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Abstract 
Desymmetrization reactions provide a powerful approach for the construction 
of complex molecules. Various methods have been developed for the selective 
monoprotection of symmetrical diols; however, their application to large-scale 
operations is limited. In this study, the monotetrahydropyranylation of sym-
metrical diols in a flow reactor has been developed, whereby the length of the 
flow reactor tube and the amount of acid were optimized. A higher selectivity 
for the monoprotected derivative was observed when the reaction was per-
formed in a flow reactor compared with that observed in a conventional batch 
experiment. The efficient flow method developed herein can be applied to 
large-scale synthesis by numbering up the flow reactor without affecting the 
selectivity and yield. Since monoprotection can be achieved without using a 
large excess of diol, our developed flow method is effective when expensive 
diol must be used. 
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1. Introduction 

Desymmetrization reactions have attracted much attention in organic synthesis 
because they provide a powerful tool to access complex molecules from readily 
available symmetrical compounds [1] [2]. For instance, the desymmetrization of 
diols [3] [4] [5] [6] [7], dicarbonyls [8] [9] [10] [11] [12], diamines [13], and al-
kenes [14] [15] [16] has been successfully applied to the synthesis of natural 
products such as (–)-spongidepsin [7] and merrilactone A [9] [10]. In particular, 
the monoprotection of diols with the tetrahydropyranyl (THP) group has been 
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widely used in the synthesis of bioactive compounds [17] [18] [19] [20]. Howev-
er, these transformations usually result in the concomitant generation of unpro-
tected and/or diprotected compounds in a statistical ratio. In order to overcome 
this limitation, the selective monoprotection of symmetrical diols has been typi-
cally performed using an excess of diol. Moreover, catalysts with a relatively 
small catalytic surface such as ion-exchange resins (namely, Amberlite IR-120 
[21], Amberlist H-15 [22], Rellex 425 [23], Dowex 50 [24], and Nafion-H [25]), 
iodine [26], ZrO2-pillared clay [27], zinc chloride [28], and aqueous acids [29] 
have been reported to be effective for selective monotetrahydropyranylation. 
However, the application of these methods to large-scale production for practic-
al use of monoprotected diols is somewhat limited. In particular, it is very 
wasteful to use a large excess of expensive diol as a substrate. 

In recent years, flow chemistry has emerged as an important adjunct to con-
ventional batch chemistry [30] [31]. In a large-scale batch reactor, there is a time 
lag for the mixed solution to become homogeneous by stirring, which affects 
both the chemoselectivity and the yield of the reaction. In addition, the reaction 
parameters must be adapted to each scale-up condition. In contrast, flow chemi-
stry allows for highly chemoselective reactions without side products by precise-
ly controlling the reaction time and temperature. Moreover, flow reactions are 
scalable under the same conditions by simply numbering up the reactor confi-
guration. On the basis of these advantages, we sought to investigate the selective 
monoprotection of diols in a flow reactor. The selective mono protection of diols 
using flow reactor has not been reported yet. We have previously reported the 
microflow synthesis of peptides using highly activated esters [32], vitamin D3 
[33], activated vitamin D3 and its analogs [34], diamine ligands [35], and ali-
phatic aldehyde [36]. Herein, we report the development of a new method for 
selective monoprotection of diols in a flow system. 

2. Materials and Methods 
2.1. General 

NMR spectra were recorded on a JEOL Model ECA-500 instrument, and chemi-
cal shifts were reported in parts per million (ppm) relative to internal standard 
(tetramethylsilane; 0.0 ppm) or solvent (CDCl3; 7.26 ppm for 1H NMR and 77.1 
ppm for 13C NMR) peaks. 1H NMR spectral data were reported as chemical shift 
(δ, ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; sp, septet; m, 
multiplet; br, broad), coupling constant (J, Hz), and integral value. 13C NMR da-
ta were reported as chemical shift (δ, ppm) followed by multiplicity and coupl-
ing constants where applicable. All reactions were monitored by thin-layer 
chromatography using 0.25-mm E. Merck silica gel plates (60F-254), with visua-
lization performed by UV light (254 nm) irradiation or staining with p-anisal- 
dehyde, ceric sulfate, or 10% ethanolic phosphomolybdic acid followed by heat-
ing. Column chromatography was performed using silica gel (Chromatorex PSQ 
100B, Fuji Silysia Chemical Ltd.). All reagents and chemicals were purchased 
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from Tokyo Chemical Industry Co., Ltd., and used as received. 

