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Abstract 
This study evaluated a fixed long-range corrected range-separated hybrid 
(RSH) density functional associated with the Def2TZVP basis set alongside 
the Solvation Model based on Density (SMD) for the computation of the 
structure, molecular properties and chemical reactivity of the M8 intermediate 
melanoidin pigment. The preference of the active sites pertinent to radical, 
nucleophilic and electrophilic attacks is made through linking them with the 
electrophilic and nucleophilic Parr functions, Fukui function indices, and 
condensed Dual Descriptor. This study showed that the MN12SX density 
functional is the most suitable one for predicting the chemical reactivity of 
this system. 
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1. Introduction 

The Maillard reaction was first observed by the French chemist, Louis-Camille 
Maillard. It involves a complex network of non-enzymatic reactions resulting 
from the initial condensation between an available amino group and a 
carbonyl-containing moiety, usually a reducing sugar. When a protein reacts 
with a reducing sugar, a compound known as a Schiff base is formed, and the 
accumulation of these compounds causes degradation of proteins, leading to the 
production of advanced glycation endproducts (AGEs), which in turn cause the 
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build-up of fibrils in the brain. When biological molecules are left to react with 
reducing sugars under physiological conditions, the same reaction takes place 
through a process called glycation. In recent times, our emphasis has been on 
understanding how glycation occurs as well as on the chemical reactivity that the 
reducing carbohydrates have with the amino acids and peptides that take part in 
the process, which are frequently associated with a number of diseases like 
Alzheimer, Parkinson, and diabetes. 

The lightweight intermediate colored products are known as colored Maillard 
reaction products (CMRPs) [1]. The CMRPs are attracting interest from the 
food and other industries because it has been hypothesized that they can be used 
as prospective photosensitizers, whereby they can be used as antioxidants as well 
as colorants that can be applied in dye-sensitized solar cells to produce substitute 
energy. These prospective applications elucidate the rationale behind the focus 
on their chemical properties, amid their molecular reactivity, attracting 
increasing interest. Conceptual density functional theory (DFT), also known as 
chemical reactivity theory is a highly influential tool used to analyze, interpret, 
and predict the effects generated by chemical reactions. This topic was first 
studied by Parr et al. [2]. A number of useful concepts were developed after their 
work using density of molecular systems by employing DFT. These concepts 
allow researchers to qualitatively envisage how the chemical reactivity will occur 
in a certain system. In addition, there is a possibility that these concepts can be 
quantified. Collectively, these concepts are known as Conceptual DFT 
descriptors. Thus, Melanodin M8 is amenable to be studied by analyzing their 
molecular reactivity properties. 

One of these isolated molecules is called Melanodin M8 which has interesting 
properties as a colored molecule in water and we believe that it could be of 
interest to study their molecular reactivity by using the ideas of Conceptual DFT 
[2] [3] [4] [5] [6], in the same way of our previous works [7] [8] [9] [10]. Thus, 
in this computational study we will assess a powerful density functional in 
calculating the molecular properties and structure of the Melanoidin M8 
pigment in water. Following the same ideas of previous works, we will consider a 
fixed RSH functional instead of the optimally-tuned RSH density functionals 
that have attained great success [11]-[19]. 

2. Theoretical Background 

The theoretical background of this study is similar to the previous conducted 
research presented [7] [8] [9] [10], and will be shown here for complete 
purposes, because this research is a component of a major project that it is in 
progress. 

If we consider the KID (for Koopmans in DFT) procedure presented in our 
previous works [7] [8] [9] [10] together with a finite difference approximation, 
then the global reactivity descriptors can be written as: 
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Electronegativity        ( ) ( )1 1
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Net Electrophilicity        ( )ω ω ω ω ω± + − + −∆ = − − = +                [24] 

where H  and L  are the energies of the highest occupied and the lowest 
unoccupied molecular orbitals (HOMO and LUMO), respectively. 

