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sponse. We incorporate both virus-to-cell and cell-to-cell transmissions into
the model. We incorporate a distributed-time delay to describe the time be-

tween the HCV or infected cell contacts an uninfected hepatocyte and the
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1. Introduction

Hepatitis C virus is considered one of the dangerous human viruses that infects
the liver and causes the lever cirrhosis. Mathematical modeling and analysis of
within-host HCV dynamics have been studied by many authors (see e.g.
[1]-[12]). These works can help researchers for better understanding the HCV
dynamical behavior and providing new suggestions for clinical treatment. Im-
mune response plays an important role in controlling the dynamics of several
viruses (see e.g. [13] [14] [15] [16] [17]). Cytotoxic T Lymphocyte (CTL) and

antibodies play a central role of immune response. CTL cells attack and kill the
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infected cells. The B cell produces antibodies to neutralize the viruses. Mathe-
matical models of HCV dynamics with antibody immune response have been
proposed in [18] [19] [20]. The models presented in [18] [19] [20] assume that
an uninfected hepatocyte becomes infected by contacting with HCV (vi-
rus-to-cell transmission). It has been reported in [21] [22] [23] that the HCV can
also spread by cell-to-cell transmission.

The “cure” of infected cells has been considered in the virus dynamics models
in several works (see e.g. [24]-[39]). In [40], both cure and cell-to-cell transmis-
sions have been considered in the virus dynamics model, but without taking the
immune response into account. In a very recent paper, Pan and Chakrabarty
[41] have proposed the following mathematical model of HCV dynamics which
incorporates 1) both virus-to-cell and cell-to-cell transmissions, 2) cure of in-

fected hepatocytes, and 3) antibody immune response:
$(t)=B-0s(t)=as(e) p(1)-as (1) (1) + py (1), ()

P(t)=as(t) p(t)+as(t) y(t) =y (t) = py(1), 2
p(t)=my(t)=yp(t)=az(t) p(2), (3)

z(t)=rz(t) p(t)— pz(1), (4)

where, s, y; p and z represent the concentration of uninfected hepatocytes, in-
fected hepatocytes, HCV particles and antibodies, respectively. The uninfected
hepatocytes are generated at a constant rate /3, die at rate Js, where & is the
natural death rate constant. The infection rate due to both virus-to-cell and
cell-to-cell transmissions is given by «,sp + a,sy , where ¢, and «, are con-
stants. The infected hepatocytes die at rate eyand cure at rate py; where eand p
are constants. Constant m is the generation rate of the HCV from infected he-
patocytes. Antibodies attack the HCV at rate ¢gzp, proliferate at rate rzp and
die at rate uz where g, rand pare constants.

It is assumed in model (1)-(4) that, the hepatocytes can produce HCV par-
ticles once they are contacted by HCV or infected cells. However, there is a time
period from the moment of the uninfected hepatocytes that are contacted by the
HCV or infected cells and the moment of producing new active HCV particles
[10] [11].

The aim of this paper is to study the qualitative behavior of an HCV dynamics
model with antibody immune response. We have incorporated distributed time
delay and both virus-to-cell and cell-to-cell transmissions. We derive two thre-
shold parameters and establish the global stability of the three steady states of

the model using Lyapunov method.

2. The Model
We propose the following HCV dynamics model with distributed time delay:
$(t)=B-3s(t)-as(t) p(t)-as(t) y(£)+ py(2), (5)
5(6)= e (1) p(1) + s (1) y (1) = (1) p3(0). ©
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h

p(t)=mfp()e " y(t=r)dr=yp(t)=4z(1) p(1). (7)

