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Consider the following nonlinear programming problem (P) Minimize f(x)
subject to g(x)SO, where f:R"—>R and g:R" —> R are twice differen-
tiable functions. The Mangasarian [1] second-order dualof (P) is (DP) Maximize

F()=2"g(w) =5 PV [ ()= g ()]

such that V[f(u)—yTg(u)]+V2 [.f(u)—yTg(u)Jp =0

*Corresponding author.
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By introducing two differentiable functions H:R"xR" — R and
K:R"xR" — R", Mangasarian [1] formulated the following higher-order dual
of (P): (DP), Maximize
S(u)=y"g(u)+H(u,p)=y'K(u.p)
such that V H(u,p)-V, [yTK(u,p)J =0, y>0, where V,H(u,p) denotes
the nx1 gradient of H(u,p) with respect to pand V (yTK(u,p)) denotes
the nx1, gradientof y'K (u,p) with respect to p.

Further, Egudo [2] studied the following multiobjective fractional program-

ming problem: (MFPP) Minimize

o= A £ 4t

gl(x)’gz(x)’ ‘g (x)

subject to

xeXO:{xeXcR”:hj(x)SO,jeM},

where f:(fl,fz,m,f,():X—>Rk,g:(g,,g2,---,gk):X—)Rk
and h=(h,h,-,h,): X >R" are differentiable on X. Also, he discussed
duality results for Mond-Weir and Schaible type dual programs under generalized
convexity.

For the nondifferentiable multiobjective programming problem: (MPP) Mini-

G(x)= (£ (x)+S(x1G). f(x)+S(x]C,). oo, £i (%) + 5 (x] C,))

subjectto xe X' = {x eXcR":g, (x)+S(x|Ej) <0,j =1,2,---,m},where
fi:X > R(i=12,--,k) and g,:X - R(j=1,2,---,m) are differentiable func-
tions. C, and E, are compact convex setsin R" and

S(x\ Cl.)(i :1,2,---,k) and S(x|Ej)(j :1,2,---,m) denote the support func-
tions of compact convex sets, various researchers have worked. Gulati and
Agarwal [3] introduced the higher-order Wolfe-type dual model of (MPP)
and proved duality theorems under higher-order (F,p,p,d)-type I-assump-
tions.

In last several years, various optimality and duality results have been obtained
for multiobjective fractional programming problems. In Chen [4], multiobjective
fractional problem and its duality theorems have been considered under higher-
order (F ,a, p,d ) -convexity. Later on, Suneja et al. [5] discussed higher-order
Mond-Weir and Schaible type nondifferentiable dual programs and their duality
theorems under higher-order (F,p,o)-type J-assumptions. Several researchers
have also worked in this directions such as ([6] [7]).

In this paper, we first introduce the definition of higher-order (V, a,p,p,d ) -
invex with respect to differentiable function H :R"xR" — R . We also construct
a nontrivial numerical example which illustrates the existence of such a function.
We then formulate three higher-order dual problems corresponding to the

multiobjective nondifferentiable fractional programming problem. Further, we
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establish usual duality relations for these primal-dual pairs under aforesaid

assumptions.

2. Preliminaries

Let X < R" be an open set and ¢: X > R, H: X xR" —> R be differentiable
functions. a,f:XxX >R \{0}, 7:XxX >R", peR" and
0:XxX—>R".

Definition 2.1. ¢ is said to be (strictly) higher-order (V,a,,B, p,@) -invex
at u with respect to H(u,p) , if there exist 7,a,f,p and @ such that, for
any xeX and peR",

a(x,u)[gb(x) —¢(u)} (>)=n" (x,u)(V¢(u)+VpH(u,p))
+ﬁ(x,u)[H(u,p)—pTVpH(u,p)]+p||6’(x,u)||2.

Example 2.1. Let ¢#:R— R besuchthat ¢(x)=x*+x"+1.
Let

n(x,u)z%(xz +u2),H(u,p)=—2p(x+1)2.

Also, suppose

a(x,u) zl,ﬁ(x,u) =2, p=—1, 9(x,u)||=(x2 +u2)%.

Now,
£ = a () 9(x) - ()] (xa) (V(u) -5, 1 1. )
—,B(x,u)[H(u,p)—pTVpH(u,p)] —p||9(x,u)||2.

fz(x4+x2—u4—u2)—%(x2+u2)[4u3+2u—2(u+1)1—(x2+u2)

E=x"+x* (at u=0).

