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Abstract 

The recently domesticated species, Cephalaria joppensis (CJ), is emerging as a 
new alternative forage crop in Israel. It has high biomass potential and nutri-
tional values that are comparable to forage wheat. However, CJ emerges slow-
ly under cold conditions, which hinders its development as a major winter 
crop. Additional tolerance for abiotic stress would improve its performance as 
a forage crop. We examined the effects of several abiotic factors (i.e., cold, sa-
linity, drought and pH) on CJ germination under controlled conditions. The 
effect of temperature was studied by incubating seeds at different tempera-
tures between 7˚C and 35˚C. The effects of salinity, osmotic potential and pH 
were tested by incubating seeds at different NaCl, PEG and pH levels, respec-
tively. Temperature, salinity and osmotic potential significantly affected ger-
mination; whereas pH did not. Temperature did not affect the final propor-
tion of germinated seeds, but did affect other germination-rate variables, in-
dicating that germination rate might be the limiting factor under field condi-
tions. Salinity also affected germination-rate variables, but not the proportion 
of seeds that germinated. Notably, CJ was found to be relatively resistant to 
high salt concentrations, with a 273 mM NaCl threshold for germination, in-
dicating its potential as a relatively salt-tolerant forage crop. Both the propor-
tion of germinated seeds and the germination rate were highly sensitive to the 
osmotic-potential treatments, indicating that drought resistance will remain 
the biggest challenge for CJ. This study provides baseline data for a rapid and 
efficient system for further screening for abiotic-stress tolerance among wild 
and cultivated lines of CJ.  
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1. Introduction 

Wheat constitutes a significant component of the silage and forage grown in 
Mediterranean regions. In Israel, for example, wheat accounts for about 50% of 
forage production [1]. Yet, grown as a winter crop without additional irrigation, 
wheat forage has several disadvantages, including relatively low yields (10 - 14 
dry tons/ha) [1] [2] [3], farmers’ preference for growing wheat for grain instead 
of forage and an acute shortage of lands for crop rotation. As a result, in recent 
years, there has been a shortage of local rough forage for livestock. One possible 
solution is the development of alternative high-yielding winter crops that would 
improve the profitability of forage-oriented agricultural production and could be 
incorporated into better crop-rotation systems. 

Cephalaria joppensis (CJ), whose domestication was recently initiated [4], is a 
promising complementary crop for wheat silage. CJ has many advantages rela-
tive to other broad leaf rotation crops (e.g., forage legumes). It is very easy and 
inexpensive to grow, naturally resistant to many pests and has high yield poten-
tial. In addition, its nutritional quality is equivalent to that of wheat and there is 
little accumulation of nitrites in the silage [4] [5]. This crop is harvested rela-
tively late in the spring season and does not need to dry out in the field before 
ensiling. Initial observations have identified CJ as a very good fallow crop (Galili, 
personal observation). 

Nevertheless, several factors limit the promotion of this species. CJ is sensitive 
to most existing commercial herbicides, and it grows relatively slowly in the 
colder weather of the winter; it begins to grow rapidly only in the early spring. 
These two characteristics make weed management in this crop particularly chal-
lenging, since the competing weeds grow faster than the crop under cold condi-
tions. Drought is another important factor that hinders the expansion of CJ cul-
tivation. The only existing commercial variety, “Rishon”, performs poorly under 
drought conditions and, therefore, is not grown in areas with less than 350 mm 
of annual precipitation. Indeed, the need for more drought-tolerant varieties is 
becoming increasingly critical in light of the increased desertification around the 
world [6]. 