0
z'(t)zrz(t)p(t)—yz(t). (8)
We assume that, the HCV or infected cell contacts an uninfected hepatocyte at
time ¢—7, the cell becomes infected at time ¢, where 7 is a distributed para-
meter over the time interval [0,4]. The factors ¢ represents the probability
of surviving the hepatocyte during the time delay period, where 4 is a con-

stant. p(z) isa probability distribution function satisfying p(z)>0 and

h h
Ip(r)dr =1, Ip(u)eg"du <o,
0 0

where ¢ and A are positive constants. Let us denote @(z’):p(r)e_” " and
F =I®(r)dz’, thus 0< F <1. Let the initial conditions for system (5)-(8) be
giveﬁ] as:
s(m)=<(n), y(m)=¢,(n),
p(n)=¢5(n), z(n)=<,(n),
£,(n)20.ne-h0],
¢, €C([-h.0].RE, ), j=1,-.4,

(9)

where C is the Banach space of continuous functions mapping the interval
[-£,0] into RZ . Then, the uniqueness of the solution for >0 is guaranteed
[42].

2.1. Basic Properties

In this subsection, we investigate the nonnegativity and boundedness of solu-
tions.

Proposition 1. The solutions of system (5)-(8) with the initial states (9) are
nonnegative and ultimately bounded.

Proof. From Equation (5) we have SLZO =pB+py>0.Hence, s(r)>0 forall
y 20 . Moreover, for all 7e[0,h] we have

t

y(t)=&,(0)e P+ [N [ as() p(n) + aus (n) y(n) ]dn 2 0,

0

1 LAY o h
p(t) — 4’3 (O)G_j0(7+qz(§))d§ +mje L](V q. (5))‘15“'@2 (‘r)y(n—z—)dz—dn > 0’
0 0

2(1) =, (0)e bl 5 o
By recursive argument we get y(z)>0, p(¢)>0, and z(¢r)>0, for all
t>0.

Next, we establish the boundedness of the model’s solutions. The nonnegativ-

ity of the model’s solution implies that

§(t)£ﬁ—$s(t)+py(t),
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Welet Q (7)=s(z)+y(z),then
0,(t)=B-3s(t)-ey(t)< p—o,(s(t)+ y(t)) = B-0,0 (1),

}. Hence O (¢t)<L,if O (r)<L, where I, =£. It fol-
O

where o, = in{éA,g
t)<L and y(7)<L if s(0)+y(0)<L . Moreover, let

lows that s

9, (t):l’(t)‘FgZ(t),then

7
h

QZ(t):mj@(f)y(t—f)dz—yp(t)—%z(t)SmLIF-yp(t)_%z(t)

0

<ml, —0'2( p(t)—i—gz(t)j:le —0,0,(1),

r
. . mL,

where o, =min{y, s} . It follows that, limsup,_,, O, (¢)<L,, where L, =—.
)

Since  p(1)=0 and  z(t)=0 , then limsup,,, p(r)<L, and

limsup, ,, z(t)< Ly, where L, =£L2 . Therefore, s(t),y(¢),p(r) and z(¢)
q

are ultimately bounded. [

According to Proposition 1, we can show that the region

A={(s.r.p.2) e Chils < L < Lol < 2o,

z" <L, } s
is positively invariant with respect to system (5)-(8).

2.2. The Steady States and Threshold Parameters

Lemma 1. For system (5)-(8) there exist two threshold parameters R, >0, and
R; >0, such that

1) if R, <1, then there exists only one steady state II,,

2)if RS <1<R,, then there exist only two steady states II, and II,,

3) if Ry>1 and R/ >1, then there exist three steady states II;, II, and
I1,.

Proof. Let (s,y,p,z) be any steady state satisfying

ﬂ—gs—alsp—azsy+py20, (10)
asp+a,sy—ey—py =0, (11)
mFy—yp—qzp =0, (12)
(rp—,u)z:O. (13)

We find that system (10)-(13) admits three steady states.
1) Infection-free steady state I1, =(s,,0,0,0), where s, = /3/5‘.
2) Chronic-infection steady state without immune response

1_Il :(Slayl,Pl,O),Where

_ (e+p)y
! Fma, +7/a2’
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_3S1 B(Fma, + yar, ) .
y =t S,
& Sr(e+p)

_ Fmy,

—7 )

p
Clearly II, existsif

B(Fma, + ya,)

~ >1.
oy(e+p)

Let us define

B(Fma, + ya,)
37(5 +p)

0

In terms of R, we can write the steady state components for Il as:

5
=2 =%(R0—1),
0
Fmds
2 =71(Ro -1).

