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Abstract 
A loose rod of mass m1 and length ℓ leans against one of the faces of a cube of 
mass m2 and side length a. The assembly is placed on a horizontal table with 
one end of the rod touching the table and its other end leaning against the 
edge of the cube. We set the rod and the center of mass of the cube on the 
same vertical plane, and then we release the assembly from the rest. For fric-
tionless contacts, we calculate the separation runtime of the rod from the cube 
as a function of m2/m1 and a/ℓ. This entails forming the equation describing 
the motion of the system. The equation of motion is analytically unsolvable 
nonlinear differential equation. Applying a Computer Algebra System, specif-
ically Mathematica [1] [2], we solve the equation numerically. Utilizing the 
solution, in addition to evaluating the separation runtime, we quantify a list of 
dynamic quantities, such as the time-dependent interface forces, and, geome-
tric quantities, such as the trajectory of the loose end of the rod. A robust 
Mathematica code addresses the “what if” scenarios. 
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1. Introduction 

Motivation of suggested investigation stems from the fact that the proposed as-
sembly is composed of a sliding cube that acts as a point-like object with only li-
near kinematics in contrast to the rod that in addition to the former possesses 
rotational degrees of freedom. The length of the rod adds additional features to 
the physics of the problem in contrast to the movement of the pair point-like 
objects in the two-body problem reported in [3]. The leaning rod against the 
cube constitutes a holonomic constraint reducing the number of degrees of 
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freedom. These two features, namely, 1) rotation of the rod and 2) its constraint 
movement sparked the investigation. The problem appears to be a 2D two-body 
problem with numerous degrees of freedom however; the restricted motion of 
the rod practically reduces to a problem with only one degree of freedom. In so 
many words, the kinematic information about the entire system comes about 
from the solution of a single nonlinear differential equation with its dependent 
variable being the inclination angle of the rod w/floor. The equation of motion is 
analytically unsolvable, proving the effective usefulness of a Computer Algebra 
System, specifically Mathematica. Utilizing the numeric solution in hand, we 
quantify a list of kinematic information primary as noted the separation runtime 
of the rod-cube system. Additional quantities such as speed, acceleration and 
contact forces of the bodies are also quantified as well. This article is composed 
of three sections. In addition to Introduction in Section 2 applying Lagrangian 
and Hamiltonian methods, we develop the needed formulation conducive to 
equation of motion. This section includes sub-sections: Rod-Cube contact force 
and Trajectory of the tip of the rod. Section 3 is the Results. In this section, we 
utilize Mathematica numeric utilities solving the needed equations conducive to 
quantifying kinematic and dynamic quantities of interest. We close the report 
with concluding remarks suggesting ideas furthering the investigation. 

2. Physics of the Problem and Its Solution 

Figure 1 depicts the schematic of the problem on hand. 
As shown in Figure 1, one end of a uniform rod of length ℓ and mass m1 

touches the horizontal surface at x1, its other end leans against the left vertical 
face of the cube at C(x2, y2). The cube has a mass of m2 with side length a. The 
rod and the center of mass (cm) of the cube are on a vertical plane. Relevant 
forces acting on the rod namely the contact with the floor, N, the weight, W, and 
the one with the cube, F21, are also shown. 
 

 
Figure 1. A rod of mass m1 and length ℓ leans against a cube of mass m2 and side length a. 
The assembly is on a frictionless horizontal surface. 
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Releasing the assembly from rest sets the system in motion. This is because for 
the frictionless surfaces there is an unbalanced horizontal contact force acting on 
the cube, not shown in Figure 1; it acts opposite to shown F21. As depicted, the 
same value of the force F21 acts on the rod pushing it to the left setting it in mo-
tion. However, as the rod slides its center of mass falls and the rod rotates about 
the sliding contact point x1. While the rod falls its “circulation radius” shortens 
hence separation is warranted. In a different scenario if the rod was hinged at x1 
so that circulation radius would have stayed constant separation would have oc-
curred. For either scenario one speculates the separation runtime would depend 
to the masses in motion and respective dimensions of the bodies. It is one of the 
objectives of this investigation to quantify separation runtime. As we were de-
veloping the formulation of the problem also we quantify a list of interesting 
quantities. The proposed problem is different from the “classic” version [4] [5] 
where the rod leans against a vertical wall. 