In many dry and semi-arid regions, slightly saline water from deep wells is 
being used for crop irrigation. This can lead to reductions in crop fitness and 
production due to salinity, as well as to severe accumulation of salts in the soil. 
One possible solution is the development of new salt-resistant cultivars. Wild CJ 
maybe considered naturally resistance to salt stress, since several accessions have 
been collected from very salty soils and seaside sites (Galili, personal observa-
tion). Yet, the direct effects of salinity on CJ germination and growth have not 
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been previously studied.  
Genetic and agronomic improvements that include the introduction of herbi-

cide resistance and increased plant vigor and crop uniformity under stressful 
conditions could help CJ to become a leading forage crop in rotation systems. In 
this study, we examined the effects of temperature, salt, osmotic potential and 
pH on CJ seed germination under controlled conditions. This work is part of an 
effort to develop new tools for screening for abiotic-stress resistance among wild 
and developed lines of CJ. Although they concern only one aspect of plant de-
velopment (i.e., germination), our results serve as the first indications of CJ’s 
responses to abiotic-stress conditions and may serve as a baseline for future 
breeding/selection work. 

2. Materials and Methods 
2.1. Plant Material 

CJ seeds, cv. Rishon, were used for this study. We sterilized the seeds by im-
mersing them in 1% bleach for 30 min and then rinsing them five times in dis-
tilled water. The seeds were dried in a sterile laminar hood and then kept at 
room temperature until they were used. 

2.2. Stress Experiments 

Each experiment was performed in six replications with 25 seeds each. To that 
end, 50 sterilized seeds were placed on two-layer germination paper using a va-
cuum plate. The paper’s surface was divided into two areas, each containing 25 
seeds. The seeds were covered with additional wet germination paper and the 
papers were rolled into cylinders, placed inside polyethylene bags (three cylind-
ers per bag) and covered with aluminum foil to prevent light penetration. For 
the temperature experiment, the cylinders were incubated for 2 weeks at 7˚C, 
10˚C, 12˚C, 15˚C, 20˚C, 25˚C, 30˚C and 35˚C (three cylinders at each tempera-
ture). During this period, the germination rate was determined every day by 
counting the number of seeds with >2 mm radicles. At the end of the 2 weeks, 
the length, fresh weight and dry weight (after 3 days at 65˚C) were determined 
for each seedling in each replication.  

The salinity experiment used the same design described above, with six repli-
cations, but salt solutions were used instead of regular water. Five salt concen-
trations were used with concentrations of: 0 mM (distilled water), 40 mM, 80 
mM, 120 mM and 160 mM NaCl. For the osmotic-potential experiment, the 
same design was used, but the cylinders were placed in polyethylene glycol 
(PEG) solutions at 0 Mpa (control), 0.1 Mpa, 0.2 Mpa, 0.4 Mpa 0.8 Mpa and 
1Mpa.PEG 6000 (Duchefa; Netherlands) was used with a specific formula, as 
described by [7]. For the pH experiment, nine pH levels (i.e., 4 - 11) were tested 
and tap water (pH 6.8) was used as a control. The pH solutions were prepared as 
described by [8]. In all three experiments, the paper cylinders were incubated in 
the dark at 25˚C for 10 days. At the end of the incubation period, we measured 
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the length, fresh weight and dry weight of each seedling. 

2.3. Calculation of Germination Variables 

The percentage of seeds that germinated (%G) was determined using the fol-
lowing formula: 

100 number of germinated seeds%
Total number of seeds

G ∗
=               (1) 

Germination index (GI), the estimated germination rate of the seeds, was cal-
culated using this formula: 

( ) 1

number of germinated seeds at Day seed day n
d

dGI
d=

= ∑       (2) 

In that formula, d is the number of days from the initiation of the experiment. 
The mean germination time (MGT) was calculated using the following for-

mula: 

( )
( )1

number of germinated seeds at Day 
days

Total number of germinated seeds

n

d
d d

MGT =
×

=
∑

    (3) 

The seed vigor index (SV) was calculated as follows:  

mean seed length %SV G= ×                   (4) 

To calculate the point at which 50% of the seeds had germinated, the follow-
ing formulas were used:  

( ) ( ) ( ) ( )50 1 1Hours 24 24 2n n nD HR D GSD TGS GSD− −= × + × −       (5) 

( ) 50 50Days 24D D HR=                     (6) 

In those formulas, D50 is the number of hours or days until 50% of the seeds 
had germinated, Dn is the Day n from the initiation of the experiment until the 
total number of germinated seeds exceeded 50% of the total number of seeds 
that had germinated by the end of the experiment. GSD is the number of germi-
nated seeds on Dn and TGS is the total number of germinated seeds.  

