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the Hadamard graph transformation method, we obtain the existence of the
inertial manifold while such equations satisfy the spectral interval condition.
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http://creativecommons.org/licenses/by/4.0/ The concept of inertial manifold proposed by C. Foias, G. R. Sell and R. Temam

[1] in 1985 is a very convenient tool to describe the long-time behavior of solu-

tions of evolutionary equations, these inertial manifolds are smooth finite di-

mensional invariant Lipschitz manifolds which contain the global attractor and
attract all orbits of the underlying solutions exponentially. It is closely related to
infinite and finite dimensional dynamic systems, that is, the existence of inertial
manifold in infinite-dimensional dynamical system is reduced to the existence
of inertial manifold in finite-dimensional dynamical system. Furthermore,
when the system demonstrated by restriction to the inertial manifold, it reduces
to finite-dimensional ordinary differential equation, at this point, the system is
called the inertial system. As in this following, the existence of such manifold
relies on a spectral gap condition that turns out to be very restrictive for the ap-
plications.

It is well known that early researches on inertial manifold have yielded consi-

derable results. In 1988, the concept of spectral barriers was utilized in the Hil-
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bert space to attempt to refine spectral separation condition by Constantin ef al.
[2], after that, the inertial manifold was constructed with using an elliptic regu-
larization method by Fabes, Luskin, Sell in [3] (See [4] for other research re-
sults). Among then, the two well-known methods used to show the existence of
inertial manifold are the Lyapunov-Perron method and the Hadamard graph
transformation method.

In recent years, there have been many works which focus on using the latter
method to study it. Wu Jingzhu and Lin Guoguang introduced the graph trans-
formation method in [5] to obtain the existence of inertial manifold for a

two-dimensional damped Boussinesq equation with « >2,
u, —ohu, —Au+u*" = f(x,).

Subsequently, Xu Guigui, Wang Libo, and Lin Guoguang dealt with the exis-
tence of inertial manifold for second-order nonlinear wave equation with delays

in the literature [6] under the assumption that the time lag is sufficiently small,

o’u ou ou
—+a——LPA——-Au+g(u)=f(x)+h(t,u,).
In addition, Guo Yamei and Li Huahui obtained the existence of inertial ma-

nifold for a class of strongly dissipative nonlinear wave equation in [7]:
u, —ahu, + Nu, — Au+Au +Ag(u) = f(x)

Chen Ling, Wang Wei and Lin Guoguang discussed the situation of high-

er-order Kirchhoff equation in [8]:
u, + (—A)m u, + ¢(||V"’u||2 )(—A)m u+ g(u) = f(x)

In this paper, basing on previous studies, the existence of the inertial manifold
for nonlinear Kirchhoff type equations with higher-order strong damping is
considered by using the Hadamard graph transformation method. The paper is
arranged as follows. In Section 2, some notations, definitions and lemmas are
given. In Section 3, in order to acquire the result of the existence of the inertial

manifold, we show spectral gap condition.

u, -i—M(”D"’u"2 +||D'"v||2)(—A)m u+B(-A)"u, +g (u,v)

(1.1)
= /;(x), in Qx[0,+00),
v, +M(||Dn1u |2 +||D’”V||2)(_A)’” v+ﬁ(—A)’” v,+g, (M,V) (12)
= f,(x), in Qx[0,+o0),
u(x,O)zuO (x), ut(x,()):ul(x), xeQ), (1.3)
v(x,O):vo(x), vt(x,O)zvl(x), xeQ, (1.4)
Q:O, i‘sz, i=0,1,2,---,m—1, x€0Q, t =20, (1.5)
on' on'

where Q is a bounded domain in R" with smooth boundary Q, A>0 is
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real number and m>1 is positive integer, M (s) isa nonnegative C ' function

ﬁfk > g‘,-(H,V) and fJ.(x)(j:l,Z) are

nonlinear terms and external force terms respectively.

and satisfies 0<m, <M (s)<m, <

2. Preliminaries

For convenience, we need the following notations in subsequent article. Consi-
dering a family of Hilbert spaces V, = D(A“/ 2),61 € R, whose inner product and
norm are given by ("')Va = (A“/Z,A"/z) and || A " .

Apparently

Vo=L(Q), ¥, = H" (Q)NH(Q), V,, = H" (Q)NH,y (Q).