To bypass the dynamic quantities, i.e. forces, for time being we formulate the 
problem following Lagrangian method. Lagrangian of the system is composed of 
two pieces, one for the cube and the other one for the rod. Kinetic energy of the  

cube is 2
2 2

1
2cubeT m x=   and its potential energy with respect to the table top is  

2 2cube
aV m g= . Kinetic energy of the rod in addition to a 2D motion of the cm 

includes its rotational energy about the cm. These two terms are, 

2 2
1

1 1
2 2rod cm cmT m v I ω= +  

where ω equals θ  is the angular velocity of the rod about the cm; 2
2

1
12cmI m=  . 

Its potential energy is 1 1rod cmV m gy= ; g is the gravity constant; according to tra-
dition dotted quantities are the derivatives w/time. As shown in Figure 1, it is 
clear that the angular velocity of the rod about its cm is the same as its angular 
velocity w/contact point; θ is the inclination angle of the rod w/horizontal.  

Conveniently the origin is set as shown. Accordingly,  
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their respective velocities are, 
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conducive to, 2 2 2
1 1cm cm cmv x y= +  . 

Utilizing the last equation and Equation (2), Lagrangian of the system, e.g. 
( )rod cube rod cubeL T T V V= + − +  gives, 
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Equation (3) reveals the Lagrangian is independent of x1, meaning x1 is a cyc-

lic variable; 
1

0L
x
∂

=
∂

. Because 
1

1
x

L P
x
∂

≡
∂

 according to Euler-Lagrange equation 

1

d 0
d xP

t
=  warrants the conservation of the linear momentum of the system  

along the horizontal direction. Explicitly, momentum of the system 
1x

P  is, 

( ) ( )
1 1 1 2 1

1

1 sin sin 0
2x

LP m x m x
x

θ θ θ θ
∂    ≡ = − + − =   ∂  

 





 
            (4) 

The RHS of Equation (4) is set zero in accordance the initial rest state of the 
system. Accordingly, Equation (4) sets a relationship between the two variables, 
namely, 

( )
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Substituting Equation (5) in (3), yields, 

( ) ( ) ( )2 2 21
1 1 2

1 2

1 1 1, sin sin
2 4 3 2 2

m aL m m g m g
m m

θ θ θ θ θ
 

= − + − − + 







    (6) 

Therefore substituting Equation (6) to Euler-Lagrange equation, d 0
d

L L
t θθ
∂ ∂

− =
∂∂ 

  

yields the equation of motion. Equation of motion is a challenging second order 
ODE. Although it can be solved numerically, however, the primary objective is 
not to identify θ = θ(t), but rather t = t(θ). Therefore, we make a strategy change, 
namely, because there are no dissipative forces, conservation of energy is war-
rant we consider the Hamiltonian of the system, namely, H = T + V ≡  Energy, 
this yields,  

( ) ( ) ( )2 2 21
1 1 2

1 2

1 1 1, sin sin
2 4 3 2 2

m aH E m m g m g
m m

θ θ θ θ θ


≡ = − + + +
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Equating this to the value of the energy of the system at rest, E0, gives,  

( ) ( )2 2 21
1 1 2
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1 1 1sin sin
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where, (a/ℓ), the first term of the RHS equals sin(θ0) = a/ℓ, is the initial inclina-
tion angle of the rod w/horizontal.  

Equation (8) simplifies, 
 

DOI: 10.4236/wjm.2018.86018 230 World Journal of Mechanics 
 

https://doi.org/10.4236/wjm.2018.86018


H. Sarafian 
 

( )

( )

2

2

2

1

sin
4

4 1 sin
3 1

a
g

m
m

θ
θ

θ

−
=

 
 
 −
 + 
 





                   (9) 

Equation (9) explicitly shows the dependence of the angular velocity, θ  to 
the masses and the relevant dimensions. Rearranging Equation (9) its integration 
gives,  
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where we set n = (m2/m1). The lower limit of integration indicates the runtime of 
the rod to the table top. Our primary objective is to evaluate the separation run-
time; hence, the lower limit of the integration should be the separation angle. 
This angle comes about from dynamics aspect of the problem.  

