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Abstract 
For many years planning and management of water resources involved mod-
eling and simulation of temporally sequenced and stochastic hydrologic 
events. Rainfall process is one of such hydrologic events which calls for time 
series analysis to better understand interesting features contained in it. Many 
statistics-based methods are available to simulate and predict such a kind of 
time series. Autoregressive (AR), moving average (MA), autoregressive mov-
ing average (ARMA) and autoregressive integrated moving average (ARIMA) 
models are among those methods. In this study a search was conducted to 
identify and examine a capable stochastic model for annual rainfall series 
(over the period 1954-2015) of Debre Markos town, Ethiopia. For the histori-
cal series, normality and stationarity tests were conducted to check if the time 
series was from a normally distributed and stationary process. Shapiro-Wilk 
(SW), Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests were 
among the normality tests conducted whereas, Augmented Dickey-Fuller 
(ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 
tests were among the stationarity tests. Based on the test results, logarithmic 
transformation and first order differencing were performed to bring the orig-
inal series to a normal and stationary series. Results of model fitting showed 
that three models namely, AR (2), MA (1) and ARMA (2,1) were capable in 
describing the annual rainfall series. A diagnostic check was performed on 
model residuals and ARMA (2,1) was found to be the best model among the 
candidates. Furthermore, three information criteria: Akaike Information Cri-
terion (AIC), the corrected Akaike Information Criterion (AICc) and Baye-
sian Information Criterion (BIC) were used to select the best model. In this 
regard, too, the least information discrepancy between the underlying process 
and the fitted model was obtained from ARMA (2,1) model. Hence, this mod-
el was considered as a better representative of the annual rainfall values and 
was used to predict five years ahead values. The mean absolute percentage er-
ror (MAPE) of the prediction was found to be less than 10%. Thus, ARMA 
(2,1) model could be used for forecasting and simulation of annual rainfall for 
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planning, management and design of water resources systems in Debre Mar-
kos town. 
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1. Introduction 

Understanding historical and current behavior of a climatic variable such as 
rainfall is a pre-requisite to future development and wise use of water resources. 
The importance of such a kind of understanding is apparent especially within 
the context of climate change and increase in water demand [1]. Historical rain-
fall record in its daily, monthly, annual or other forms has been a valuable input 
to different hydrologic analyses based on which important development deci-
sions were made. In recent years, due to the effect of human interventions, rain-
fall records in general are exhibiting significant nonstationarity to the level that 
they cannot be analyzed using traditional hydrologic analysis techniques such as 
frequency analysis [2]. Hence a suitable statistical method which can take care of 
nonstationarities is required for a proper understanding and modeling of recent 
rainfall series. 

Available records of rainfall are time sequenced realizations of the huge and 
unknown rainfall population. Future values of these sequences cannot be pre-
dicted certainly. Usually rainfall observations fluctuate from time to time in a 
random fashion. In order to provide a statistical setting for describing the cha-
racteristics of such phenomenon, a stochastic time series analysis is employed. In 
this kind of analysis, temporal characteristics of the rainfall can be examined and 
a prediction model can be synthesized. 

According to McCuen [2] five components may be present in a given time se-
ries data. Not all but some of them may be reflected in any given time series. 
Three of the five components are classified as systematic variations and the rest 
as non-systematic variations. Secular, periodic and cyclical trends are compo-
nents under systematic variations. Secular trends are tendencies to rise or fall 
constantly for prolonged time in a linear or non-linear form. On the other hand, 
periodic and cyclic trends are tendencies which have a repetitive nature after 
completion of one cycle. Episodic and random variations are those components 
under non-systematic variations. Abrupt changes in the time series are defined 
as episodic variations. Some of the driving forces for such kinds of changes in-
clude extreme meteorological events and changes in location of a recording gage. 
On the other hand, random variations arise from factors which are uncontrolled 
or unmeasured. 

To systematically deal with stochastic rainfall time series data, the widely used 
statistical approaches formulated by Box and Jenkins can be implemented [3]. 
The central idea in this approach is that adjacent observations are dependent. 
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Unlike the classical regression, where observations or variables are assumed to 
be independent, in stochastic time series analysis observations are correlated. 
Hence the Box and Jenkins approach, in general, applies autoregressive moving 
average (ARMA) or autoregressive integrated moving average (ARIMA) models 
to deal with these dependences. 