The threshold temperature, osmotic potential and salt concentration for ger-
mination were calculated as previously described [9]. Statistical analyses were 
done using the JMP 5.0 software package (SAS Institute Inc., Cary, NC).  

3. Results  

3.1. The Effect of Ambient Temperature on Seed-Germination  
Variables 

The effect of ambient temperature on the germination of CJ seeds is shown in 
Figure 1. As shown in that figure, almost 100% of the seeds germinated at all of 
the examined temperatures, with the exception of the 35˚C treatment, in which 
the germination rate declined significantly to 40% (Figure 1(a)). In contrast, the 
germination index (GI), which represents the change in germination rate, in-
creased significantly from 3.6 seeds/day at 7˚C to 20.7 seeds/day at 30˚C (Figure 
1(b)). No significant difference in GI was noted between 12˚C and 15˚C. There  
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Figure 1. The effects of temperature on (a) the percentage of seeds that germinated (G); 
(b) the germination index (GI); (c) mean germination time (MGT); (d) seed vigor (SV); 
(e) seedling length (SL); (f) seedling fresh weight (SFW) and (g) seedling dry weight 
(SDW). The graphs show the average values and standard errors for 6 replicates of 25 
seeds each. The straight line represents the linear correlation among the temperature 
treatments. 
 
was a positive linear correlation between GI and temperature over the 7˚C - 
30˚C range (R2 = 0.96). However, increasing the ambient temperature to 35˚C 
resulted in a sharp decrease in GI that was significantly different from that ob-
served in all of the other temperature treatments, even the 7˚C treatment. In 
contrast, mean germination time (MGT) significantly decreased with the in-
crease in ambient temperature, from 6.9 days at 7˚C to 1.4 days at 30˚C, with the 
largest increase seen between 7˚C and 10˚C (Figure 1(c)). There was a negative 
linear correlation between MGT and temperature over the 7˚C - 30˚C range (R2 
= 0.63). Increasing the temperature to 35˚C resulted in a significant increase in 
MGT, although the MGT at 35˚C was not significantly different from that ob-
served for the 10˚C and 12˚C treatments. Similarly, the germination time for 
50% of the seeds decreased significantly from 4.5 days at 7˚C to 0.8 days at 30˚C 
(data not shown). The germination-threshold temperature was calculated from 
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this value and found to be 2.4˚C. 
Seed vigor, seedling length and seedling fresh weight all corresponded to GI 

and were found in positively correlated with temperature (R2 between 0.82 and 
0.83). Seedling vigor increased significantly from 284 at 7˚C to 2266 at 30˚C 
(Figure 1(d)). Seedling length increased significantly from 2.9 cm at 7˚C to 22.7 
at 30˚C (Figure 1(e)) and seedling fresh weight increased significantly from 1.23 
g at 7˚C to 4.65 g at 30˚C (Figure 1(f)). For all of these variables, no significant 
differences were found between the 25˚C treatment and the 30˚C treatment, 
which both yielded results significantly better than those observed for the 35˚C 
treatment. In contrast to seedling fresh weight, seedling dry weight did not vary 
much between the different temperature treatments (Figure 1(g)). Since no dif-
ferences were noted in any of the examined parameters between 25˚C and 30˚C 
(aside from GI), we concluded that this range is the optimum temperature range 
for the germination of cv. Rishon. Based on that finding, the effects of all of the 
other types of stress (i.e., salt, PEG, pH) were examined at 25˚C. 