>0,VxeR.
Hence, ¢ is higher-order (V,a,,B, o 6’) -invex at u=0 with respect to
H (u, p) .
Remark 2.1.

1) If H(u,p)=0, then the Definition 2.1 reduces to (V, p) -invex function
introduced by Kuk et a/. [8].

2) If H(u,p) =0 and p=0, then the Definition 2.1 becomes that of
V-invexity introduced by Jeyakumar and Mond [9].

3)If H(u,p)= %pTV2¢(u)p, a(x,u)=0 and p=0, then above definition

yields in 7-bonvexity given by Pandey [10].

4) If p =1, then the Definition 2.1 reduced in (V,a,p,@) -invex given by
Gulati and Geeta [11].

A differentiable function [ =(f, /.-, f,): X >R is (V,a,pB,p,0) -invex
ifforall i=1,2,---,k, f, is (V,ai,ﬂi,pi,ﬁl.) -invex.

Definition 2.2. [12]. Let C be a compact convex set in R". The support
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function of Cis defined by
S(x|C):max{xTy:yeC}.

3. Problem Formulation

Consider the multiobjective programming problem with support function given
as: (MFP) Minimize

F(x):{f](x)w(xlq),fz(x)+S(x|CQ)’,__’fk(x)+S(x|ck)}

@ () S0 2 ()51 e (1) S(x1,)
subject to xeXO={xeXcR”:h/.(x)+S(x|El,)so,jzl,z,...,m}’

where f=(f,f.: . f;): X >R, g=(g.g .8 ): X > R" and
h=(h,hy,---,h,): X - R" are differentiable on X, f;(.)+S(.|C,)=0 and

g ()-S(.1D,)>0. Let H,:XxR"—>R be differentiable functions, C,, D,

and E, arecompact convex sets in R",forall i=1,2,---,k, j=1,2,--,m.

Definition 3.1. [3]. A point x” e X° is said to be an efficient solution (or

Pareto optimal) of (MFP), if there exists no x e X° such that for every

f(x)+S(x1c) _A(°)+S(16)

=12,---,k, <
! 5 (1)-5(x1D) " &(+)-5(< 1D,

and for some r=1,2,---,k,
£()+S(x1C) L) 516,
< 5 5 .
g (x)=-S(xID,) g (x*)-5(x"|D,)
We now state theorems 3.1-3.2, whose proof follows on the lines [13].

Theorem 3.1. For some £ if f(.)+(.)" z and —(g, ()-() v,) are higher-

order (V,a,,p,.p,.0,) -invex at u with respect to H,(u,p) for same 7 (x,u).

£()+(0) = —

- J is higher-order (V,tf,,ﬁ,,ﬁ,,e,)
gt(.)—(.) v,

-invex at u with respect to H, (u, p), where

Then, the fractional function {

)= N2 (). )= ()

g (u) —MTVt

and

T (1) 1 N ft(u)+uth u. ).
) [gmu)—u% (g,<u)_uTv,)2]Hf( 7

Theorem 3.2. In Theorem 3.L,if either —(gt(.)—(.)T vt) is strictly higher-
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order (V,a,,,.p,.0,) -invex at uwith respectto H, (u,p) and
(ﬁ ()-()" 2 ) >0 or (f, ()-() zt) is strictly higher-order (V,a,,8,.p,.0,)

f ()+()T z,
& ()_()T %

order ( .0, 3,5, t) -invexat we X with respect to I?I,(u,p).

- invex at u with respect to H,(u,p), then { J is strictly higher-

Theorem 3.3 (Necessary Condition) [14]. Assume that X is an efficient
solution of (MFP) and the Slater’s constraint qualification is satisfied on X. Then
there exist 4, >0, U, eR",z,eR" v, eR"
and w, € R",i=12,---,k, j=1,2,---,m, such that

L (f(x)+X" ) e oy T
,-_lﬂiv[—gi(f) )_CTV]+;ij(hj(x)+xij):O, (1)
>, (h (x)+xX"w,) =0, (2)

=

X'z, =8(x1C).5 €Ci=12,k, (3)
X'V, =S8(X|D,).v, €D,,i=1,2,,k, (4)
X'w, =8(X|E,). W €E,, j=12,m, (5)
A>0,i=1,2 -k, 1,20, j=1,2,,m. (6)