2.2. General Procedure for the Monotetrahydropyranylation of 
Diols in a Batch Reactor 

To a solution of 1,4-butanediol (1) (1.00 g, 11.1 mmol, 1.00 equiv.) and 3,4- 
dihydro-2H-pyran (1.20 mL, 13.3 mmol, 1.20 equiv.) in tetrahydrofuran (11.1 
mL) was added 10-camphorsulfonic acid (258 mg, 1.11 mmol, 0.100 equiv.) at 
room temperature. After being stirred at this temperature, the reaction mixture 
was quenched with triethylamine and concentrated in vacuo. The residue was 
diluted with ethyl acetate and saturated aqueous NaHCO3, and the organic layer 
was washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. 
The residue was purified by column chromatography on silica gel to give 
4-((tetrahydro-2H-pyran-2-yl)oxy)butan-1-ol (2) and  
1,4-bis((tetrahydro-2H-pyran-2-yl)oxy)butane (3) [21]. Unreacted 1 was found 
in the aqueous layer and was quantified (mmol) by the difference between the 
amount of starting substrate (11.1 mmol) and the amount of product (mmol). 

4-((Tetrahydro-2H-pyran-2-yl)oxy)butan-1-ol (2) 
1H NMR (500 MHz, CDCl3): δ 4.60 (dd, J = 2.9, 4.0 Hz, 1H), 3.86 (ddd, J = 3.5, 

8.0, 11.4 Hz, 1H), 3.80 (dt, J = 4.9, 11.4 Hz, 1H), 3.67 (brs, 2H), 3.51 (dt, J = 5.4, 
10.9 Hz, 1H), 3.43 (dt, J = 5.7, 9.8 Hz, 1H), 2.19 (brs, 1H), 1.81 (m, 1H), 1.75 - 
1.66 (m, 5H), 1.61 - 1.50 (m, 4H); 13C NMR (125 MHz, CDCl3): δ 99.0, 67.6, 62.8, 
62.5, 30.7, 30.2, 26.7, 25.5, 19.6. 

1,4-Bis((tetrahydro-2H-pyran-2-yl)oxy)butane (3) 
1H NMR (500 MHz, CDCl3): δ 4.58 (dd, J = 2.9, 4.0 Hz, 2H), 3.86 (ddd, J = 3.1, 

4.0, 11.2 Hz, 2H), 3.76 (m, 2H), 3.49 (m, 2H), 3.41 (m, 2H), 1.82 (m, 2H), 1.73 - 
1.65 (m, 6H), 1.60 - 1.50 (m, 8H); 13C NMR (125 MHz, CDCl3): δ 98.9, 67.4, 62.3, 
30.8, 26.7, 25.6, 19.7. 

2.3. Flow Reactor Setup 

The flow system used in this work is shown in Figure 1. A stainless steel T-shaped 
 

 
Figure 1. Flow system for tetrahydropyranylation. 
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mixer (inner diameter: 1.0 mm) and a Teflon® tube (inner diameter: 1.0 mm) 
were purchased from YMC Co. Ltd. The mixer and tube were connected with 
PEEK fittings, which were also purchased from YMC Co. Ltd. Solutions were in-
troduced into the flow system using a syringe pump (Harvard PHD ULTRA) 
equipped with gastight syringes (SGE). The gastight syringes and Teflon® tube 
were connected with joints purchased from YMC Co. Ltd. 