The driving force acting on the cube, F12, accelerates the cube according to, 

12 2 2F m x=  . At separation instant contact force, F12, vanishes result an equation 
conducive to the separation angle. First we calculate the needed acceleration. 
Applying the first equation of set Equation (2) and equation (5) gives, 

( ) ( ) ( )2
2 sin cos

2 1
x

n
θ θ θ θ = − + +



 

                (11) 

On the other hand differentiating Equation (9) w/time gives,  
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      (12) 

And finally substituting Equations (9) and (12) in Equation (11) and simplifi-
cation yields the needed equation. The output is a lengthy fraction, its numera-
tor is,  

( ) ( ) ( ) ( ) ( ) ( )36 1 cos 8 1 12 1 sin 3sin numeratorag n n nθ θ θ− + − + + 
 

=−


+



 (13) 

Setting Equation (13) zero gives the needed equation whose root is the separa-
tion angle, namely, 

( ) ( ) ( ) ( )33sin 12 1 sin 8 1 0an nθ θ− + + + =


             (14) 

As expected terms such as, n ≡  m2/m1 and a/ℓ control the value of the sepa-
ration angle, θsep, yielding the needed runtime, 
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2.1. Rod-Cube Contact Force 

As the rod slides its inclination angle, θ, with respect to the table top decreases, 
reduces the contact force between the rod and the cube. To quantify the contact 
force at any given time, we write, 12 2 2F m x=  . Acceleration of the cube, 2x , uti-
lizing Equation (11), (12) and (9), yields, 

( ) ( ) ( ) ( ) ( )

( ) ( )

3

12 2 22

cos 8 1 12 1 sin 3sin
3

4 1 3sin

a n n
F m g

n

θ θ θ

θ

 

  

+ − + +    = − 
+ − 

  

     (16) 

This is the formal solution, however, because θ = θ(t) there is a need to solve 
the equation of motion for θ(t). The equation of motion is actually Equation (9). 
Its differential form is,  
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( )2

sin
4 0

4 1 sin
3 1
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g
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θ
θ

θ

− + =     −  + 







                 (17) 

As demonstrated, by arranging Equation (17) we calculate the runtime; see 
Equation (10) and (15). Reversing these equations to obtain θ(t) is not possible; 
one needs to solve Equation (17) directly, this can’t be done analytically. In the 
next section for a chosen set of parameters we present its numeric solution.  

2.2. Trajectory of the Tip of the Rod 

As the contact point of the rod with the table top slides to the left its other end 
that leans against the mobile cube before breaking away traces a certain curve. It 
is our interest to plot its trajectory. We offer two solutions. First, a formal ana-
lytic solution, and second a straight forward plotting routine. Both solutions 
hinge upon the know solution of Equation (17). 

Analytic solution:  
Integrating both sides of Equation (5) w/time yields, 

( ) ( )1
1 2 cos

2 1
nx
n

θ β
+

= − −  +
                   (18) 

here we set the initial contact point of the rod with the table at the origin yield-
ing the value of β = cos[arcsin(a/ℓ)]. Substituting Equation (18) in the first equa-
tion of set of Equation (1) after simplification, gives,  

( ) ( ) ( )2
2 1 2cos 1

2 1
nn x
n

θ β
 +

= + − 
+  





               (19) 

on the other hand Figure 1 shows, 

( ) 2sin y
θ =



                          (20) 

Squaring both sides of Equation (19) and (20) and adding them results,  

( ) ( )
2 2

2 22 1 1 2 1x yn n β   + − + + =      

             (21) 
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Equation (21) deceptively appears as an ellipse; it is not. Coordinates of {x2, y2} 
are time-dependent, they are implicit functions of θ(t). Equation (21) can be uti-
lized tracing the tip of the rod; this is left to the interest of the reader. Alterna-
tively, utilizing Equations (19) and (20) are arranged as, 

( ) ( ){ } ( ) ( ) ( ) ( )2 2
1 1 2, cos , sin

2 1 2 1
nx t y t t t

n n
θ β θ

 + = +       + +  
      (22) 

where θ(t) is the solution of the equation of motion; Equation (17). For a set of 
chosen parameters n and ℓ and utilizing the solution of Equation (17) for the 
same set of parameters along with a parametric plot of Equation (22) yields the 
seek for trajectory. This is shown in the next section. 

