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Abstract 
Graphene Oxide/Multilayer-Graphene (GO-MG) flakes were obtained using 
an electrochemically exfoliated graphite (GR) electrode from secondary 
steel-making industry performed in a two-electrode system using tungsten as 
the counter electrode and GR as the working electrode. The exfoliated 
GO-MG flakes were processed and incorporated in an elastomeric polyure-
thane (PU) matrix. The mechanical properties of the PU/GO-MG composites 
were evaluated and compared with equivalent composites made of PU/GR 
powder. From experimental data analysis it was concluded that GO-MG flakes 
were approximately composed of 67 wt% GO and 33 wt% MG. The number of 
layers in the graphene flakes was estimated to be between 2 and 5 sheets. PU 
showed a breaking stress of 570 kPa, while the PU/20wt% GR attained a 
maximum stress of 750 kPa as compared to PU/10wt% GO-MF composite ex-
hibiting a breaking stress of 1060 kPa. 
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1. Introduction 

Since the last century, a large amount of graphite (GR) and carbon products are 
now synthetic and these products have been improved continuously [1]. Syn-
thetic graphitic products are manufactured by a compaction process mixing 
carbon and organic binders followed by a graphitizing treatment, leading to 
commercial products such as the electrodes for secondary steel-making industry. 
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Since the discovery and characterization of graphene (G) in 2004 [2], research 
has been directed to find new manufacturing techniques [3] [4] [5] to promote 
industrial applications of graphene together with graphene oxide (GO). Gra-
phene films grown by chemical vapor deposition (CVD) exhibit high quality but 
are not suitable for large-scale production [6] [7]. Chemical exfoliation methods 
based on the Hummers’ method promoting graphite oxidation to obtain gra-
phene oxide (GO) followed by chemical or thermal reduction may have the ad-
vantages of low-cost fabrication process [8] [9]. Electrochemical exfoliation of 
high-quality graphite in aqueous solutions has led to graphene and/or graphene 
oxide sheets depending on the experimental parameters [10] [11] [12]. Besides, 
at present industrial research is looking for large-scale polymer/graphene-product 
nanocomposites which promise to attain materials with better electronic, ther-
mal and/or mechanical properties [13] [14]. In the present preliminary work, 
graphene oxide/multilayer-graphene (GO-MG) flakes were obtained by electro-
chemical exfoliation of industrial steel-making graphite electrodes following the 
procedures reported in the literature [11] [15] with some slight modifications. 
The exfoliated GO-MG flakes were processed to finally be incorporated in a do-
mestic isocyanate/polyol commercial system required to achieve the corres-
ponding elastomeric polyurethane (PU) matrix. The mechanical properties of 
the PU/GO-MG composites were evaluated and compared with equivalent 
composites made of PU/GR powder to exhibit the enhanced chemical bonding 
between GO-MF flakes and polyurethane chains. 

2. Experimental Procedure 
2.1. Apparatus 

Transmission electron microscopy (TEM) and X-ray diffraction (XRD) mea-
surements were performed on powder samples obtained from the electrochemi-
cal exfoliation of graphite. The TEM measurements were carried out using an 
electron microscope JEOL (Jem-1400) in bright field mode at 100 kV. The 
powder XRD data were collected with BRUKER (D8 Advance) diffractometer in 
a Bragg-Brentano configuration using Cu-sealed tube (CuKa = 0.15418 nm) op-
erating at 40 kV and 30 mA. Measurements were performed in the scattering 2θ 
range of 5˚ to 60˚ with a step size of 0.01˚ and counting rate of 2 s/step. UV-Vis 
absorption spectra were recorded on a PERKIN-ELMER UV/Vis (Lambda-25) 
spectrometer to gain further information into the quality of electrochemically pre-
pared GO-MG flakes. Raman spectroscopy (RS) was carried out using RENISHAW 
system with an excitation laser source of 532 nm and power below 0.1 mW on the 
sample to avoid induced laser heating. To evaluate the mechanical properties, 
tension test was performed using a PHYSICAL TEST SOLUTIONS (MMD-30k) 
universal material testing machine using a cross-head speed of 1 mm/min at 
room temperature. 

2.2. Materials Manufacture 

Exfoliated graphene oxide/multilayer-graphene (GO-MF) flakes were obtained 
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by electrochemical exfoliation of industrial graphite performed in a two-electrode 
system using tungsten (99.5% W) as the counter electrode and graphite as the 
working electrode. The separation between the cathode and the anode was 
maintained at 3 cm. Usually there is the presence of impurities on industrial 
graphite-like Fe, Co, Cu and Ni [16], consequently in aqueous acid conditions 
the cationic species should remain dissolved, so the chosen electrolyte solution 
was prepared from concentrated sulfuric acid (H2SO4) and deionized water (pH 
adjusted to ≈ 1.50). A direct DC voltage bias of +2.5 V was first applied to the 
graphite for 1 hour to cause soft intercalation of the SO4

2− ions in the graphite 
layers [3] [11], and at this conditions, the graphite electrode remained solid. 
Then the voltage bias was increased to +6 V and the graphite electrode started to 
dissociate in small flakes distributing all over the solution. The experimental se-
tup for electrochemical exfoliation of graphite electrode is shown in Figure 1(a) 
and the final electrochemical exfoliated product after 4 hours is also shown in 
Figure 1(b). Test specimens for evaluation of the tensile properties of elasto-
meric PU/GO-MG composites were obtained washing and drying the GO-MG 
flakes, then dispersing the product in 1,4-butanediol, drying once again to mix it 
with the polyol compound, then the slurry was added to the isocyanate com-
pound and finally cast to the molds. Figure 2 illustrates the size and shape of the 
samples used to determine the mechanical behavior of the elastomeric PU com-
posites filled with different concentrations of GR and GO-MG. 