3.2. The Effect of Salt Concentration on Seed-Germination  
Variables 

The effect of NaCl concentration on the germination of CJ seeds is described in 
Figure 2. Similar to the temperature experiments, no difference was found be-
tween the salt treatments in terms of %G and almost 100% germination was ob-
served for all of the NaCl treatments (Figure 2(a)). Unlike %G, GI was influ-
enced by the salt concertation and significantly decreased from 15.7 seeds/day in 
distilled water to 6.6 seeds/day in 160 mM NaCl (Figure 2(b)). There was a sig-
nificant negative linear correlation between GI and that range of salt concentra-
tions (R2 = 0.94; Figure 2(b)). In accordance with that decrease in GI, MGT in-
creased significantly between 1.7 days to 3.7 days, from 0 mM to 160 mM, re-
spectively (Figure 2(c)). In addition, the amount of time required for 50% of the 
seeds to germinate increased significantly from 1.0 days at 0 mM NaCl to 3.8 
days at 160 mM NaCl (data not shown). The threshold for osmotic potential was 
extrapolated from those figures and found to be 273 mM NaCl. Seed vigor, 
seedling length and seed fresh weight all corresponded to GI and were found to 
be negatively correlated with NaCl concentration (R2 between 0.74 and 0.80). 
Seedling vigor significantly decreased from 1459 at 0 mM NaCl to 501 at 160 nm 
NaCl, but no significant differences in seedling vigor were noted between 
0mMNaCland 40 mM NaCl (Figure 2(d)). Seedling length decreased signifi-
cantly from 15.2 cm at 0 mM to 5.3 at 160 nm NaCl, but no significant differ-
ences in seedling length were noted between 0 mM and 40 mM (Figure 2(e)). 
Seedling fresh weight decreased significantly from 1.59 g at 0 mM NaCl to 0.81 g 
at 160 mM NaCl, but no significant differences in seedling fresh weight were 
noted between 0 mM and 40 mM or 80 mM (Figure 2(f)). As in the temperature 
experiment, the dry-weight values from the salt experiment did not show any 
significant change in either direction (Figure 2(g)). 
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Figure 2. The effects of different NaCl concentrations on (a) the percentage of seeds that 
germinated (G); (b) the germination index (GI); (c) mean germination time (MGT); (d) 
seed vigor (SV); (e) seedling length (SL); (f) seedling fresh weight (SFW) and (g) seedling 
dry weight (SDW). The graphs show the average values and standard errors for 6 repli-
cates of 25 seeds each. The straight line represents the linear correlation among the salt 
treatments. 

3.3. The Effect of Osmotic Potential on Seed-Germination  
Variables 

The effect of osmotic potential on the germination of CJ seeds was tested as an 
indicator of drought tolerance. Different levels of osmotic potential were estab-
lished through the use of different concentrations of PEG. As shown in Figure 3, 
the effect of osmotic potential was different from that of salinity, with the excep-
tion of %G. Almost 100% germination was observed only up to −0.4 MPa 
(Figure 3(a)). Beyond that point, %G decreased significantly, reaching 79% at 
−0.6 MPa, 21% at −0.8 MPa and 5.6% at −1 MPa. GI also decreased significantly 
as the osmotic potential increased, from 15.7 seedlings/day at 0 MPa to 0.2 
seedlings/day at −0.8 MPa (Figure 3(b)). The negative linear correlation be-
tween GI and osmotic potential had an R2 value of 0.94.As expected, a very dif-
ferent trend was observed for MGT. MGT increased significantly as osmotic po-
tential increased, from 1.7 days at 0 MPa to 7.5 days at −0.8 MPa (Figure 3(c)).  
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Figure 3. The effect of osmotic potential on (a) the percentage of seeds that germinated 
(G); (b) the germination index (GI); (c) mean germination time (MGT); (d) seed vigor 
(SV); (e) seedling length (SL); (f) seedling fresh weight (SFW) and (g) seedling dry weight 
(SDW). The graphs show the average values and standard errors for 6 replicates of 25 
seeds each. The straight line represents the linear correlation among the osmot-
ic-potential treatments. 
 