Theorem 3.4. (Sufficient Condition). Let uz be a feasible solution of (MFP).
Then, there exist 4, >0,i=1,2,---,k and u;20,j=12,--,m, such that

( )+u i + 3 +u w.
z_llw(g’(u) J Zuj (, (u) +u"w,) =0, )

z,uj (hj (u)+uij)=0, (8)

j=1
u'z,=S(u|C),z€Cli=12,.k, (9)
uTvl.:S(u|D,.),vieD,.,izl,Z,m,k, (10)
uTw/.=S<u|Ej),w/.eE/,,jzl,Z,-u,m, (11)
A>0,i=12k 1,20, j=1,2,,m. (12)

Let, for i=1,2,---,k, j=1,2,---,m,

D (£()+() z) and ~(g,()=()"v) be higher-order (V.a/,5.p!6)-
invex at uwith respectto H, (u,p) ,

2) (h‘/.(.)+(.)T w/.) be higher-order (V,af,ﬂf,p_?,@_f)—invex at u with res-
pect to Gj(u,p)

m

r _ 2
9 $71[7 (] + S0 (e 20
= J

4) 2/1,. (Vpl‘_l,- (u,p))+

Ms

,uj (VpGj (u,p)) =0,

1

J
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Z/li (I-_Ii (u,p)—pTVpl-_Il. (u,p)) >0 and zri:,uj (Gj (u,p)—pTVpGj (u,p)) 20,
5 a (x,u) :af (x,u) =4 (x,u) =ﬂf (x,u) = a(x,u),

where

)= S0 ). ) )

g,(u)—u v;

é(x’u)_@(x’u)[ BN ﬁ(u)+u;%z)2]

and p,(x,u)=p,(x,u).
Then, uis an efficient solution of (MFP).
Proof. Suppose u is not an efficient solution of (MFP). Then there exists

xe X° such that

L) +S(MIC) ¢ imL2k
& () S(x1D) g ()~ S(ipy T

and

f,(x)+S(x|C,) f,(u)+S(u|C,)
&, (1)-5(+1D,) " &, (w)-S(u|D,)

which implies

, forsomer=1,2,---,k,

fi(x)+x'z < fi(x)+8(x]C) < fi(u)+S(ulC)
g,(x)—xTvl_gl(x)—S(x|D,)_gi(u)—S(u\Dl) (13)
f,.(u)+uTzi .
= , foralli=1,2,---,k
gi(u)—uTv,.
and
f (x)+xTzr - f,,(x)+S(x|C,) - fr(u)+S(u|Cr)
g (x)-x"v, g (x)-S(x|D,) g (u)-S(u|D,) (1)
fi(u)+u'z,
==+ " forsome r=12,---,k.
g, (u)—u'y,

Since A4,>0,i=1,2,---,k, inequalities (13) and (14) gives

Zk:/li fl.(x)+x12i_fi(u)+u12i <0, (15)
=g (x)-xy g (u)-u'y,

From Theorem 3.1, for each i,1<i<k, [

£+ ]
gi(')_(')T Vi
is higher-order (V,c?il,,gil,ﬁil,él) -invex at u e X" with respect to H, (u,p),

we have

(s 1
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—u v, (16)
+p! (x,u)[]-_l, (u,p)—pTVpI-_I, (u,p)]+p,1 "6’,1 (x,u)"2
where
&xu:g'(x)_XTvi a (x,u), B(xu X, U
o) | S e (), )= )
0. (x,u X,u ! +fl(u)+uzl E X,u X, u
9( ) 9( )[g,(M)MTV, (g,(u)uTVi)z] > '01( ) pz( )
an ! + fi(u)+uTZ’ u
‘ H( ) [gz(u)uTv, (g,(u)uTvl)Z}H( P)
By hypothesis 2), we get
e (o) [y () 437w, = () " ) |
ZUT(x,u)[V(hj(u)+uij)+VpGj(u,p):| 17)

+ B (x)[6, (u.p) = 'V, G, (u.p) |+ £} |67 ()]

Adding the two inequalities after multiplying (16) by 4 and (17) by u,, we

obtain

= (18)

Using hypothesis 3)-4), we get

Zklfl l:f( )+xTZ A )+uTZ:|+Z”_1:ﬂj[hj(x)+xTWj_(hj(”)“L”TWJ)J

7 l&(x)-x )

& (u
7' (x, )ZZV( Eu))JruZ] n (x,u)iﬂ_/v(h_,(uﬁuij).
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Further, using (7)-(8), therefore

( )+x z f( )+u z; L T 1
e e e UL R

Since xis feasible solution for (MFP), it follows that

e B )

This contradicts (15). Therefore, u is an efficient solution of (MFP).