3) Chronic-infection steady state with humoral immune
I, =(s,,¥,, p,2, ), Where

. v, (&+p) _ —B++/B*-44C
=2 H) _IOAND mRAR

2

o, +ry,a, 24 ’ (14)
rmk;
p<t 2 :z(_yz_l)
r q\ Hy
where

A=ra,e,

B = pea, —rfa, +r8(¢ + p), (15)

C=-fua,.

. rkymy,
We note that I, exists when ——=>1. Now we define
Hy
I Fi
R =TT T (16)
HY py

Then z, =Z(Rf —1). We define the basic reproduction number for the
q

humoral immune response R,,, which comes from the limiting (linearized)
z-dynamics near z=0 as:

Rz _pl

Hum ~—
2

Lemma 2 1) if R’ <1,then R; <1,
2)if R7>1,then R; >1,

DOI: 10.4236/jamp.2018.65096 1124 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.65096

A. M. Elaiw et al.

3)if R/ =1 then R;

Hum :1
VP

Proof. 1) Let R <1, then from Equation (16) we have y, < ek and then
m

using Equation (14) we get

—B++B*-44C e
24 Fm’

that leads to

[m+3)2 ~(B*-44C)>0.
Fm

Using Equation (15), we can get

da,e’ 1’y (Fma, + ya
: luy(Z 2 : ” 2)(1_R;[um)>0
mF
then
R, - rFms, (R, —1)6 <1
uey
then R}, <1.Similarly, one can proof2) and 3) [I.

3. Global Stability

The following theorems investigate the global stability of the steady states of sys-
tem (5)-(8). Let us define the function # :(0,00) —[0,00) as
H(¢)=(~1-In¢.Denote (s,y,p,z)= (s(t),y(t),p(t),z(t)).

Theorem 1. Suppose that R, <1, then the infection-free steady state II, is
globally asymptotically stable (GAS).

Proof. Constructing a Lyapunov functional

Ly(s.y.p.2) = SoH(iJ+y+—a‘S° p+3%%
5 v ry

0

2 2
+m[(s—so)+ﬂ

h t
+@J‘®(1) .[y(n)dndz'.
0

z

-7

dL
We calculate d_to along the solutions of model (5)-(8) as:

dr .
— = (l—s—oj(ﬁ—és—a,sp—azsy+py)+a]sp+a2sy
dt s

h
_gy—py+%[mj‘®(r)y(t—‘r)d‘r—}/p—quj
0

(17)
9,5, P 3
+——(rzp—puz)+—"——|(s—s, )+ y || f-Os—¢€y
ry ( ) (6+8)s0 [( 0) ]( )
)
+28% [o(c) y-y(t-7)]dz.
Yoo
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Collecting terms of Equation (17) and using S = &s, we obtain

dL S, )/ 2 A s
d_toz[ —?Oj(é’so —5s)+a2s0y+£l—?°jpy

ry
_ﬁ[(s—SO)+y}(3(s—so)+ey).
0

We note that

Therefore

ry 7/(5+p)
i (s )
_—(5s0+py+ﬁo SJ 0 Py
o+¢ §8, (5+8)S0
qa,8,
- R —1)y.
o (e ) (R=1)y

dz dr
Since R, <1, then d—tOSO for all s,y,p,z>0. Moreover d—t"zo if and

only if s(r)=5(0),y(r)=2(t)=0. Let Foz{(s,y,p,z):%:O} and T,

be the largest invariant subset of I'j. The solution of system (5)-(8) tend to T';.
For each element of I'; we have y(7)=0, then y(r) and Equation (6) we
get

y(1)=0=as,p(1)

Then p(r)=0. It follows that I'; contains a single point that is {I',}. Ap-

pling LaSalle’s invariance principle (LIP), we get that II; is GAS.

