory the time events are assumed to represent a 
gradual change of a quantum state upon the action of the perturbation potential. 
The events are successive collisions of the quantum system with that potential. 
The number of collisions is grouped in sets according to the size of the 
perturbation orders N: the N points of time are belonging to any set. These 
points are assumed to be arranged successively along a topological circle. In each 
set of N points one of the points does represent the beginning-end point of the 
circular scale belonging to that N. 

A result which seems to be important is that all kinds of the Schrödinger 
perturbation terms can be obtained—almost automatically, i.e. without calcula- 
tions—from the arrangements of the time points present on the circle. To this 
purpose a special kind of interactions between the time points—called also 
contractions—should be assumed. A general rule concerning contractions is that 
the time loops created by them do not cross. In effect, the number of diagrams 
obtained due to contractions for a given N agrees precisely with the number of 
kinds of the Schrödinger perturbation terms for that N. 

The main aim of the paper became to present a recursive process to obtain all 
kinds of the Schrödinger perturbation terms belonging to a given N. This means 
we assume that the terms characteristic for 1, 2, 3,N N N− − −   are known, 
and from them—and the points arrangement on the circular scale—all terms for 
N can be obtained. The main feature of the process is to take properly into  
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Table 3. Number of the perturbation terms for different N obtained from the Huby-Tong 
formula in equation (15) compared with the terms number derived on the basis of the 
present theory; see also [17]. 

N = 2: 1 1 21S S S= =  

N = 3: 1 2 2 1 31 1 2S S S S S+ = + = =  

N = 4: 1 3 2 2 3 1 42 1 2 5S S S S S S S+ + = + + = =  

N = 5: 1 4 2 3 3 2 4 1 55 2 2 5 14S S S S S S S S S+ + + = + + + = =  

N = 6: 1 5 2 4 3 3 4 2 5 1 614 5 4 5 14 42S S S S S S S S S S S+ + + + = + + + + = =  

N = 7: 1 6 2 5 3 4 4 3 5 2 6 1

742 14 10 10 14 42 132
S S S S S S S S S S S S

S
+ + + + +

= + + + + + = =
 

N = 8: ( )
1 7 2 6 3 5 4 4 5 3 6 2 1 1

82 132 42 28 25 429
S S S S S S S S S S S S S S

S
+ + + + + +

= × + + + = =
 

N = 9: 
( )

1 8 2 7 3 6 4 5 5 4 6 3 7 2 8 1

92 429 132 84 70 2 715 1430
S S S S S S S S S S S S S S S S

S
+ + + + + + +

= × + + + = × = =
 

N = 10: ( )
1 9 2 8 3 7 4 6 5 5 6 4 7 3 8 2 9 1

102 1430 429 264 210 196 4862
S S S S S S S S S S S S S S S S S S

S
+ + + + + + + +

= × + + + + = =
 

 
account the fact that any time point present on the scale—beyond of the 
beginning-end point—should “interact” with other time points on that scale in a 
way characteristic for the contraction properties possessed by the time points on 
the scale. 

In result we find that a tedious process of solving the perturbed Schrödinger 
equation—established in an ordinary three-dimensional space—can be replaced, 
with the aid of a new scale of time, by a very simple calculation of the 
Schrödinger energy solution. 
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Appendix: Perturbation Energy Calculation Due to the 
Present Method Outlined for Low N (from N = 1 to N = 6) 
We begin with the result that for N = 1 the perturbation energy is 

per
1 ,E V n V n∆ = =                      (A1) 

and the loop of time is a topological circle with a single time point on it [7]-[14]. 
Consequently to the rule outlined in the present paper [see (46)] for N = 2 we 
have 

2 .E VPV∆ =                           (A2) 

The presence of a single P in (2) indicates a single infinite summation over the 
unperturbed quantum states with exclusion of the perturbed state n; see (28) and 
(29). The time scale—beyond of the beginning-end point—has only one point 
on it [7]-[14]. 

The first step for N = 3 is to substitute PV at the end of the expression on the 
right of (A2). We obtain the first (positive) term for 3E∆  which is a double sum 
over the quantum states: 

.VPVPV                           (A3) 

But beyond of the beginning-end point on the scale we have still two free time 
points on it, say 1 and 2. They should contract together giving the next term of 

3E∆  equal to 
2 ;VP V V−                         (A4) 

this term is a single sum over the unperturbed states. The 3E∆  is 
2

3 .E VPVPV VP V V−∆ =                  (A5) 

In order to calculate the first two terms for N = 4 we increase the term in (A3) 
again by PV at the brackets end, and the same we are doing with the larger 
bracket term in (A4). We obtain two terms belonging to 4E∆ : 

VPVPVPV                         (A6) 

and 
2 2

1.VP VPV V VP VPV E− = − ∆                  (A7) 

A suplementary point 3 which comes for N = 4 can contract with points 1 and 
2 entering the scale already for N = 3. The interaction between 3 and 1 gives two 
contractions: 

1: 3, 1: 2 : 3,                         (A8) 

whereas the interaction between 3 and 2 alone is reduced to contraction 
2 : 3.                            (A9) 

The energy terms representing (A8) are respectively  
2 2

2VP V VPV VP V E− = ∆−                  (A10) 

and 

( )23 3
1VP V V V VP V E∆=                 (A11) 

and the term represented by (A9) is 
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2 2
1.VPVP V V VPVP V E− ∆= −                (A12) 

Terms (A6), (A7) and (A10)-(A12) give together 4 5S =  terms which is the 
number of the Schrödinger energy terms predicted by Huby and Tong [15] [16]. 
The sum of these terms gives: 

( )

2 2
4 1 2

23 2
1 1.