Applying the same ideas, the definitions for the local reactivity descriptors are: 

Nucleophilic Fukui Function        ( ) ( ) ( )1N Nf ρ ρ+
+= −r r r           [20] 

Electrophilic Fukui Function        ( ) ( ) ( )1N Nf ρ ρ−
−= −r r r           [20] 

Dual Descriptor                    ( ) ( )
( )

f
f

N
υ

∂ 
∆ =  

∂  r

r
r         [25]-[31] 

Nucleophilic Parr Function            ( ) ( )rc
sP ρ− =r r          [32] [33] 

Electrophilic Parr Function            ( ) ( )ra
sP ρ+ =r r          [32] [33] 

where ( )1Nρ + r , ( )Nρ r , and ( )1Nρ − r  are the electronic densities at point r  
for the system with N + 1, N, and N − 1 electrons, respectively, and ( )rc

sρ r  and 
( )ra

sρ r ) are related to the atomic spin density (ASD) at the r atom of the radical 
cation or anion of a given molecule, respectively [34]. 

3. Results and Discussion 
Following the lines of our previous work [7] [8] [9], the computational studies 
were performed with the Gaussian 09 [35] series of programs with the MN12SX 
density functional as implemented in the computational package. The basis set 
used in this work was Def2SVP for geometry optimization and frequencies, 
while Def2TZVP was considered for the calculation of the electronic properties 
[36] [37]. All the calculations were performed using water as a solvent by 
integral equation formalism-polarized continuum model (IEF-PCM) computa- 
tions according to the SMD solvation model [38]. 

In this study, the molecular structure of the M8 melanoidin pigment was 
obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov), a website that 
serves as the public storage area for information related to chemical substances 
and the biological activities associated with them. The selection of the most 
stable conformer constitutes the pre-optimization of the final system. The 
selection was performed through random sampling that involved molecular 
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mechanics methods and the addition of a variety of torsional angles using the 
general MMFF94 force field [39] [40] [41] [42] [43]. This was done using the 
Marvin View 17.15 program that comprises an advanced chemical viewer 
favorable for single and multiple reactions, structures and chemical queries 
(https://www.chemaxon.com). Subsequently, the structure assumed by the 
resulting lower-energy conformer was reoptimized n the same way as in our 
recent works on melanoidins [7] [8] [9] [10], where it has been found that the 
model chemistry formed by the connection between the MN12SX density 
functional and the Def2TZVP basis set is the best for justifying the fulfilling of 
the KID procedure for the Melanoidin M8 molecule, both in the presence of 
water and dioxane. Thus, instead of presenting the comparison of the values of 
the orbital energies with the ionization potential I and the electron affinity A for 
the different functionals, we are showing the results for the global descriptors in 
Table 1. 

Having verified that the MN12SX/Def2TZVP model chemistry is a good 
choice for the calculation of the global reactivity descriptors, we now present in 
Figure 1 the molecular structure of Melanoidin M8 through a schematic 
representation generated through the Chemcraft molecular analysis program 
[44], and the calculated bond lengths and bond angles are shown in Table 2 and 
Table 3. 

The calculations of the condensed Fukui functions and Dual descriptor are 
done using the Chemcraft molecular analysis program to extract the Mulliken 
and NPA atomic charges [44] beginning with single-point energy calculations 
involving the MN12SX density functional that uses the Def2TZVP basis set in 
line with the SMD solvation model with water utilized as a solvent. 

Considering the potential application of the Melanoidin M8 molecule as an 
antioxidant, it is of interest to gain insight into the active sites for radical attack. 
A graphical representation of the condensed radical Fukui function 0f  is 
presented in Figure 2. 

A graphical representation of the Dual Descriptor ( )f∆ r  of the Melanoidin 
M8 molecule calculated with the MN12SX/Def2TZVP model chemistry in water 
is presented in Figure 3. 

From the results for the Dual Descriptor ( )f∆ r  in Figure 3, it can be 
concluded that for the M8 melanoidin molecule, C11 will be the preferred site 
for a nucleophilic attack and that this atom will act as an electrophilic species in 

 
Table 1. Global reactivity descriptors for the M8 intermediate melanoidin pigment 
calculated with the MN12SX density functional. 