3. Results 

It is important emphasizing that entire calculation presented in this section is 
carried out applying one of the most powerful Computer Algebra System, Ma-
thematica [1]. Equation (14) is generic; its root(s) is the separation angle. The 
input parameters of this equation may be any desired values, for instance for a 
practical case we set n ≡  m2/m1 = 3, and a/ℓ = 1/4, making the combination a/ℓ 
(1 + n) = 1, simplifies the equation. With this choice of parameters it yields a 
unique solution, namely, θ = 9.61˚. In other words the rod from its initial posi-
tion θ(t = 0) = 14.47˚ falls only 4.86˚ and separates. Equation (14) is a cubic tri-
gonometric equation, its cubic term, 3sin3(θ), can be dropped reducing it to a li-
near trig equation, 6sin(θ) − 1 = 0, with a root of, θ = 9.59˚. This neat approach 
underestimating the exact solution only by 0.2%!  

Utilizing the separation angle and applying Equation (15) we evaluate the as-
sociated runtime by numeric integration. For a 1.0 m rod this gives, truntime = 
0.108 s. This is compared to the runtime when we assume the rod falls all the 
way to the table, t = 0.187 s; Equation (10). The latter is compared to the runtime  

of a point-like mass at the cm of the rod, 0.159 sat
g

= = . As expected the  

aforementioned elapsed time overvalues the latter, this is because the rotating 
rod requires a longer time.  

3.1. Solution of the Equation of Motion 

Figure 2 depicts the time dependent variation of the inclination angle. The rod 
begins sliding with the initial inclination angle of arcsin(1/4) = 14.4˚, in 0.108 s 
at 9.61˚ it separates from the cube.  

3.2. Contact Force between the Rod and the Cube 

Figure 3 shows the maximum value of the contact force between the rod and the 
cube occurs at the beginning where the inclination angle is at maximum. As the 
rod falls and rotates the contact force weakens. By the time the rod separates 
from the cube its value plunges zero. Comparing Figure 2 and Figure 3 reveals  
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Figure 2. Time dependent inclination angle θ vs. t. 

 

 
Figure 3. Display of the contact force per mass vs. t. 

 
despite of the complicated nature of the force, Equation (16), contact force 
closely traces the time dependent features of the inclination angle vs. time! 

3.3. Trajectory (Figure 4) 

It appears the tip of the rod as it falls, slides and rotates traces a vertical 
“straight” line. We have utilized parametric equation of the trajectory; Equation 
(22). 
 

 
Figure 4. The solid line is the trajectory of the tip of the rod as it falls to the table. 
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4. Conclusions and Comments 

“Sliding Ladder” is a classic physics problem. Its solution is readily available. For 
instance, the author referred to reference [4]. This particular reference is cited 
because its free animated solution is also available as well [5]. Our investigation 
is a modified version of the “Sliding Ladder” problem. Here we replace the sta-
tionary wall with a massive mobile cube. 

The author searched for the analysis of the proposed problem in vain ending 
up crafting its solution in this note. Applying Mathematica, the equation of mo-
tion, Equation (17), is solved numerically. Utilizing the solution, we determined 
time-dependent quantities such as runtime, contact force, and trajectory of the 
tip of the rod. We have also determined additional information such as separa-
tion angle of the rod and the cube. Our investigation embodies long-hand ana-
lytic formation conducive to parameter-dependent equations including: side 
length of the cube and its mass, length of the rod and its mass. Applying Ma-
thematica numeric solver and its powerful graphic features as an example, we 
presented variety of output for a specific set of parameters. Presented informa-
tion in this report challenges the interested reader to explore new features ap-
plying a different set of parameters. Reference [6] embodies Mathematica codes 
and information needed to produce the graphs embedded in this article. 
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