The major objective set for this study is to identify, fit and assess a capable 
model which can simulate the stochastic characteristics of annual rainfall in De-
bre Markos town, Ethiopia. 

Numerous studies have been conducted on rainfall time series at different 
temporal scales. Some of them are devoted to the detection while others on the 
analysis and modeling of nonstationarites present in the rainfall records. Ogun-
tunde et al. [4] investigated hydrological variability and trends in the long-term 
(1901-2002) historical records of rainfall, runoff and other climatic factors. 
They’ve used two non-parametric (Mann-Kendall and Sen’s slope) trend analys-
es and detected an increasing rainfall trend for the years 1901-1969 and de-
creasing trend for the years 1970-2002. 

Wang et al. [5] used a seasonal autoregressive moving average (SARIMA) 
model to simulate and forecast a seasonal precipitation series of Shouguang city, 
China. In their study they’ve identified and fitted the data to four candidate 
models namely SARIMA (2, 0, 2) (1, 1, 1)12, SARIMA (2, 1) (1, 1, 1)12, SARIMA 
(1, 1) (1, 1, 1)12 and MA (12). After comparing the models based on available in-
formation criteria, they’ve argued that SARIMA (2, 0, 2) (1, 1, 1)12 is the better 
one and used it for forecasting. 

Saada [6] used 3 variants of ARMA models to simulate annual rainfall 
amounts for Surat Obedia and Malaki stations in Saudi Arabia. The analysis was 
conducted in a software program known as Stochastic Analysis, Modeling, and 
Simulation (SAMS Version 2007) and revealed that the three models, i.e., AR 
(1), ARMA (1, 1) and ARMA (2, 1) were capable of replicating the long term 
statistical values at Surat Obedia. In contrast, the models were unable to capture 
the correlation structure as well as the long-term statistics at Malaki. 

2. Methodology 
2.1. Study Area 

Debre Markos Town is one of historical medium towns of Ethiopia. It is located 
300 km North West of the capital Addis Ababa and 265 km South East of the 
Amhara National Regional state’s capital Bahirdar (Figure 1. 10˚20'N and 
37˚43'E). The town covers an area of around 60 km2. The climatic condition is 
generally humid, with mean annual temperature of 16˚C and rainfall of 1308 
mm. In this highly expanding town, the demand for water is expected to increase 
in the near future. Apart from the exploitation of the rich groundwater, it’s ne-
cessary to manage and use the surface water sources too. To facilitate the surface 
as well as the groundwater management, the historical and future behavior of 
the rainfall process must be understood. From this standpoint this study is  
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Figure 1. Location of Debre Markos town [7]. 

 
conceived to aid the understanding of Debre Markos rainfall process at annual 
scale. 

2.2. ARIMA Models 

Often interesting features of a time series cannot be explained by classical re-
gression [8]. The presence of correlation among observations requires applica-
tion of stochastic methods which are not based on the assumption of observation 
independence. Autoregressive (AR), moving average (MA) or mixed autoregres-
sive moving average (ARMA) models are variants of such a stochastic method. 
The common thing in these three models is that they all acknowledge the pres-
ence of correlation and are applicable on a stationary time series. If nonstatio-
narity is an issue, as in most practically encountered time series, another sto-
chastic model called autoregressive integrated moving average (ARIMA) can be 
used. A detailed treatment on these models is presented in [1] [3] [8]. 

2.3. Autoregressive Models 

The central idea of autoregressive models is that the current value of a time se-
ries is affected by one or more past values of the same series. The extent to which 
past values affect the current value can be examined using sample autocorrela-
tion function (ACF). The general equation of an autoregressive model of order 
p, AR(p), is given as: 

1 1 2 2t t t p t p tx x x x w− − −= ∅ +∅ + +∅ +                  (1) 

where tx  is current value of the series, 1 2, p∅ ∅ ∅  are model coefficients 
with 0p∅ ≠ , 1 2,t t t px x x− − − are past values of the series and tw  is white noise 
term which is a collection of uncorrelated random variables with mean of 0 and 
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finite variance, 2
wσ . From the equation one can see that current values are as-

sumed to be combined linearly with past values. In a more concise form the 
AR(p) equation can be written using a backshift operator B (defined as 

1t tBx x −=  as follows: 

( ) t tB x w∅ =  

where the autoregressive operator ( )B∅  is defined as: 