In addition, the amount of time required for 50% of the seeds to germinate in-
creased significantly from 1.3 days at 0 MPa to almost 5 days at −0.8 MPa (data 
not shown). The threshold for osmotic potential was extrapolated from those 
figures and found to be around −0.95 MPa. Significant negative correlations 
were observed between seed vigor, seedling length and seedling fresh weight, on 
the one hand, and osmotic potential, on the other, with R2 values of 0.95, 0.96 
and 0.85, respectively. Seedling vigor decreased from 1459 at 0 MPa to 13 at −1 
MPa (Figure 3(d)). Seedling length decreased from 15.2 cm at 0 MPa to 0.8 cm 
at −1 MPa (Figure 3(e)) and seedling fresh weight decreased from 1.59 g at 0 
MPa to 0.3 g at −1. MPa (Figure 3(f)). As osmotic potential increased, a slight 
increase in seedling dry weight was noted (Figure 3(g)). 

3.4. The Effect of pH on Seed-Germination Variables 

These data are presented in Figure 4. As shown, the examined pH levels in this  
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Figure 4. The effect of pH on (a) the percentage of seeds that germinated (G); (b) the 
germination index (GI); (c) mean germination time (MGT); (d) seed vigor (SV); (e) 
seedling length (SL); (f) seedling fresh weight (SFW) and (g) seedling dry weight (SDW). 
The graphs show the average values and standard errors for 6 replicates of 25 seeds each. 
The straight line represents the linear correlation among the pH treatments. 
 
experiment did not influence on the germination of CJ seedlings. Almost 100% 
germination occurred in all pH treatments between pH 4and pH11 (Figure 
4(a)). Only minor differences in the other germination variables were noted be-
tween the pH treatments (Figures 4(b)-(g)). 

4. Discussion 

Abiotic stresses such as temperature, drought and salinity decrease agricultural 
production and are becoming an increasingly important problem [10]. These 
stresses can delay, reduce or prevent germination [11]. Seed germination could 
be an efficient stage at which to select abiotic stress-tolerant agricultural crops, 
since this stage influences the final stand in the field, which strongly affects later 
stages of crop production [12]. In this study, the effects of several types of abiotic 
stress on CJ germination were examined for the first time. In general, it was 
found that the germination of the seedlings of cv. Rishon was affected by tem-
perature, salinity and osmotic potential, but not pH. 
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Notably, ambient temperature was not found to affect the final percentage of 
germinated seeds (almost 100% of the seeds germinated at all of the examined 
temperatures). Yet, sharp decrease in all parameters tested except dried weight 
was observed between 30˚C and 35˚C. This could be due to that the 35˚C is 
above the optimum temperature (25˚C - 30˚C) for CJ germination. High tem-
perature might also avoid wild CJ germination in unexpected early season rain-
falls, when temperatures are still high, followed by a long term of dry conditions. 
Ambient temperature, though, did affect the other germination variables (i.e., 
GI, seedling vigor, MGT, seedling length and seedling fresh weight). This result 
indicates that the main problem of cv. Rishon under field conditions is not its 
germination potential at lower temperatures, but other germination variables. 
This is also reflected in its relatively low germination-threshold temperature 
(2.4˚C), which is much lower than the temperatures typical of the Mediterranean 
autumn (when CJ seeds are sown). It is reasonable to conclude that the reduc-
tion in CJ growth during the autumn is due to other variables, which are con-
nected to seedling development as opposed to the initiation of germination. This 
characteristic of the species can serve as a defense mechanism in the wild, in 
which the plant is sheltered under the weed canopy during the winter, where it is 
protected from foraging, and only begins to grow rapidly in the early spring. In-
terestingly, unlike seedling fresh weight, seedling dry weight was not affected by 
most of the temperature treatments. This could be due to the fact that the seedl-
ings were germinated in the dark and, therefore, the observed increases in 
seedling length and seedling fresh weight reflect water absorption as opposed to 
the accumulation of dry matter. The decrease in seedling dry weight at higher 
temperatures could be a result of higher respiration rates at those temperatures. 