Electronegativity (α) Chemical Hardness (η) Electrophilicity (ω) 

3.9294 2.7243 2.8338 

Electron-donating Electron-accepting Net Electrophilicity 

Power (ω− ) Power (ω+ ) ( ω±∆ ) 

4.5881 3.2326 7.8206 

https://doi.org/10.4236/cmb.2018.82002
https://www.chemaxon.com/


J. Frau et al. 
 

 

DOI: 10.4236/cmb.2018.82002 84 Computational Molecular Bioscience 
 

Table 2. Calculated bond lengths (in Å) of the M8 intermediate melanoidin pigment 
calculated with the MN12SX density functional. 

Bond Distance Bond Distance Bond Distance Bond Distance 

R(1-2) 1.402 R(6-7) 1.417 R(12-28) 1.110 R(16-37) 1.113 

R(1-5) 1.474 R(6-10) 1.420 R(13-14) 1.526 R(17-18) 1.437 

R(1-12) 1.452 R(7-8) 1.493 R(13-29) 1.109 R(17-38) 1.121 

R(2-3) 1.350 R(7-11) 1.344 R(13-30) 1.108 R(17-39) 1.111 

R(2-16) 1.502 R(8-9) 1.471 R(14-15) 1.516 R(18-40) 0.980 

R(3-4) 1.511 R(8-21) 1.233 R(14-31) 1.109 R(19-41) 0.979 

R(3-23) 1.095 R(9-10) 1.356 R(14-32) 1.110 R(20-42) 0.981 

R(4-5) 1.558 R(9-19) 1.388 R(15-33) 1.101 R(22-43) 1.100 

R(4-20) 1.440 R(10-22) 1.486 R(15-34) 1.100 R(22-44) 1.103 

R(4-24) 1.124 R(11-26) 1.103 R(15-35) 1.101 R(22-45) 1.103 

R(5-11) 1.505 R(12-13) 1.530 R(16-17) 1.525   

R(5-25) 1.126 R(12-27) 1.122 R(16-36) 1.110   

 
Table 3. Calculated bond angles (in ˚) of the M8 intermediate melanoidin pigment 
calculated with the MN12SX density functional. 