Theorem 2. Suppose that R <1< R, < 1+2 ,then II, is GAS.
€

Proof. Let us define a function L, (s,y,p,z) as:

DOI: 10.4236/jamp.2018.65096
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L =sH [iJ +y,H [l] LN P le(ﬁj
5 ) Fmy D

as0q P _ _ 2
melrz+2(5+8)sl[(s )+ yl)]

alslpl j@ .[H[ Jdﬂd

+

dz
Calculating d_tl along the trajectories of system (5)-(8), we get

dL s A
d—tl=(1—j)(ﬁ—5s—a15p—azsy+py)

(1 —;J(%SP +a,sy—€y—py)

a5, P,
+ O(r r)d (19)
o {1-2 ) mfoterte-rigs—rp-s |

Enlzilq("zp uz)+ ﬁ[(“%)ﬂy—% )J(5-ds-2).

a8, 1h y(t_T) y(t—r)
+T”£®(f)[yll— . +ln( ; Hdr.

Collecting terms of Equation (19), we get

dL K A
d—t‘=[1—?‘j(ﬁ—5s+py)+alslp+azsly—(8+p)yll

1

—(aysp+ azsy)%Jr(e + o)y =2l P

Fmy, Dy
h
als]pl pl alslp] 1 lpl
————0O(7)y(t—7)—dr+ + Z]
Fyy 1O me) e p T
_aspg P

Fmy,r yz+(5‘+‘9)sl [(S_S1)+(y_yl)](ﬂ—5s—gy)

+Ol]S]pl y+a131p1 -ii@(z_) (J’(t )j
by F y

Applying condition of equilibrum TII;:

B =05, +ays,p,+ a8y, — py, =05, + &Y,

Fm
b :7%» (3+p)J’1 =8P T OS50

we get
dz, s(s—s5,) ( s j [ s j
—L =" 4 (a5,p, +,s 1-=L |+ )| 1-=
dr B ( 15121 2 |y1) P p(y yl) B
)4 Y Yy sp Y
tos p—+ a8y, __(05151171 +a2S1yl)__alslp] =
1 i Vi s$py
S p
-5 —+ (alslpl +a,8,), ) o8P —
Sy b
DOI: 10.4236/jamp.2018.65096 1127
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h t—1
_ A _[@(z’)—y( )ﬂd2'+ozlslp1 L qzp, _gant
Foy yop e ry

T £ [(S_Sl)+(y_J’1):|(‘§(51_S)+als1pl+a2s1y1_PJ’1_EJ’)
(5-1—8).5‘1

vagsp Ls P oy n 2T g
11 l)}1 F d y .

thus

2
%:_g(s_SI) +a1S1P1(1_%}"/7(3’_)’1)(1_%]

dr K
+a,8.), (2_S_1_i]_alslpl iﬂ-i_zalslpl
s s 5P,
h
——agl}p] j@(f)y(t—‘r)%dr+%qul ——qoij;“uz
10
(s =)+ =) (S (s =)+ e (v-1))
(5+8)S1
h —
+ 2521 [0(7)In 2=y,
F 5 Yy

We note that

plo-)1-2) -2 gy LUy

S8, 5

Then
2
%:_5@4_“1S1p1[ _Sjj_m(s_sl)z

. p(ys—yl)(S_Sl)Jr%sly1 (2—1—'—1}0«%% PR
1

h —
+20!1S1p1 - al?wpl _[G(T)y(ty T)%dT"F_q‘j/lSl (pl _pZ)Z
0 1

P [(s=s)+ (=) (B(s-s)+ (v 1))

(6+e)s,
+%I@(r)m (der

y

R 2 2

A %) s—S ey —

=—(5s1+p(y—yl)+ {) S]( l) P (y yl) +a131p1[ _S_lj
o+e s

p(y—yl)(

+ s—s1)+a2s1yl{2—s—1—ij—als1pl£&+2als1pl
s 1

n
a,5,.P, y(t—r) )2 qa,5,
———|0(r)———=—dr+——(p,—p,)z— -
F g() yoop y (n=p) (6+¢)s
_pg(s—sl)(y—yl)+als1p1 }@(T)ln[y(t_r)]df.