3. Results and Discussion 

Figure 3 illustrates the morphology of the GO-MG flakes which were observed 
by transmission electron microscopy (TEM). The TEM images revealed two dif-
ferent type of morphologies, one disordered with scrolls and wrinkles (Figure 
3(a)) and the other with a transparent and sheet-like structure (Figure 3(b)).  
 

 
(a)                        (b) 

Figure 1. Photographs of the electrochemical exfoliation of 
graphite. (a) System at a voltage bias of +2.5 V; (b) System 
after 4 hours at a voltage bias of +6 V. 
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Figure 2. Photographe showing the shape and size of the 
tensile elastomeric PU composite samples fabricated 
without (white) and with 10 wt% GO-MG (black). 

 

 
(a)                                       (b) 

Figure 3. TEM bright field images obtained from the electrochemical exfoliation of 
graphite. (a) Graphene oxide (GO); (b) Multilayer graphene (MG). 
 
Both type of flakes remained stable under the electron beam. In general, gra-
phene oxide (GO) has been assigned to the morphology having scrolls and wrin-
kles while the sheet-like morphology has usually been assigned to multilayer 
graphene structure (MG) [17] [18] [19].  

To corroborate the presence of both GO and MG compounds, XRD were 
performed on exfoliated flakes. Figure 4 clearly shows the difference between 
the XRD patterns of the graphite powder obtained from mechanical grinding the 
GR electrode and the flakes obtained from electrochemical exfoliation of the GR 
electrode. Figure 4 indicates that graphite electrode is highly crystalline and the 
most intense peak is the one associated to the (002) crystallographic planes of 
graphite (JCPDS 41-1487). On the other hand, the XRD pattern of the exfoliated 
graphite in Figure 4 shows two broad peaks at 2θ = 11.28˚ and 2θ = 26.19˚. The 
first peak at 11.28˚ has frequently been associated to the presence of graphene 
oxide [17] [18] [19] [20] [21] as a consequence of the intercalation of different 
functional groups. The second broad peak should correspond to the (002) gra-
phite planes, but the usually interlayer distance of 0.337 nm found in Figure 4 
for graphite powder, in the case of GO-MG flakes seems to be slightly larger 
than that of the d-spacing of bulk graphite. 
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Figure 4. XRD patterns obtained from graphite electrode powder and 
GO-MG exfoliated flakes. 

 
UV-Vis spectra of aqueous electrochemical exfoliated graphite dispersions 

were used to determined the presence of C = C and C − O bonding. The spec-
trum obtained by UV-Vis spectroscopy of the electrochemically exfoliated gra-
phite is in agreement with the previously graphene oxide reported results [22] 
[23] [24] [25], where an absorption peak appears at about 230 nm and a broad 
peak at approximately 290 - 310 nm as shown in Figure 5. The absorption peak 
at 230 nm has been assigned to the π → π* transition of the C = C bonds by oth-
er authors [22] [23]. Then, the present assumption of the absorption peak ob-
served at 226 nm to the same π → π* transition seems quite reasonable. On the 
other hand as in previous works [17] [24] [25], it is possible to assign the broad 
peak observed at 305 nm to the n → π* transitions due to the presence of C − O 
− C or C − OOH bonding, usually reported for graphene oxide. On the other 
hand, there is experimental evidence suggesting that π → π* transition shifts to 
higher wavelength (red-shift), displaying the peak at about 250 nm when gra-
phene is present [22] [23]. Because the peak observed at 226 nm in Figure 5 is 
quite wide, there was no possibility to discern by this technique the presence of 
graphene in the GO-MG flakes. 

Also, Raman spectroscopy (RS) was used to know about structural changes 
occurred during the electrochemical exfoliation of graphite, mainly because RS 
is a sensitive technique to characterize disorder in sp2 carbon materials. The 
G-band observed in Figure 6 (at 1585 cm−1) arises from the stretching of the C − 
C bond in graphitic materials and is common to all sp2 carbon systems.  