Vﬂ_|

Definition 2.1 [9] Let Sz(S(t))PO be a solution semigroup on a Banach

space X, a subset uc X is said to be an inertial manifold if it satisfies the fol-
lowing three properties:

1) pis a finite-dimensional Lipschitz manifold;

2) pis positively invariant, ie, S(t)pucu,foral 1>0;

3) u attracts exponentially all orbits of solution , that is, there are constants

1n>0,c>0 such that
dist(S(t)x,u) < ce™, 120, (2.1)

for every x e X, and the rate of decay in (2.1) is exponential, uniformly for x
in bounded sets in X. property 3) implies that the inertial manifold must contain
the universal attractor.

In order to describe the spectral interval condition, we firstly consider that the
nonlinear term F: X — X is globally bounded and Lipschitz continuous, and
has a positive Lipschitz constant /. ; its operator A has several positive real part
eigenvalues, and the eigenfunctions expand to the corresponding orthogonal
spaces in X.

Lemma 2.1 Let the operator A:X — X have countable positive real part
eigenvalues whose eigenfunctions expand to the corresponding orthogonal

spaces in X,and F e C,(X,X) satisfies the Lipschitz condition:
"F(u)—F(v)”X <. ||u—v||X, u,ve X, (2.2)

and operator A satisfies spectral interval condition related to FZ, if the point spec-
trum of the operator A can be divided into the following two parts o, and o,,
where o, is finite,

A= sup{Re/?,M € 0'1},

(2.3)
A, = inf{Re/IM € 0'2},
X, :span{wj|/1j ea[}, (i:1,2). (2.4)
Then
ANy =N >4, (2.5)
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X=X ®X,, (2.6)

hold with continuous orthogonal projection A : X — X,,P : X = X,.
Lemma 2.2 g, :V, xV, -V, xV, (i=12) is uniformly bounded and global

Lipschitz continuous functions.
Proof. V(ﬁ,ﬁ),(u,v) eV %V,

o (@9)-1 ),
=g (u+ 0@ —u),v+0(5—v))(a—u)+ g, (u+0(i-u),v+0(5-v))(7-v)|
<Jgw (u+0(a—u).v+0(F-v))(a-u),

g, (u+0(i—u),v+0(5-v))(F-v)

<]~

*|

ViV m

5] y
Vm Vm

<[ u| qw_q|).
Vi XV Vin Vin

Lemma 2.3 Let eigenvalues 4, (k>1) be arranged in non-decreasing order,

then for me N, thereis N>m suchthat 1, and A,

"g2 (12,17) -g, (u,v)|

are adjacent values.

3. Inertial Manifold

Equations (1.1)-(1.2) are equivalent to the following first-order evolution equa-

tion
U +A4U=F(U), 3.1)
with
0 -1 0 0
M)Ay peay o N
0 0 0 -1
0 0 M(s)(-A)" B(-A)"
0
F(U)= fl(x)—og. () | (3.3)

2 (x) =g (w.v)
D(A*) = {(u,v) eV, xV, |(u,v)eV, ><V0,((—A)m u,(-A)" v) eV, x Vb}x VyxV,,
X:VmXVOXVmXVO'
To determine characteristic values of operator A", we consider the graph
norm on X, which induced by the scale product
(), :(M(s)Dmu,D’”)_c)+()7,p)+(M(s)D'”v,D"’E)—i—(v_v,q), (3.4)
where U =(u,p,v,q),V =(x,y,2z,w),X,y,Z,w represent the conjugation of
x,v,z,w respectively. Moreover, the operator A" defined in (3.2) is monotone.

Indeed, for U e D(A*),
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(A*U,U) M(s)D"p,D"u +( )(-A)"u+ B(-A)" p)
)(-A)" v+ B(-0)"q)

~(M(s) M (s

~(M(5)D"q,D"7) +( M (s

=—(M (s)D" p.D"it)+(p.M (s) A)mu)+(ﬁ,ﬁ(—A)’” p) (3.5)
-(M(s)

(
M(s
(
M(s)D"q.D"%)+(q.M (s)(-A mv)+((7,,3(—A)m q)
=p{|o sl +prdf )0,
therefore, (A*U ,U )X is a non-negative real number.