(3+8)S1 F 0

(20)
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Consider the following equalities

ln[y(f—f)J:m[l’fy(’—f)]m[Spyf ]m(ij, i=12. (1)
y by S;p.y s

Simplify Equation (20) and let i =1, in Equation(21) we get

dz, 2 pSs (S_sl)z pa(y—y,)2
—=—| 08, + - )+= -—
” (sl P()’ J/1) 5+5] S8, (5+g)sl
alslpl{ _1_1H(S?IJJ+“251)’1[ —S—'—Si]
1
s | P S (22)
S Py S1.py
alslplj(a( )l:Ply(f ) l_h{p.y(t T)Hd
Fo Py PV
+ 5% (p —p,)z
7

Equation (22) can be rewrite as:

|, pés \(s=5) pe(y-n)
—=—| 05+ -y )+= -
P ( M p(y yl) 5+8j A (5+g>s1
—aspH = T, 2_S_l_i -5 pH gad (23)
5 §8 S Py
A
a,81Py ply(t_T)J qa,s,
-——|0O(r)H dr+ p— D)z
ooy 2 far 49, )

We note that
5’s1 —py, = %Kl +£j - RO}.
&R

From Lemma 2 we have p, < p,, then, % <0 forall s,y, and p >0,

where %z 0 ifand only if s=s,,y=y,p=p, and z=0. Thus, the global

asymptotic stability of II, follows from LIP when R’ <1,and 1<R,<1 +2.

£
]

Theorem 3. Suppose that RZ >1 and &s, — py, >0, then II, is GAS.
Proof. Define a function L, (s,y,p,z) as:

L :szH[i}yzH[L}Msz(ﬁ}wzzH[ij
5 Y,) Fmy, p,) Frmy, 2

P 2 5P, f h )/(77)
+W[(s—s2)+(y—y2 )} +T;[®(T) JH(—Jdndr.

t-1 Y2
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Calculating 4, as:
de

dL s P
d—;:(1—f](ﬁ—§s—a]sp—azsy—i-py)

Yy
+ [1 —iJ(alsp +a,sy—€y—py)

+M[1 —%J(mi@(r)y(l ~7)dz—yp —qu]

Fmy,
+q;(:972yl:2[1—2—22j(rzp— pz)
+ﬁ[(s—s2)+(y—y2)J(ﬁ—$s—gy) (24)
+%f®(1){l_w—7) +ln{y(t_r)ﬂdr.
0 Y2 B y

Collecting terms of Equation (24) and applying the equilibrium conditions for
IT,:

B =08+ a5,y + Ay, Y, — PV, =05, + €Yy,

7,
)2 :79 (8+,D)y2 =Q8,P, T 08,0,
&
&y, =——=(yp, +ap,2,).
mF
we get
dL als—s s
d_t2 = _5%4‘(0‘132172 T8, p(y W ))(l_fj"' a8, pta,s,y
Y spy s
_(als2p2 T8, )__alszpz Z-a,5,y, _+(alszpz +0!2S2y2)
Y $HP, Y Sy
h t—7
o5 D (me2 _quzz)ﬁ_ a5, P IG(T)Y( )&dr
Fmy, P F o9 Y2 p
a5, Py qc,5, P, qa,5, Py
+—=——=(Fmy, —qp,z, )— z,p+ z
Frmy, ( Y, — 4D, 2) Fry, 2 Frmy, Hz,
p A
+A—[(S—s2)+(y—y2 )}(5(52 _S)+a1S2p2 +0,8,Y, =Py, _gy)
(§+£)s2
as,p,  as,p, y(1-7)
4272 4,4 102 2I®(r)ln 7 \|dr
Y2 F o5 Y
& (S_SZ )2 o) 5 p
:_5T+(0‘152p2+a252y2) 1_: +p(y_yz) 1_? ta s, p,—
2
Yy )y Sp
T8, __(alszpz +a2s2y2)——a1s2p2 T 5,
2 2 S50, YV 2
h
p os,p yit—7)p
+(a152p2+a2SzJ’2)_a152p2 p__ l;, 2.[@(7) (y )_2d7+a152p2
2 0 2
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as,p, P
e