2.4. General Tetrahydropyranylation Procedure 

A solution of 1,4-butanediol (1) (2.0 mM, 1.00 equiv.) and  
3,4-dihydro-2H-pyran (2.4 mM, 1.20 equiv.) in tetrahydrofuran (flow rate: 0.1 
mL/min) and a solution of 10-camphorsulfonic acid (X equiv.) in tetrahydrofu-
ran (flow rate: 0.1 mL/min) were introduced into the T-shaped mixer at room 
temperature using the syringe pump. The resulting mixture was passed through 
the reaction tube (inner diameter: 1.0 mm, length: Y cm) at the same tempera-
ture. After elution for 10 min to reach a steady state, the mixture was poured in-
to triethylamine at room temperature and concentrated in vacuo. The residue 
was purified by column chromatography on silica gel to give 4-((tetrahydro-2H- 
pyran-2-yl)oxy)butan-1-ol (2) and 1,4-bis((tetrahydro-2H-pyran-2-yl)oxy)butane 
(3). 

3. Results and Discussion 

Prior to the flow experiments, tetrahydropyranylation of symmetrical diols 
was carried out in a batch reactor. To a solution of 1,4-butanediol (1) and 
3,4-dihydro-2H-pyran (DHP) in tetrahydrofuran (THF) was added  
10-camphorsulfonic acid (CSA), a commonly used Brønsted acid, at room tem-
perature (Figure 2). Figure 3 shows the yield of diol 1 and mono- and bis-THP 
derivatives 2 and 3 as a function of reaction time; both 2 and 3 were gradually 
formed until an equilibrium mixture of 1:2:3 at a ratio of approximately 1:2:1 
was reached. Good selectivity for the target product 2 was obtained for a reac-
tion time of 6 - 10 min, although the yield was moderate. 

Next, the monoprotection of 1 was performed in a flow reactor. A solution of 
1, DHP, and CSA in THF was introduced into a Teflon® tube at room tempera-
ture using a syringe pump (Table 1). The flow rate was set at 0.1 mL/min, and 
various tube lengths of 50, 100, 150, and 250 cm were examined, which corres-
ponded to reaction times of 2, 4, 6, and 10 min, respectively. With a tube length 
of 50 and 100 cm, the mono-THP product 2 was obtained with high selectivity, 
although in low yields (entries 1 and 2, respectively). When a 150-cm tube was  

 

 
Figure 2. Tetrahydropyranylation of 1,4-butanediol (1) in a batch reactor. 
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Figure 3. Yield of diol 1 and mono- and bis-THP products 2 and 3 vs reaction time. 
Mono- and bis-THP product 2 and 3 were isolated with column chromatography on sili-
ca gel. Unreacted 1 was quantified (mmol) by the difference between the amount of 
starting substrate (mmol) and the amount of product (mmol). 

 
Table 1. Optimization of selective monotetrahydropyranylation in a flow reactor. 

 
entry equiv. of CSA tube length (cm) mono-THP product 2 (%)a bis-THP product 3 (%)a 

1 0.100 50 27 2 

2 0.100 100 41 6 

3 0.100 150 53 12 

4 0.100 250 55 21 

5 0.300 50 53 16 

6 1.00 50 46 37 

7 1.00 3 29 7 

aIsolated yield. 
 

used, the yield of the desired product 2 was improved without an appreciable 
reduction in selectivity (entry 3). A prolonged reaction time resulted in a decrease 
in selectivity and no improvement in yield (entry 4). The yield was improved when 
the tube was lengthened, however the byproduct of the bis-protected product also 
increased. Interestingly, the combination of a 50-cm tube and 0.300 equiv. of 
CSA (entry 5) gave almost the same result as entry 3. Moreover, shortening the 
tube length and increasing the amount of acid was not effective (entries 6 and 7). 
Hence, the flow synthesis of the mono-tetrahydropyranyl derivative required the 
use of a 150-cm tube and 0.100 equiv. of CSA to achieve high selectivity and sa-
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tisfactory yield. It should be noted that, under all conditions tested, the starting 
material was not completely consumed. 

4. Conclusion 

In conclusion, we have developed the monotetrahydropyranylation of symme-
trical diols in a flow reactor. Stirring 1,4-butanediol, DHP, and CSA in a batch 
reactor for 6 - 10 min resulted in the selective formation of the monoprotected 
diol. However, the selectivity for monotetrahydropyranylation improved when 
the reaction was carried out in a flow reactor. The flow method can be applied 
directly to large-scale synthesis by simply numbering up the flow reactor without 
affecting the selectivity and yield. Studies are currently underway to develop a 
method to remove unreacted starting diol from flow reactors. 
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