( ) 2
1 21 p

pB B B B∅ = −∅ −∅ − −∅  

Particular equations of the various order p can be derived from the general 
Equation (1). For example; AR (1) model can be given as: 

1t t tx x w−= ∅ +  

2.3.1. Moving Average Models 
An alternative to the autoregressive model, the moving average model assumes 
the current value as a linear combination of white noises, tw . The general equa-
tion of moving average model of order q, MA(q), is given as: 

1 1 2 2t t t t q t qx w w w wθ θ θ− − −= + + + +                 (2) 

where 1 2, qθ θ θ  are model coefficients with 0qθ ≠ . We may write MA(q) 
model equation as: 

( )t tx B wθ=  

where the moving average operator ( )Bθ  is defined as: 

( ) 2
1 21 q

qB B B Bθ θ θ θ= + + + +  

Particular equations of the various order q can be derived from the general 
Equation (2). For example; MA (1) model can be given as: 

1t t tx w wθ −= +  

2.3.2. Autoregressive Moving Average Models 
For a stationary process, a mixed type of model i.e. autoregressive moving aver-
age (ARMA) can be used. This model is a linear combination of AR(p) and 
MA(q) models and its general equation for orders p and q, ARMA (p,q), is given 
as: 

1 1 1 1t t p t p t t q t qx x x w w wθ θ− − − −= ∅ + +∅ + + + +            (3) 

with 0p∅ ≠  and 0qθ ≠ . The concise form of ARMA (p,q) model is given as: 

( ) ( )t tB x B wθ∅ =  

From Equation (3) above one can notice that when p = 0, the model becomes 
a moving average model of order q, MA(q), and when q = 0, the model becomes 
autoregressive model of order p, AR(p). 

2.3.3. Autoregressive Integrated Moving Average Models 
Yet another model to be used especially when nonstationarity is apparent in the 
time series is autoregressive integrated moving average (ARIMA) model. In this 
model the time series is made stationary by applying a certain order of diffe-
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rencing, d. The general equation of this model for orders p, d and q, ARIMA (p, 
d, q) is given as: 

( )1 dd
t tx B x∇ = −                          (4) 

where d∇  is a d order difference operator on tx  (defined as ( )1t tx B x∇ = − ). 
The model can also be written as: 

( )( ) ( )1 d
t tB B x B wθ∅ − =  

From Equation (4) we can notice that if d = 0, the resulting model is pure 
ARMA (p,q). Hence ARIMA (p,d,q) can be considered as a general case of 
ARMA (p,q), MA (q) and AR (p) models. 

Often the performance of stochastic models is assessed using residual analyses 
[9]. Residuals must be in accordance with model assumptions. In time series 
analysis, residuals are required to be independent and identically distributed 
(iid). Apart from visual inspection on residuals correlation plots, tests can be 
conducted to quantify the extent of residual independence. The Ljung-Box 
Q-statistic test can be used to conduct such test [10]. This test can be performed 
in base R program through Box.test() function for a null hypothesis (Ho) of 
randomness. 

From the presented models above one or more of them could potentially de-
scribe the time series at hand. If statistically significant and competing two or 
more models are available, information criteria can be used to select the better 
one. Information criterion uses information discrepancy between a model and 
the underlying process as a measure to evaluate goodness of the model [11]. For 
this purpose, three information criteria can be used for model comparison. 

The Akaike information criterion (AIC) proposed by Akaike in 1973 evaluates 
a model whose parameters are estimated by maximum likelihood method. 
Another popular evaluation criterion which is based on Bayesian probability is 
the Bayesian information criterion (BIC) which was proposed by Schwarz in 
1978. BIC can be applied to models whose parameters are estimated by the 
maximum likelihood method. The variant of AIC for which the bias of the logli-
kelihood is corrected (AICc) can also be used for model comparison. Details on 
these three criteria are provided in [11]. 

2.4. Materials Used 

In this study the historical annual rainfall values of Debre Markos town were 
used. 62 years annual values were collected having time range from 1954 to 2015. 
Among these values 57 of them were used for model building and the rest five 
were used for prediction evaluation. For data processing and modeling activities 
a free software environment known as R (version 3.4.3) was used. Along with 
base R packages, additional packages called astsa and forecast are also used. 
Apart form the extensive help () function, the focused R notes [12] and the easy 
way instruction in Kabacoff [13] were valuable resources to get familiar with the 
R program. The Detailed treatments on application of R in time series analysis 
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presented in Cowpert wait and Metcalfe [14], Cryer and Chan [15] were helpful 
too. 