4. Duality Model-I

Consider the following dual (MFD), of (MFP): (MFD), Maximize

|:fi( u)+u'z, iﬂj( h, (u )+uij)+(ﬁ1(”aP)‘PTVpﬁl(“>p))

gl() “V1 Jj=1

+Zﬂ,( 1 (:2)=P'V,G, (1. p))++

LU s 0 ) )79, )

5206, 0.7) 57,6, ))}

subject to

oA (21)
k _ m
+Zﬂ,VpH,(u,p)+ wV,G, (u,p)=0,
i=1 Jj=1
z,€C,v,eD,w, ek i= Sk, j= -, m,

#; 20,2, >0,2/1i =1,i=1,2,-k, j=1,2,---.m

=1

Let Z° be feasible solution for (MFD),.

Theorem 4.1. (Weak duality theorem). Let xe X ® and
(u,z,v,u,A,w, p) € Z°. Suppose that

1) for any i=1,2,---,k, (fl ()+() zi> and —(gl. ()-()" V,-) are higher-
order (V,a},ﬂ,l,p;,@il) -invex at u with respectto H,(u, p),

2) forany j=12,---,m, (hj ()+()T wj.) is higher-order (V,af,ﬁf,pfﬁf)
-invex at u with respectto G, (u, p),

& = 2 m 2
9 53017 s + S 20
i= J=

4) a (x,u):a‘/z. (xu)=p (x,u):ﬂf (xu)=a(xu),Vi=12,-k,
j =1’25"'9m7

were ()< £ o (1), ) )
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é(x,u)—@,(x,u)[ ! + fiu)+u Zt)z] . P (xu)=p,(x,u) and

7 (4 _ 1 N ft(u)+uth y ‘
Ht( ,p) [gt(u)—uTv, (g,(u)—uTvt)zJHt( ,P)

Then, the following cannot hold
fi(x)+S(x[C,)
g’.(x)—S(x|D[)

f;(”)"l‘uTZl- < T T T T
Sm+;yj(hj(u)+u wj)+(Hl.(u,p)—p Vle.(u,p)) (22)

+Zﬂ/( (u,p)-p'V LG, (u, )),foralli:l,2,-~,k

and

%+Zyj(hj(u)+uij)+(1—_lr(u,p)—pTVp}_Ir(u,p)) (23)
+2/4 ( (u.p)-p v .G (u, )),forsomerzl,Z,---,k.

k
Proof. Suppose that (22) and (23) hold, then using 4, >0, z/li =1,

i=1

x'z,<8S(x]C), x'v,<S(x|D,), i=12,-,k, wehave

e

+ Z/ii (I?Il. (u,p)—pTVpI—_Ii (u,p)) (24)

+ Z;/‘j (Gj (v.p)-p'V,G, (”’p))-
=

T
From h i i = fl()"—() Zi
ypothesis 1) and Theorem 3.1, for i=1,2,---,k,

g()-()'
is higher-order (V,c?il,,gil,ﬁil, 511) -invex at u with respect to H, (u,p), we get
& (x.u) fi(x)+x'z B Si(u)+u'z,
o gi( )_XTV' gi( )_”Tvi
+u z;
{ [ J pH,-(u,p)} (25)
— 2
+,B (x u)[H( p) pTV H (u p J+pl "9 ” .
For any j=1,2, ( wj) is higher-order (V aj,ﬁ ,0],192)
-invex at u with respect to G ) we have
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a; (x’”)[h.i (x)+x"w, - (hj ()+u'w, )}
>n' (x,u)[V(hj(u)+uij)+VpGj (u,p)} (26)
+ ] (xu)[ G, (u.0) = PV, G, (. p) |+ 2} 0} ()]

Adding the two inequalities after multiplying (25) by 4 and (26) by x,, we

obtain

X

Sral (’”‘){ E; g;(u)_u:d}
e (o) () x0o, = () et )
2l

g,z J Hi(u,p)l
o >1, V(i (1) +aw,)+9,6, (1 p)]
+2w(xu)[ (u.p)=p"V A, (w.p)]
Zu, ()G, (u.p) = p'V,G, (. p) |