To further determine the eigenvalues of A", we consider the following cha-

racteristic equation

AU=2U, U=(u,p,v.q)e X. (3.6)
That is

—p=Au,

Z(j),l(;A)m u+p(-A)" p=2p, (3.7)

M (s)(-A)" v+ B(-A)" g=Aq.
Substituting the first and third equations of (3.7) into the second and fourth

equations, thus u,v satisfy the problem of eigenvalues
Au— lﬂ(—A)m u+M (s)(—A)m u=0,
ﬂzv—/lﬂ(—A)mv+M(s)(—A)mv:0, (3.8)
o'u o'v

i T A
on' |y, ON' g

=0,i=0,12,---,m—1,

taking the inner product of u,v on both sides of the first and second equations
of (3.8) respectively, we acquire

A% u z—ﬂﬁ D"u ‘M s)|[D"u ’ =0,

o -2 ol + 1 )| .

22V = 28D + M (s) |

=0,
that is to say
22 (e +1bF ) - 28|+ oo )21 s

Dl +||D'"v||2) =0. (3.10)

(3.10) is a quadratic equation about A, bringing u,,v, to the position of
u,v, for any positive integer k; the equation (3.6) has paired eigenvalues
2
+ ﬁ/uk i\/(ﬂﬂk) —4M (/uk)/uk

A= 5 , (3.11)

where i, is the characteristic value of (-A)" in ¥, xV, ,then g, = Lk".

If

(ﬂ:uk )2 24M (/uk ),uk;
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that is

paa M) o M)

Hy. ﬁz

then the eigenvalues of the operator A* are all real numbers, and the corres-

>

ponding characteristic functions are

£ _ + +
U, = (uk,—/lk Uy, V=4, vk).
For convenience, we note that for any k£ >1,

2 2
m m _
[ +[pmw = s

R e e
Hy

M
Theorem 3.1 Suppose 0< <2 (#4) ,and [ be the Lipschitz constant
Hy
of g (u,v)(i=1,2) in(3.1),set N, €N be solarge such thatif N >N,
Bty — 1y ) =161 (3.12)

Then the operator A" satisfies the spectral interval condition of Definition
1.2.
Proof. We firstly estimate the Lipschitz property of F, from (3.1) and (3.4), we

have
I )= F O, =l o9)- 59 s )52
<2(ji-ul, +[5-+1, ).

That is /, <2[. Next it can be known from (3.11) that 2 to be real num-

(3.13)

. . M (,uk) . X
bers if and only if f>2 |——=. By assumption M (s)>0, 4" has at most
e
. . _ M (/Uk)
number N, for finite real eigenvalues, and when N,=0, <2 ,
Hy

A, =Mmax {ﬂki k< NO} . The eigenvalues are complex, and

Re 1 = _ﬂ;‘k , (3.14)

therefore, there exists N, > N, +1 making Rel; > A,k > N,.

Let N> N, be such that (3.12) holds, decomposing the point spectrum of
A*

o, = {ﬂ,f

k<N}, oy ={4

k= N+1f, (3.15)
meanwhile, define the corresponding subspaces of X

X, :span{UﬂksN}, X, =span{U,(i

k2N+1}, (3.16)

there is no & such that A€o, and A €o,, ie, it is impossible to have
U,eX, and U] € X,, vice versa, so X, and X, are orthogonal subspaces

of X From (2.3) and (3.14), we have A, =Re A, ,A, =Rel,

N+l 2
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A=A =Re(ﬂN+1—ﬂ;)=M. (3.17)

Thus, (3.12) implies that A* satisfies the spectral interval inequality (2.5), in
conclusion, A® satisfies the spectral interval condition.

The proof of Theorem 3.1 is completed.

Theorem 3.2 Suppose / be the Lipschitz constant of g, (u,v)(i=12) in

aM
(3.1), assume g, zﬂzﬂ, N, e N be large enough, when N2>N,,

g

the following inequalities hold, either

(/UN+1 _ﬂN)(ﬁ_\[ﬁzxul _4M(S)) 8\/51
2

> +1, (3.18)
VB~ 4M (s)

NR(N) — RN 1) + (g, — 1ty ) B2 —4M ()| < 2. (3.19)

Or
(s~ 1) 2 2+ Ly J#ZJM(S) +1, (3.20)
‘\/R(N)—\/R(N+1)+,uN—,uN+1 <2, (3.21)

where
R(N) = py —4M () py- (3.22)
Then in either case, the operator A" satisfies the spectral interval condition

(2.5).