+%T@(7)m[M]dr.

0 Yy

[(s—s2)+(y—y2)](3(s—s2)+g(y—y2))

We note that

L e )

S5, s,
Using equalities (21) in case i=2, we get

pbs ](s—SQ)2 _pe(y-»)
5"‘5 sS, ($+8)S2
S

—a,5,p, [%2—1 —In [%D+a2s2y2 (2—?—%}
2
SPY, SPY,
—a,8,p —1—1n( ]
o Zl:s2p2y S0,

—@f@m{—”("ﬂ_l_m(—m“‘”ﬂdf.

Py, by,

4,
di

=—[5S2+p(y—yz)+

(25)

Equation (25) can be simplified as:

A 2
%:—(ésﬁp(y—yz% pos J(S_SZ) —pggy_yZ)
df 5—{—8 SSZ (54‘8)52

s s, S
_alszsz(_J"'azszyz[ __2__J
s, s s,

5D H( Py, j_ a5, Dy j-@)(r)H[pzy(t_T)de.
F S,PrY

dL 5 dL
We note that, d—2S 0 when 6s,—py, 20, where d—2= 0 occurs at II,.
t t

The global asymptotic stability of II, follows from LIP.

4. Numerical Simulations

This section is devoted to performing some numerical simulations for model
(5)-(8). Let us choose

plr)=5(c-x).

where & () is the Dirac delta function and z, € [O,h] is constant. Let 7 — o,

then we obtain
J‘pl (T)dT =1, F= ‘[5(‘[‘ -7, )e"‘”d‘[— —e M
0 0
Moreover,

Ig(r—rl)e'”‘ry(t—r)dr =e“y(t—1)).
0
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Hence, model (5)-(8), becomes

s(t)=B-3s(t)-as(t) p(t)-as(t) y(t)+ py(1), (26)
P(t)=as(t) p(1)+as () y(t)=x(t) = py(1), (27)
p(e)=me"y(t=7)=yp(t)=qz(t) p(0), (28)
z(t)=rz(t) p(t)— pz(1). (29)

For model (26)-(29), the threshold parameters are given by:

—HTy
So (e ma, + }/062)

0 s
(e+p)r
e’”lrl
Rlz = w’ (30)
Hy
. re “ms, 8
Hum — ¢ (RO _1)7
ueyR,

where y, is given by Equation (14). Model (26)-(29) will be solved using the val-
ues of the parameters listed in Table 1.

Now we investigate our theoretical results given in Theorem 1-3. We consid-
er the following two cases:

Case I: Effect of @, £ and A on the asymptotic behaviors of steady states:

In this case, we have chosen three different initial conditions for model
(26)-(29) as follows:

Initial-1: (£,(77).4,(77).<5(n). ¢4 (1)) =(600,1,1,10), (Solid lines in the fig-
ures)

Initial-2: (4/1 (77): - (ﬂ)7§3 (U)a§4 (77))
figures)

Initial-3: (£,(77).5,(7).5(1).¢4(17))=(90,4,9,12), 5 e(-»,0]. (Dotted
lines in the figures)

(200,1.5,3,5), (Dashed lines in the

Further, we fix the value of 7, =0.2 and we use three sets of parameters ¢,
and rto investigate the following five scenarios.