+ Z:/I’ﬁll "511 (x,u)” +Zm|:/1jp,2- "0]2 (x,u)"2 .
i= Jj=

|\/
T M»
55

(27)

Using hypothesis 3) and (21), we get

L f.(x)+xTz. f.(u)+uTz.
/I- l i i Ji i
izzl: i (x,u) g,'(x)_xTVi gi(”)_”TVi

= (28)

+ Zﬂjﬂf (x’”)[Gj (.p)=p'V, G, (u, p)]
J
Finally, using hypothesis 4) and xis feasible solution for (MFP), it follows that

e Fa e S B

( ) XV gi(”)_“ Vi J=1
+lZ::2,i (I-_Il (u,p)—pTVpI-_]i (u,p))
+Zm:1:/lj(Gj (”’p)_pTVpGj (u,p)).

This contradicts Equation (24). Hence, the result.

Theorem 4.2. (Strong duality theorem). If # € X° is an efficient solution of
(MFP) and the Slater’s constraint qualification holds. Also, if for any
i=1,2,k, j=1,2,---,m
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H,(7,0)=0,G,(w,0)=0,V,H,(7,0)=0,V,G, (,0)=0, (29)

then there exist A € R*,ieR",Z €R",v, € R" and

W, eR",i=1,2k j=12,,m , such that (u,z,v,ﬁj,w,,?:o) is a
feasible solution of (MFD), and the objective function values of (MFP) and
(MFED), are equal. Furthermore, if the hypotheses of Theorem 4.1 hold for all
feasible solutions of (MFP) and (MFD), then, (17,5,7, H, A, w,p= 0) is an
efficient solution of (MFD),.

Proof Since u is an efficient solution of (MFP) and the Slater’s constraint
qualification holds, then by Theorem 3.3, there exist
AeR‘,IeR"Z,eR",V,eR" and W,eR",i=12k j=12,,m , such
that

i;jv{w}riﬁjv(% (LT)+L7TWj)=0, (30)

= \g(@)-u'y,) =
Zm;ﬁj(hj(ﬁ)mwj):o, (1)
=
W'z, =S(u|C).u"v,=Su|D,).u"w =S(u|E,), (32)
z,eC,v,eD, w ek, (33)
2, >0, y =1 20, i=12k, j=12,m. (34)

Thus, (LT,E,V, H, 2, W,f):O) is feasible for (MFD), and the objective func-
tion values of (MFP) and (MFD), are equal.

We now show that (L_l, z,V, U, A, w,p= 0) is an efficient solution of (MFD),.
If not, then there exists (u',z',v',,u’,l', w,p'= 0) of (MFD), such that

fla)+u'z, &
f u' +u, Z; ! 4 ! /
<$ > (1 () "), foralli=1,2.0

and
fL(u)+u'z, & _r_
o ()i, 5 )
<f( )+u Z i,u/( h (u )+u'Tw’) for some r=1,2,--,k.

gr() Ve =

By equation (31), we obtain

f;(ﬁ)+1/7TE f( )+M Z < 1T 1 .
g,.(a)—ﬁTv.<g,( Ay ;y,( () +u w) foralli=1,2, -,k

and

S )+L7T‘ Jo () +u
g (w)=uv, g (u)-u

rT !
— r+Zﬂ,( (u ')+M'TW;)’fOI'SOmeVZLZ’...’k_
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This contradicts the Theorem 4.1. This complete the result.
Theorem 4.3. (Strict converse duality theorem). Let ¥ € X’ and
(#.2.v,1,4,w,p)e Z2°. Let

ARG REEA P Py WA A

i=1

D + 2.2 (H,(@.p)= 'V, H, (i 7))

2) forany i=12,---,k, ( ()+()" Z) be strictly higher-order
(V,al.l,ﬂl.l,pilﬁil) -invex at # with respect to H,(i,p) and —(gi(.)+(.)T\7i)

be higher-order (V ,al, B, pl.‘,ei‘) -invexat @ with respectto H,(u,p),
3) forany j=1,2,---,m, (hj. ()+()T wj) be higher-order

(V,af,ﬂf,p_?,@_f) -invex at u with respectto G, (u,p),

k = 2 m _ NV
o $27 [0 G + S 01l ) =0
i= J=

Then, x=u.