M(#k)

Proof. Due to u, > >

, the eigenvalues of 4" are all real numbers,

and we know that both {/lk' }k>1 and {l,: }M are monotonically increasing se-

quences.
The three steps to prove Theorem 3.2 are as follows:

Step1 Setting

M M
z =1k pza LU 2 Jieno<pen MU (505
3 Hy
If keZ,,then A’ eR;andif keZ , then A eC.
In addition, if keZ,,
0< Ay << Ay <P [2< Ay 0 < <A, (3.24)
where N, =supZ,,Rel; :%,Vk >N, .
If N,>N,let
al:{/1;|1s]'sN}, azz{ﬂ,j,/lfls]'SNgk}. (3.25)
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Step 2 Consider the corresponding decomposition of X
X, =span{U}|1 <j< N},
(3.26)

X, :spcm{U_;,Uki ISjSNSk},

the equivalent inner product ((U ,V))X on X will be given below so that

X,,X, areorthogonal. Given

X,=X.®X,,
Xczspan{Uf,---,va}, (3.27)

X, :span{Uki k2N+l},

andset X, =X, @ X,.
Now we introduce two functions ®: X, - R,¥: X, - R, defined as

(U, V) =—4M (s)(w. %) +28° (D’"u,D’”f)+2ﬂ((—A)'g 7.(-A)2 uj
v zﬁ((_A)'z" B.(-A) xj+4((—A),; 7.(-A) s pj
—4M (s)(v,2)+2p* (D"v,D"Z)+2p (-A) 2 ,(-A)2 vj

¥ zﬂ((_A)‘"Z 7.(-A)2 zj ¥ 4[(_A)'2" .(-A) 2 qj.

(3.28)

With U=(u,p,v,q),V=(x,y,z,w)eXN or X,.
For Uz(u,p,v,q)eXN,then
O(U,U) = ~4M (5)(u,7)+ 28 (D”’u,D’”LT)+2,B((—A)J; 5.(-A)2 uj

m

Bi(-A)s uj+4[(_A)2" Bi(-A)S pj

o3

+2,B((—A)

—4M (s)(v,v)+ 257 (D'”v,D’”V)+ 2ﬁ((—A)_2 q,(—A)g vj

> —ant (s)Ju* + o )+ 27 (o +]])

2 [ +lod)

Josflos

~4p(|p plllosl+ o]
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>4 (5) ([ )+ 26 (ol Jorof ) +4(| oo + oo
~4{[o=f o) (o +|omf
_p (”D’"u"2 +||D”’v||2)—4M(s)(||u||2 +vP)
> (%2440 (5)) ([l +1 )
(3.29)
For any k, there is 3’1, >4M (44, ) > and according to the initial hypothesis
s
4

0<my<M(s)<m < ,thatis ®(U,U)=0, @ is positive definite.

Analogously, for U =(u, p,v,q) € X, then

W(U,V)=2p(D"u,D"it)+ ﬁ[(—A)"; 5.(-A)2 uj

227 (o o )=4(loef +loof
= (o o) aflo ol 4ol )
> 4 e + TP
thatis W(U,U)>0, ¥ ispositive definite.
Specify the inner product of X:

(UY)), =®(RU,PY)+¥(BU,BY), (3.31)
where P, and P, are projections of X to X, and X, respectively, for
briefly, (3.31) can be abbreviated as the following

(U), =@ U.r)+¥(U.F).
In the inner product of X, to prove that X, and X, are orthogonal, as long
as X, and X, are proved to be orthogonal, ‘e,
((U;,U;))X =0(U;,U;)=0(U; e X,.U; e X,.). (3.32)

Recalling (3.28)
cD(U;,U;) = —4M(,uj)(uj,17j)+2ﬂ2 (D'"uj,D"’LTj)—sz D"

( "u D"’uj)
—2p4; (DL, D"u, )+ 44, A7 (DL, D"u; )
—4M (p;)(v,. %, )+ 28 (D"v,. D"V, ) =24 (D™"¥,. D", )
—2p4; (D"V,,D"v,)+44, 4 (D"V;,D ;)

J
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_ —4M(ﬂ,-)(||“j I +||Vf||2)+2ﬁ2(

m 2 m 2
Duj. +va

28 (3 4, )l 4l 44 2

2 2
oouff o)

bt ()2, 2B (5 ) o472

according to (3.10)

AF Ay = Bug AT =M (u)u;,

thus, (3.33) is equivalent to

O(U;,US ) ==4M (u, )+ 28 1, = 2B( A +4; )+ 44, 4 -i_zo.