Bond Angle Bond Angle Bond Angle Bond Angle 

A(2-1-5) 109.0 A(5-4-20) 111.6 A(10-9-19) 126.8 A(14-15-34) 110.7 

A(2-1-12) 121.4 A(5-4-24) 111.0 A(9-10-22) 132.1 A(14-15-35) 110.9 

A(1-2-3) 111.9 A(4-5-11) 112.3 A(9-19-41) 108.6 A(31-14-32) 106.4 

A(1-2-16) 120.1 A(4-5-25) 109.9 A(10-22-43) 110.4 A(33-15-34) 108.1 

A(5-1-12) 116.7 A(20-4-24) 106.2 A(10-22-44) 111.0 A(33-15-35) 107.9 

A(1-5-4) 104.1 A(4-20-42) 107.8 A(10-22-45) 111.0 A(34-15-35) 108.4 

A(1-5-11) 112.2 A(11-5-25) 108.5 A(13-12-27) 108.9 A(17-16-36) 109.5 

A(1-5-25) 109.8 A(5-11-7) 122.1 A(13-12-28) 109.5 A(17-16-37) 109.1 

A(1-12-13) 112.4 A(5-11-26) 118.3 A(12-13-14) 113.5 A(16-17-18) 110.3 

A(1-12-27) 109.9 A(7-6-10) 107.0 A(12-13-29) 109.4 A(16-17-38) 110.3 

A(1-12-28) 109.1 A(6-7-8) 108.3 A(12-13-30) 108.3 A(16-17-39) 110.7 

A(3-2-16) 127.9 A(6-7-11) 120.3 A(27-12-28) 107.0 A(36-16-37) 106.1 

A(2-3-4) 110.0 A(6-10-9) 111.5 A(14-13-29) 109.9 A(18-17-38) 110.0 

A(2-3-23) 126.0 A(6-10-22) 116.3 A(14-13-30) 108.7 A(18-17-39) 107.6 

A(2-16-17) 112.9 A(8-7-11) 131.3 A(13-14-15) 113.3 A(17-18-40) 107.8 

A(2-16-36) 109.3 A(7-8-9) 104.0 A(13-14-31) 108.9 A(38-17-39) 107.8 

A(2-16-37) 109.7 A(7-8-21) 126.6 A(13-14-32) 109.2 A(43-22-44) 108.4 

A(4-3-23) 123.9 A(7-11-26) 119.5 A(29-13-30) 106.8 A(43-22-45) 108.5 

A(3-4-5) 103.0 A(9-8-21) 129.4 A(15-14-31) 109.2 A(44-22-45) 107.4 

A(3-4-20) 113.6 A(8-9-10) 109.1 A(15-14-32) 109.5   

A(3-4-24) 111.7 A(8-9-19) 124.0 A(14-15-33) 110.8   
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Figure 1. A schematic representation of the optimized structure of the M8 intermediate 
melanoidin pigment calculated with the MN12SX density functional in connection with 
the Def2TZVP basis set showing the numbering of the atoms. 

 

 

Figure 2. A graphical representation of the radical Fukui function 0f  of the M8 
intermediate melanoidin pigment in water where the red regions represent positive values 
of the magnitude and the blue zones represent the negative ones. 
 
a chemical reaction. In turn, it can be appreciated that N1 and C3 will be prone 
to electrophilic attacks and that these atomic sites will act as nucleophilic species 
in chemical reactions where the M8 molecule is involved. 

Finally, the condensed electrophilic and nucleophilic Parr functions kP+  and 

kP−  over the atoms of the Melanoidin M8 molecule in water have been 
calculated by extracting the Mulliken (or MPA) and Hirshfeld (or CM5) atomic 
charges using the Chemcraft molecular analysis program [44] starting from 
single-point energy calculations of the ionic species with the MN12SX density 
functional using the Def2TZVP basis set in the presence of the solvents 
according to the SMD solvation model. The maximum value of kP+  is located  
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Figure 3. A graphical representation of the Dual Descriptor ( )f∆ r  of the Melanoidin 

M8 molecule calculated with the MN12SX/Def2TZVP model chemistry in water where 
the red regions represent positive values of the magnitude and the blue zones represent 
the negative ones. 
 
over C11 (0.4771 for MPA and 0.2479 for CM5) and the maximum value of kP−  
is located over N1 (0.5011 for MPA and 0.3597 for CM5) and C3 (0.5158 for 
MPA and 0.3475 for HPA) for the calculation in the presence of water. Thus, 
there is a nice agreement between the results describing the local reactivity of the 
Melanoidin M8 molecule provided by Fukui functions, Dual Descriptor ( )f∆ r  
(or its condensed counterpart) and the Parr functions. 

4. Conclusions 
It is not the objective of Computational Chemistry to reproduce the known 
results of experiments but to predict in advance the behavior of the molecular 
systems for those cases where the experimental results are unknown or very 
difficult to obtain. As a matter of fact, this is the case for the subject of this 
computational study. A powerful fixed RSH density functional, namely MN12SX, 
was examined to establish whether they fulfill the empirical KID procedure. The 
assessment was done by comparing the values from HOMO and LUMO 
calculations to those that the ΔSCF technique for the Melanoidin M8 molecule 
generates. It is an intermediate melanoidin pigment that is of both academic as 
well as industrial interest. This study observed that the range-separated hybrid 
meta-NGA MN12SX density functional tended to be the most suited to meeting 
this goal in agreement with our previous studies on the chemical reactivity of 
melanoidins. In this case, the MN12SX density functional emerged as a suitable 
alternative to those density functionals that are tuned using a gap-fitting 
procedure. It also exhibited desirable prospects of how it would benefit future 
studies in understanding the chemical reactivity of colored melanoidins with 
larger molecular weights interacting with reducing sugars react with proteins 
and peptides. 
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From the results of this work, it has become evident that it is easy to predict 
the sites of interaction of the melanodin M8 pigment under investigation. This 
would involve having DFT-based reactivity descriptors including Parr functions 
and Dual Descriptor calculations. Evidently, the descriptors were useful in 
characterizing and describing the preferred reactive sites. They were also useful 
in comprehensively explaining the reactivity of the molecule. 
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