Similar to the results observed from the temperature experiments, no differ-
ence was found between salt treatments in terms of %G; almost 100% germina-
tion was observed at all of the examined NaCl concentrations. Like temperature, 
salinity was found to have some effect on germination-rate variables. It is im-
portant to note that salt-stress resistance is a trait that is closely associated with 
development and salinity resistance at a particular phenological stage does not 
necessarily imply complete resistance throughout the life cycle [13] [14] [15]. 
However, several studies have indicated that germination and seedling estab-
lishment are very crucial stages in the development of salt-sensitive species [16] 
[17] [18] [19], which affect the total proportion of germinated seeds, the speed at 
which those seeds germinate and initial plant growth. In Israel, some wild CJ 
lines have been found very close to the seashore, indicating that there may be 
some natural variation in salt resistance in this species. Therefore, it is not sur-
prising that the threshold salt concentration was estimated in this study to be 
273 mM. That value is similar to those found for other forage cereal plants like 
wheat [20], sorghum [12] [21] and other forage grasses [22] and higher than the 
values observed for forage legumes such as white clover [23] and alfalfa [24]. As 
in the temperature experiment, in the salt experiment, there were no significant 
trends in terms of dry weight (Figure 2(g)), indicating once again that the dif-
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ferences observed in seedling length and seedling fresh weight were due to the 
absorption of water by the seedlings grown in the dark. 

Drought tolerance is one of the most challenging traits to select in field crops. 
The biggest difficulty is how to control and repeat field trials [25]. Richards, [26] 
suggested utilizing the germination stage of seedlings under controlled condi-
tions for selecting for drought tolerance. Khakwani et al. [27], used different 
methods to evaluate the drought tolerance of six wheat cultivars and identified 
lines in which there was a strong correlation between the results seen under 
controlled conditions and the drought resistance observed in the field. Similar 
results were found in studies involving sweet potato [28]. One way to screen for 
drought-tolerance under controlled conditions is to use PEG to introduce 
drought-like stress conditions. Exposure of the germinating seeds to PEG mim-
ics drought conditions, usually without other side effects [29], and this technique 
has been successfully used for drought-resistance screening in many crops [30]. 

In this study, the effect of osmotic potential on %G was relatively high and 
significantly decreased %G was observed even at −0.6 MPa, with a sharp decline 
between −0.6 MPa and −0.8 MPa. Similar results have been reported for other 
field crops such as corn, canola, barley [31] [32], and chickpea [33]. In addition, 
the use of an osmotic potential between −0.4 and −0.8 MPa was suggested in 
screens for drought stress [34]. The sharp decline in the %G below −0.6 MPa 
demonstrates that the absence of drought resistance will remain the biggest 
challenge for the development of abiotic-stress resistance in CJ. Interestingly, pH 
was not found to have any effect on the development of CJ seedlings, indicating 
that CJ could be growing in both alkaline soils (pH ranging from 7 to 9) and 
acidic soils (pH ranging from 5.5 to 7). Therefore, pH is not expected to limit the 
expansion of CJ cultivation. 

5. Conclusion 

In summary, the current study serves as an excellent baseline for the develop-
ment of systems for the selection of abiotic-stress tolerance in CJ. For example, 
according to the results of this experiment, our suggestion is to screen new 
germplasm for temperature, salt and osmotic stress at 7˚C, 160 mM and −0.8 
MPa levels, respectively. Recent field screenings of ~40 wild lines of CJ have re-
vealed significant variation in plant morphology and maturity (data not pre-
sented here). A rapid and efficient selection system is now available for the eval-
uation of natural and cultivated variation in CJ. 
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