2.5. Procedure Followed 

The following steps were implemented to build a suitable stochastic model for 
Debre Markos town annual rainfall series. 

1) Input data examination—in this step the raw data was imported into R and 
analyzed to examine if there were outliers and whether the series was stationary 
or not. 

2) Model identification—once the series was confirmed to be stationary, a 
tentative model of certain order was identified based on sample autocorrelation 
function (ACF) and sample partial autocorrelation function (PACF). At this 
stage more than one equally competing models were identified. 

3) Parameter estimation—at this stage sarima() function from astsa package 
of R was used to fit the stationary data to the tentatively identified models in step 
2 above. Parameter values were computed using maximum likelihood estimation 
method. If a model fits the data well, t-values should be greater than 2 in magni-
tude and p-values should be less than the significance level [16]. In this study a 
significance level of 5% was maintained for all hypothesis tests. 

4) Model diagnostics and selection—the model diagnostics was based on re-
sidual analysis of each competing models. A selection was made based on AIC, 
AICc and BIC obtained from each model. 

5) Prediction—at this stage the best model was used to compute five steps 
ahead prediction of the time series. 

3. Results and Discussion 
3.1. Input Data Examination 

Figure 2 shows time series plots of the annual record at Debre Markos station. 
To stabilize the variance in the data, a logarithmic transformation was used. 
Normality tests along with stationarity tests have been conducted to check if the 
transformed data meets the requirement of normality and stationarity for the 
upcoming stochastic analyses (Table 1). Normality tests known as Shapiro-Wilk 
(SW), Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) have been ap-
plied. All of these normality tests assess the null hypothesis that the sample series 
was extracted from a normally distributed population (i.e. Ho: sample is nor-
mally distributed). Among the stationarity tests, the Augmented Dickey-Fuller 
(ADF) and Phillips-Perron (PP) tests assess the null hypothesis that the sample 
series has a unit root (i.e. Ho: sample is nonstationary) while Kwiatkows-
ki-Phillips-Schmidt-Shin (KPSS) test evaluates the null hypothesis that the sam-
ple series is stationary (i.e. Ho: sample is stationary). A detailed comparison and 
applicability of the above tests is presented in Ghasemi and Zahediasl [17] and 
Imam [18]. According to the tests performed, first the series was normal but 
nonstationary. A first order differencing was then applied to bring the series to a  
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Figure 2. Annual rainfall in Debre Markos (1954-2015). 

 
Table 1. Results of normality and stationarity tests. 

 
Normality Tests Stationarity tests 

SW test AD test KS test ADF test PP test KPSS test 

Test statistic 0.975 0.333 0.065 −6.515 −17.110 0.036 

p-value 0.248 0.504 0.744 <0.01 <0.01 0.975 

Decision on Ho Accept Accept Accept Reject Reject Accept 

 
stationary series. As it can be seen from Table 1, the differenced series became 
normal and stationary. This was confirmed by the respective p-values of each 
test at 5% significance level. 

3.2. Model Identification 

Based on sample ACF/PACF plots for the stationary series, tentative model types 
and model orders were identified. Figure 3 shows sample ACF and PACF of the 
stationary series. From the plots a significant correlation at lag 2 can be ob-
served. For the lags beyond lag 2 the correlation quickly dies out. This is a signal 
of confirmation that the differenced series is stationarity. Inspecting the plots 
closely, it feels that the ACF is cutting off at lag 1 and PACF is tailing off. This 
would suggest that the stationary series follows MA (1) or ARIMA (0,1,1) 
process. Due to the use of a limited sample size, it is impossible to tell whether 
the ACF/PACF is exactly cutting off or tailing off at certain lag. From the plots, 
it can also be suggested as PACF is cutting off at lag 2 and ACF is tailing off. 
Hence the annual rainfall process can be argued to follow AR (2) or ARIMA 
(2,1,0) process. Another possible candidate could be the mixed type ARMA (2,1) 
or ARIMA (2,1,1). As a preliminary analysis all the three models were fitted and 
diagnosed. 

3.3. Model Parameter Estimation 

The candidate models were fitted to the stationary data using sarima() function 
of astsa package. The function fits an ARIMA (p,d,q) model to the data and  
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Figure 3. ACF and PACF plots of the stationary series. 

 
returns parameter estimates, standard errors, AIC, AICc, BIC and diagnostics 
using maximum likelihood estimation. Results of the fit are displayed in Table 2. 
As it can be seen from the table t-values were greater than 2 in magnitude and 
p-values were less than 0.05. Hence at 5% significance level it can be argued that 
all the models fitted the series well. 