Step3 The orthogonal decomposition (2.6) has now been established. Let us

prove that A" satisfies the spectral interval condition (2.5) and its equivalent

norm on X is shown in (3.31), for this, we must estimate Lipschitz constant /,

of Fin (2.2).
Recalling that

F(U)=(0, £ (x)~ g (u:v),0, £, (x) — g, ()",

g (u,v):V,, xV, =V, xV, is Lipschitz continuous. Assume PB,P, be the or-

m

thogonal maps of X — X,,X — X, respectively, B,P, are their correspond-

ing mappingson V, xV, and V,xV,,from (3.29) and (3.30), for
U:(uap:vaq)EXaU]:(upp]:v]’ql)eEU:Uz:(u25p25‘;27q2)EF)2U5

then

Pu=u,Bv=v,Pu=u,, Pv=v,.

[Uf}, = 0" (PU.RU)+¥" (RU.RU)

2 (8~ am (5)) ([l + |2 )+ 2 2 + 1)

2 (B =M (s)) (Juf ).

Given U=(u,p,v,q),Vz(ﬁ,ﬁ,ﬁ,é)eX,We get

[F@)=F )], =l (wv) - & (@.9)

<2(fu-al, +~l,)

2321

o, e () = (9]

ﬁ—)llU ads

Bt —4M (s

thus

221

[ <

Jﬂzy] —4M(s) ’

by (3.35), then the spectral interval condition (2.5) holds if
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. 821

NN S foP QU | L. — (3.36)

Recalling (3.22), we have

A]:ul —i& _ \/R(N) _;/R(N—i_l) 4 ﬁ(/uNJrzl_tuN) , (337)

and

fim (JR(N) ROV 1) 48 =4 (5) (1 = )| 0. (3.38)

N—+o
For formula (3.38), in fact, setting

B uty —4M (1)
Hy (ﬂ2ﬂ1 _4M(S)) ’

R(N)=

we compute
\/R(N)_\/R(N+1)+\/'Bzﬂl_4M(5)(/‘N+1_”N)
= =400 (5) (s (1= ROV 1)y (1R ().
Jim (1R (V) =0

Consequently, (3.38) is obtained.
From the condition (3.19), it can be determined that N, >0 such that for all
N = N, , and with (3.37)

Ay = = A A 2@@_ (B4, —4M(s))—1, (3.40)

this shows that (3.36) is established by the conditions (3.18), (3.37), and (3.40),
that the Theorem 3.2 is certified completely under the previous hypothesis.

(3.39)

At this point, we continue to use the latter hypothesis to prove, setting
R(N)
R =2,

Hy

then (3.37) is equivalent to

N+~ MN 1 5 ,
MJ?(”NH\/&(N“)—ﬂN\/Rl(N)), (3.41)

A=A = Ay — Ay =

arranging

then (3.41) means

/\2—/\1227 11;:ﬁ(/’lN+l_ﬂN)+R2(N+1)—R2(N)

il 2 5 , (3.42)

making
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this implies
Ry (N +1)= Ry (N)+ gty — s = ity Ry (N) = sy Ry (N +1),  (3.43)
from (3.43), we easily get
lim R, (N +1)=R,(N)+ sty — iy, =0.

N—+0

Namely

<2,

‘\/R(N) —JRON 1)+ 41y — .

to be specific

2<JR(N) = JR(N +1) + pty = pty., <2,

_2_(/11\/_:uN+1)<\/R(N)_\/R(N+1)<2_(‘uN_'uN+1)’

therefore

Ao n = A — A = ﬂ(#mzl—yN) . \/R(N)—;/R(NH)

1
> g(ﬂml _#N)_E(#N —Hy i )_1

+1
>ﬂ_(ﬂ1v+1 —py)-1

2
82/

2 =>4,

JFu—am (5)

Under the latter assumption, Theorem 3.2 is proved completely.

(3.44)

Theorem 3.3 In the conclusions of Theorem 3.1 and Theorem 3.2, initial
boundary value problems (1.1)-(1.5) admits an inertial manifold 4 in X of the

form
,u:graph(l"):{f—i-l"((f):fe)(l}, (3.45)

where I': X, > X, is Lipschitz continuous with the Lipschitz constant /,., and

graph(T") represents the diagram of I".
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