The peak at 1355 cm−1 know as the D-band represents the resonance of aro-
matic rings arising due to defects in the structure and its presence suggest the 
existence of GO [26]. On the other hand in Figure 6, the 2D peak at around 
2700 cm−1 is active in the absence of any defects and the peak shifts with the 
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number of graphene layers, becoming similar to that of graphite if there is more 
than 10 layers of graphene, in which case the peak appears at 2730 cm−1 [26] 
[27]. Consequently, from reported experimental data [27] the number of layers 
in the graphene flakes should be approximately between 2 and 5 in our samples. 
Then, all experimental data indicated the presence of both, graphene oxide and 
multilayer-graphene compounds in the electrochemically exfoliated graphite 
flakes. From XRD peak analysis using the Rietveld refinement method and con-
sidering from Figure 4 that only was possible to assign the presence of two dif-
ferent structures, it was concluded that GO-MG flakes were approximately 
composed of 67 wt% GO and 33 wt% MG. If there are other compounds in the 
GO-MG flakes, they should be below the detection limit of the XRD technique. 

Figure 7 shows a microphotograph of the employed graphite particles togeth-
er with the tensile properties of the PU/GR composites with different graphite 
powder content. In this case, the maximum attained strength was of 750 kPa and 
corresponds to 20 wt% of graphite (PU/20GR). On the other hand, Figure 8(a) 
shows the tensile properties of the PU/GO-MG composites with different filler 
content. From stress-strain curves, it can be seen a remarkable difference in the 
mechanical behavior between GR and GO-MG composites. In both cases, it 
can be seen that although the elongation at break decreases with increasing fil-
ler content, the overall elongation of the composite materials still is significant. 
Besides, Figure 7 strongly suggests that the reinforcement contribution of 
graphite is not as effective as the one observed in Figure 8(a) for graphene 
oxide/multilayer-graphene (GO-MG). The relationship between the breaking 
stress of composites and type of filler content is shown in Figure 8(b). The pure 
PU showed a breaking stress of 570 kPa as compared to PU/10GO-MF compo-
site exhibiting a breaking stress of 1060 kPa. 
 

 

Figure 5. UV-Vis absorption spectrum of the electrochemically exfo-
liated graphite solution in a quartz cuvette. 
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Figure 6. Raman spectrum of the GO-MG flakes showing the G 
(1355 cm−1), D (1585 cm−1) and 2D (2700 cm−1) bands. 

 

 
(a) 

 
(b) 

Figure 7. (a) Photograph of the graphite powder obtained by mil-
ling of the electrode; (b) Stress-strain curves of the elastomeric 
PU/GR composites with different filler content. 

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

200

400

600

800

1000

29
5027

00

In
te

ns
ity

  (
a.

u.
)

Raman  Shift  (cm-1)

13
55

15
95

0 25 50 75 100 125 150 175 200 225 250 275
0

100

200

300

400

500

600

700

800

30.0%

20.0% 10.0%

5.0%
2.5%

S
tr

e
s
s
  
(k

P
a
)

Strain  (%)

0.0%

https://doi.org/10.4236/msa.2018.97041


L. M. Flores-Vélez, O. Domínguez 
 

 

DOI: 10.4236/msa.2018.97041 572 Materials Sciences and Applications 
 

 
(a) 

 
(b) 

 
(c) 

Figure 8. (a) The stress-strain curves of the elastomeric 
PU/GO-MG composites with different filler content; (b) The 
relationship between the breaking stress and the filler content; 
(c) Magnification of the stress-strain curve of the sample with 
10 wt% GO-MG showing the presence of strain hardening. 
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The distinctive stress-strain curves obtained from the PU/GO-MG composites 
is presented for just one composition in Figure 8(c). The results indicated that 
GO-MG fillers are capable of improving the breaking stress of elastomeric PU 
with the presence of strain hardening behavior [28]. The phenomenon of strain 
hardening in polymers is a consequence of orientation of molecular chains in the 
stretch direction. The large difference in mechanical properties between GR and 
GO-MG could be attributed to efficient load transfer between the graphene 
oxide sheets and the PU matrix, resulting from the covalent bonding and the 
cross-linking between the isocyanate chains and the functional groups attached 
to GO [13] [29], leading to the observed strain hardening behavior. 

4. Conclusions 

Exfoliated graphene oxide/multilayer-graphene (GO-MF) flakes were obtained 
by electrochemical exfoliation of industrial graphite performed in a two-electrode 
system using tungsten (99.5% W) as the counter electrode and graphite as the 
working electrode. From different analytical techniques and XRD results, it was 
concluded the presence of only these two structures: graphene oxide (GO) and 
multilayer-graphene (MG). It was calculated from XRD Rietveld refinement that 
flakes were approximately composed of 67 wt% GO and 33 wt% MG. Compar-
ing Raman results with those reported previously, the number of layers in the 
graphene should be approximately between 2 and 5 sheets in our samples. 

Besides, the relationship between the breaking stress of composites and type 
of filler content strongly suggests that the reinforcement contribution of graphite 
(GR) is not as effective as the one observed for graphene oxide/multilayer-graphene 
(GO-MG). The pure elastomeric PU showed a breaking stress of 570 kPa, while 
the PU/20GR attained a maximum stress of 750 kPa as compared to PU/10GO-MF 
composite exhibiting a breaking stress of 1060 kPa. Finally, results indicated that 
GO-MG fillers are capable of improving the breaking stress of elastomeric PU by 
means of strain hardening behavior, probably improving orientation of molecu-
lar chains as a consequence of covalent bonding leading to cross-linking between 
the polymer and the functional groups attached to GO. 
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