3.4. Model Diagnostics and Selection 

Model diagnostics mainly focuses on analysis of model residuals as a means of 
model verification and choice. If a model fits the data well, in the conventional 
regression analysis sense, the residuals behave in such a way that they are iid se-
quence with mean zero and finite variance, 2

wσ . In other words, the residuals 
become white noises. But in time series analysis we rarely encounter white noise 
residuals. Therefore, we should relax the iid requirement [8]. Figures 4-6 show 
diagnostic plots of the AR (2), MA (1) and ARMA (2,1) models respectively. As 
it can be visually observed from the plots, the standardized residuals of each 
model didn’t show apparent pattern. No significant correlation was observed 
from their ACF plots for the lags shown. The Q-Q plots display the reasonability 
of normality assumption. The p-value plots of Ljung-BoxQ-statistic for AR (2) 
model look marginally close to the significance level at lags 3, 4 and 5. If p-values 
were significantly small, this might indicate the consideration of a higher order 
AR model. Residual p-value plots of MA (1) and ARMA (2,1) models indicate 
the fulfilment of residual independence requirement. To choose the better model 
among the three, it’s necessary to look at information criteria associated with  
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Table 2. Parameter estimates of the 3 candidate models. 

Model 
Parameter values Strength of evidence 

1∅  2∅  1θ  2
wσ  t-value p-value 

AR (2) −0.68 −0.53 NA 0.0119 −4.85 0.00 

MA (1) NA NA −0.92 0.0106 −9.86 0.00 

ARMA (2,1) −0.24 −0.33 −0.77 0.0097 −2.35 0.02 

 

 
Figure 4. Diagnostics of the residuals from AR (2) fit. 

 
each model. As it can be seen from Table 3, the least information discrepancy 
(AIC and AICc) was obtained from ARMA (2,1) model. The BIC prefers the 
simpler MA (1) model. As noted in Shumway and Stoffer [8], the BIC often pre-
fers smaller order models and it’s not unreasonable to retain the MA (1) as a qu-
alifying model. In this study, however, ARMA (2,1) was selected as the prefera-
ble model to represent the annual rainfall process at Debre Markos town. 

3.5. Prediction 

Once the better model was selected, five-year ahead prediction was conducted. 
For this purpose, sarima.for() function of astsa package was used. This function 
produced predicted values based on the chosen ARMA model. Figure 7 shows 
the resulting prediction plot along with one and two standard error prediction 
bounds. The mean absolute percentage error (MAPE) of the forecast was 9.0% 
(Table 4). Hence the model can be considered as a better predictor. 
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Figure 5. Diagnostics of the residuals from MA (1) fit. 

 

 
Figure 6. Diagnostics of the residuals from ARMA (2,1) fit. 
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Figure 7. ARMA (2,1)Prediction plot. 

 
Table 3. Information criteria values for the candidate models. 

Information criteria AR (2) MA (1) ARMA (2,1) 

AIC −80.02 −87.85 −89.03 

AICc −79.25 −87.39 −87.85 

BIC −71.92 −81.72 −78.82 

 
Table 4. Relative error between predicted and actual values. 

Year Actual Predicted Percent error MAPE 

2011 1483.8 1356.9 8.6 

9.0 

2012 1272.5 1314.0 3.3 

2013 1227.3 1324.3 7.9 

2014 1337.1 1334.4 0.2 

2015 1059.4 1326.7 25.2 

4. Conclusions 

In this study annual rainfall time series of Debre Markos town, Ethiopia, was 
investigated. A logical procedure was followed in search for a better stochastic 
model that could better explain interesting features contained in the annual se-
ries. Among three statistically competent ARIMA models, ARMA (2,1) model 
was selected as the better model. Hence this model can be used to aid the under-
standing of Debre Markos rainfall process at annual scale. Furthermore, the 
model can be used as a potential alternative for prediction of annual rainfall val-
ues. 

Finally, as a recommendation, other stochastic models should be investigated 
to see if there are other models that can also preserve long term statistical beha-
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vior of annual rainfall in Debre Markos. In addition, seasonal behavior of the 
town’s monthly rainfall should also be explored. 
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