Proof. Using hypothesis 2) and Theorem 3.2, we have

a(eofADTE 0T

i

S 77T (f,ﬁ)[v %J + Vp[‘_[,- (ﬁ,ﬁ):l (35)

(.)T W,-) is higher-order (V,af,ﬂf,pf, Hf)
)

, we have

o (f,a)[h,. (x)+x"w, - (h, (ﬁ)ﬂﬂw_,ﬂ

>n" (f,ﬁ)[v(hj (@)+a"w,)+V,G, (ﬁ,fa)] (36)
+ 2 (%.0)[ G, (@.5)-P'V,G, (@.5) ]+ o2 |0 (7.7) -

Adding the two inequalities after multiplying (35) by A and (36) by z > We

obtain
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it (;,g)}i 7,[V(h (@) +7"%,)+V,G,(@.5) ]
w3 AB (50 A, (@.5)- 'V, 7. (7,5)]

i=1

n (37)
+ 2B (’?j)[Gj (#,p)-p'V,G, (17,1_7)]

= ‘ ‘ ' (38)

+ 2,6, (%) G, (7.5)- 7'V, G, (7.7) |

J=1

Finally, using hypothesis 4) and X is feasible solution for (MFP), it follows
that

This contradicts the hypothesis 1). Hence, the result.

5. Duality Model-II

Consider the following dual (MFD), of (MFP): (MFD), Maximize

—g EZ))tZle/l +Z:1:,Uj (hj (u)+uij),---,%+Zfﬂj(hj (”)+uTWj)

subject to

Ziﬁ(%] + iij(hj (u)+uij)
& i) g (39)

m

K
+Zl‘/1inHl. (u,p)+ ZlijpGj (u,p)=0,
=] J=

k

> A (Hl. (u,p)-p'V H, (u,p))+ Z,f:,uj (Gj (u,p)-p'V,G, (u,p)) >0, (40)

i=1

z,eC,v, eD,.,wj eEj,i:I,Z,---,k,j:1,2,---,m, (41)
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k
120,20, 4 =1, i=1,2,,k, j=1,2,,m. (42)

i=1
Let P’ be the feasible solution for (MFD),.

Theorem 5.1. (Weak duality theorem). Let xe X° and
(w,z,v,y,A,w,p)e P’ Letfor i=1,2,---,k, j=12,---,m,

T
1) [%} be higher-order (V,ail,ﬂil,pilﬁil) -invex at u with res-
&)V

pectto H, (u,p) ,

2) (hj ()+()T wj) be higher-order (V,af,ﬂf,pf,@f)—invex at u with res-
pectto G,(u,p),

& 2 m 2
9 Saelfer (o] + St (] =0
i=] 7=

4) a)(xu)= af (x,u)=p(xu)= ﬁjz (x,u)=a(x,u).
Then the following cannot hold
fi(x)+S(x]C) - filu)+u'z, &

g (x)=S(xID,) g (u)-u'y, +_,-Z:;'Llj(h" (u)+u wj),Vi:I,z,---,k (43)

and
fr(x)+S(x|C,,)
g.(x)-S(x|D,)
fi(u)+u'z, &
S (w)-u, 5

(44)

Proof. The proof follows on the lines of Theorem 4.1.

Theorem 5.2 (Strong duality theorem). If i € X° is an efficient solution of
(MFP) and the Slater’s constraint qualification hold. Also, if for any
i=172a"',kaj =1a23“'9m)

H,(u,0)=0,G,(u,0)=0,V H,(i,0)=0, v,G, (,0)=0, (45)

then there exist A € R*,ie R",z, €R",v, € R" and
w,eR",i=1,2,---,k,j=1,2,---,m , such that (u,E,V,,E,Z,W,ﬁzO) is a
feasible solution of (MFD), and the objective function values of (MFP) and
(MFD), are equal. Furthermore, if the conditions of Theorem 5.1 hold for all
feasible solu- tions of (MFP) and (MFD), then, (u,E,V,ﬁ,Z, W,E:O) is an
efficient solution of (MFD),.

Proof. The proof follows on the lines of Theorem 4.2.

Theorem 5.3. (Strict converse duality theorem). Let X € X % and

(w.z.v. 2,4, w,p)e P'. Let i=12,k j=12,,m,

p $2[ LT | $7 (LD T ) 5 1 ) ),

i=l 8 ()_C —XV; i=1 & (ﬁ)_ﬁTVi J=1
T —
AL )+ z
2) {f'( )+( )T — ] be strictly higher-order (V,al.l,ﬂil,pil, 6’:) -invex at u
g()-()v
with respect to H, (i, p),
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3) (hj(.) ) wj) be higher-order (V al,pB; p1,92) -invex at z with
respectto G, (17 ),

4) 2,1 oo (za) +Zm;ﬁjp]2. |62 (=) >o0.
e

5) o (X,u)=a; (X,u)= g (x.u)=f; (X.u)=a(x,u).
Then, x=u.
Proof. The proof follows on the lines of Theorem 4.3.