E VPVPVPV VP VPV E VP V E

VP V E VPVP V E

= − −

+ −

∆ ∆ ∆

∆ ∆
         (A13) 

The first five Schrödinger terms belonging to 5E∆  are given by modification 
of (A13). These are: 

( )

2 2
1 2

23 2
1 1

, , ,

and .

VPVPVPVPV VP VPVPV E VP VPV E

VP VPV E VPVP VPV E

∆ ∆

−∆ ∆

− −
      (A14) 

The remaining nine terms of 5E∆  come, first, from five contractions of a 
supplementary point 4 with point 1 and points between 1 and 4: 

1: 4, 1: 2 : 4, 1: 3 : 4, 1: 2 : 3 : 4, 1: 4 2 : 3.             (A15) 

They give respectively the five terms 

( )32 3 3 4
3 1 2 2 1 1, , , ,VP V E VP V E E VP V E E VP V E∆ ∆ ∆ ∆ ∆ ∆− −  (A15a) 

since the first term is due to combination of 2 terms, namely these given by the 
first and last contraction expression in (A15). 

Other Schrödinger terms are due to contraction between points 2 and 4: 

2 : 4, 2 : 3 : 4;                       (A16) 

and between points 

3 : 4.                           (A17) 

The last contraction leaves points 1 and 2 as free to contract together, so (A17) 
gives in fact two kinds of the Schrödinger terms: one term for uncontracted 1 
and 2, and one for the contracted case. In effect we have four terms belonging to 

5E∆  coming from (A16) and (A17): 

( )22 3
2 1, ,VPVP V E VPVP V E∆− ∆  

( )22 2 2
1 1, ,VPVPVP V E VP VP V E∆− ∆              (A18) 

where the last term is due to contraction 1: 2 3: 4 . 
The sum of results obtained in (A14)-(A18) gives the 5th order perturbation 

energy combined by 14 Schrodinger terms: 

( )

( ) ( )

( )

2 2
5 1 2

23 2
1 1

2 3 3
3 1 2 2 1

3 24 2 3
1 2 1

22 2 2
1 1 .

E VPVPVPVPV VP VPVPV E VP VPV E

VP VPV E VPVP VPV E

VP V E VP V E E VP V E E

VP V E VPVP V E VPVP V E

VPVPVP V E VP VP V E

∆ ∆ ∆

∆ ∆

∆ ∆ ∆ ∆

= − −

+ −

− + +

−

∆

∆ ∆ ∆

∆ ∆

− +

− +

     (A19) 
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The last perturbation order of energy considered in Appendix is N = 6. In the 
first step we obtain 14 components of 6E∆  by modifying the energy 
components of 5E∆ . They are obtained by adding PV at the end of the main 
brackets term: 

,VPVPVPVPVPV  

2 2
1,VP VPVPVPV V VP VPVPVPV E− ∆= −  

2 2
2 ,VP VPVPV VPV VP VPVPV E− = − ∆  

( ) ( )2 23 3
1 ,VP VPVPV V VP VPVPV E∆=  

2 2
1,VPVP VPVPV V VPVP VPVPV E− ∆= −  

2
3,VP VPV E∆−  

3
1 2 ,VP VPV E E∆ ∆  

3
2 1,VP VPV E E∆ ∆  

( )34
1 ,VP VPV E∆−  

2
2 ,VPVP VPV E∆−  

( )23
1 ,VPVP VPV E∆  

2
1VPVPVP VPV E− ∆  

( )22 2
1 .VP VP VPV E∆                      (A20) 

The term having 3E∆  as a multiplier combines two Schrödinger terms. 
The next 14 terms belonging to 6E∆  are different than (A20); they are: 

2
41: 5 ,VP V E∆→ −  

3
1 31: 2 : 5 ,VP V E E∆ ∆→  

( )23
21: 3 : 5 ,VP V E∆→  

3
3 11: 4 : 5 ,VP V E E∆ ∆→  

( )24
1 21: 2 : 3 : 5 ,VP V E E∆ ∆→ −  

4
1 2 11: 2 : 4 : 5 ,VP V E E E∆ ∆ ∆→ −  

( )24
2 11: 3 : 4 : 5 ,VP V E E∆ ∆→ −  

( )45
11: 2 : 3 : 4 : 5 .VP V E→ ∆                   (A21) 

The 4E∆  combines 5 Schrödinger terms and 3E∆  combines 2 terms. On 
the other hand, the last 14 terms of 6E∆  combine with the terms of (A20):  

2
32 : 5 ,VPVP V E→− ∆  

3
1 22 : 3 : 5 ,VPVP V E E→ ∆ ∆  
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3
2 12 : 4 : 5 ,VPVP V E E→ ∆ ∆  

( )34
12 : 3 : 4 : 5 ,VPVP V E→− ∆  

2
23 : 5 ,VPVPVP V E→− ∆  

( )23
13 : 4 : 5 ,VPVPVP V E→ ∆  

2 2
1 21: 2 3 : 5 ,VP VP V E E→ ∆ ∆  

( )32 3
11: 2 3 : 4 : 5 ,VP VP V E→ − ∆  

2
14 : 5    ,VPV PV PV P V E→ − ∆  

( )22 2
11: 2 4 : 5  ,VP V PVP V E→ ∆  

2 2
2 11: 3 4 : 5 ,VP VP V E E→ − ∆ ∆  

( )33 2
11: 2 : 3 4 : 5 ,VP VP V E→ − ∆  

( )22 2
12 : 3 4 : 5  .VPV P VP V E→ ∆               (A22) 

In total we obtain for N = 6 from (A20)-(A22) the number of terms 

614 14 14 42 .S+ + = =                     (A23) 

The perturbation energy 6E∆  is equal to a sum of the terms presented in 
(A20)-(A22). 
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