6. Duality Model-III

Consider the following dual (MFD), of (MFP): (MFD), Maximize

[%*(ﬁl<u,p>—pTvﬁl<u,p>)»---’

subject to

= (46)

z'”j [hj (“)+”TW/ +G,; (”’p)_pTVpGj (u,p)J 20, (47)
A
z,€C,v,eD,w, €k, i=12,k, j=12,---,m, (48)
k
u; 20,4 >O,Z/1i =Li=12,-,k, j=1,2,---,m. (49)

i=1

Let S° be feasible solution of (MFD),.

Theorem 6.1. (Weak duality theorem). Let xe X ® and
(w,z,v,u,A,w,p)€S° . Let i=1,2,-,k, j=1,2,---,m

D (£()+()'z) and ~(g()=()"%,) be higher-order (V,a,4'p!.0])
-invex at u with respect to H, (u,p ,

2) (hj ()+()T wj) be higher-order (V, ajz.,ﬂf,pjz.,ﬁf) -invex at u with res-
pectto G, (u,p),

koo , 2
9 47118 (e +3716F (e 20
i=1 =
4) (7} (x,u) = ajz. (x,u) = ,6’,,1 (x,u) = ﬂ]z (x,u) = a(x,u),

where

(it(x,u):(%Ja,(x,u), B () = 4, (3ot0)
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and

H,(u,p)= +

Then, the following cannot hold
fi(x)+8(x]C)
gi(x)_S(x‘Di)
< fi(u)+uTzi

&i (”)_MTVi

(50)
+(I-_I,.(u,p)—pTVpFI,. (u,p)), foralli=1,2,---,k

and

(51)
23— T o (H (u,p)-p'V _H (u,p)), for some r=1,2,---, k.
i CAC R A O

Proof. The proof follows on the lines of Theorem 4.1.

Theorem 6.2. (Strong duality theorem). If # € X° is an efficient solution of
(MFP) and let the Slater’s constraint qualification be satisfied. Also, if for any
i:1925'”9ksj:1523'“9m)

H,(1,0)=0,G,(%,0)=0,V H,(,0)=0,V G, (,0) =0, (52)

then there exist 1 e R e R",z,eR",v.eR" and
W, eR"i=12,k j=12,-m , such that (u,z,v,2,4,wp=0) is a
feasible solution of (MFD), and the objective function values of (MFP) and
(MFD), are equal. Furthermore, if the conditions of Theorem 6.1 hold for all
feasible solutions of (MFP) and (MFD), then, (u,E,V, U, A, w,p = 0) is an
efficient solution of (MFD),.

Proof. The proof follows on the lines of Theorem 4.2.

Theorem 6.3. (Strict converse duality theorem). Let X € X % and
(LT, Z,V, I, 2, W,ﬁ) be feasible for (MFD),. Suppose that:

1)

k AT k Nz k

> (%J <37 (%J YA, (%)~ PV, (%7)),

2) forany i=1,2,--,k, (f, ()+ ()T Z) be strictly higher-order
(V,a},ﬁ},p},&il) -invex at # with respect to H,(u,p) and —(g,.(.)+(.)T\7,.)
be higher-order (V, al, B, pl.l,ﬁil) -invex at i with respectto H,(u,p),

3) for any j=1,2,---,m, (hj ()+()T w/.) is higher-order (V,af,ﬁ_f,p?,@f)

-invex at u with respect to G, (u,p) ,

k = 2 m _ NV
o 32 ] S0 ) =0
1= J=
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Then, x=u.

Proof. The proof follows on the lines of Theorem 4.3.

7. Conclusion

In this paper, we consider a class of non differentiable multiobjective fractional
programming (MFP) with higher-order terms in which each numerator and
denominator of the objective function contains the support function of a com-
pact convex set. Furthermore, various duality models for higher-order have been
formulated for (MFP) and appropriate duality relations have been obtained un-

der higher-order (V,a, S, p,d) -invexity assumptions.
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