Scenario 1: ¢, =0.0001 and »=0.008. For this set of parameters, we have
R, =0.7934<1 and R =0.6276 <1. From Figure 1 it can be seen that the so-
lutions with all initial conditions converge to IT, =(1000,0,0,0). This means
that according to Theorem 1 II; is GAS. In this case the healthy state will be
reached and the HCV particles will be removed.

Table 1. Some parameters and their values of model (26)-(29).

Notation Value Notation Value Notation Value Notation Value
Yij 10 P 0.01 q 0.1 4, 0.1
S 0.01 & 0.5 r Varied
a Varied m 10 )7 0.1
a, 0.0001 ¥ 3 T, Varied

DOI: 10.4236/jamp.2018.65096

1132 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.65096

A. M. Elaiw et al.

Scenario 2: @, =0.001 and r=0.001. With such choice we get,

R =0.5538<1<R, =6.1695<1+>=51 and II, existswith

P

I, :(162.09,16.76,51.03,0). This result confirms Lemma 1. Theorem 2 states

that,

IT, is GAS and this is shown in Figure 2. This case represents the

1000
800
600

400

Uninfected hepatocytes

200 ff

Infected hepatocytes

200 300 400

500

Time

()

600

800 900 1000

40 50

Free HCV particles

Antibodies

n L L

80 100 120 140 160 180 200
Time

(d)

Figure 1. The simulation of trajectories of system (26)-(29) in case of R, < 1. (a) The
concentration of uninfected hepatocytes; (b) The concentration of infected hepatocytes;
(c) The concentration of free HCV particles; (d) The concentration of antibodies.

700 T T T T

e

Uninfected hepatocytes

200

Infected hepatocytes

0 I 1 L I
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Time

300

350

400 450 500
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. . . L . . .
200 250 300 350 400 450
Time

(®)

500

L
[ R TR
8 &® 8

Antibodies
o

100 150 200

(o)

250
Time

300

350

400 450 500

250 300 450 500
Time

(d)

150 200 350 400

Figure 2. The simulation of trajectories of system (26)-(29) in case of R =0.5538<1<R,.

(a) The concentration of uninfected hepatocytes; (b) The concentration of infected hepato-
cytes; (c) The concentration of free HCV particles; (d) The concentration of antibodies.
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persistence of the HCV particles but with inactive antibody immune response.

Scenario 3: ¢, =0.001 and r=0.01. Then, we calculate R,=6.1695>1,
R =3.1669>1 and &s,— py, =4.6948>0. Lemma 1 and Theorem 3 estab-
lish that, IT, exists and it is globally asymptotically stable. From Figure 3, we
find that the numerical results agree with the theoretical one presented in Theo-
rem 3. For all initial conditions the states reach the steady state
IT, =(480.24,10.4,10,83.74) . This case corresponds to a chronic HCV infection
with active antibody immune response.

Case II: Effect of the time delays on the free HCV particles dynamics:

Let us take the initial conditions (Initial-2). We choose the values ¢, =0.001
and r=0.01. we assume that 7" =7,. Table 2 contains the values of all thre-
shold parameters and equilibria of system (26)-(29) with different values of 7".

From Table 2 we can see that, the values of R,,and R; are decreased as 7’
is increased. Moreover, 7° has a significant effect on the stability of steady

states of the system. Table 2 and Figure 4 show that a high value of 7°

ninfected hepatocytes
Infected hepatocytes

. . . . .
200 250 300 350 400 450 500
Time

(b)

100 T T T T T T T T T 200

o
S

Antibodies
g

Free HCV particles

o
3

_—— L 1 L L L L
0 50 100 150 200 250 300 350 400 450 500
Time

() (d)

=
C F==c-flccoc---_-_-___=

< L L L L L L
50 100 150 200 250 300 350 400 450 500
Time

Figure 3. The simulation of trajectories of system (26)-(29) in case of R >1. (a) The

concentration of uninfected hepatocytes; (b) The concentration of infected hepatocytes;
(c) The concentration of free HCV particles; (d) The concentration of antibodies.

Table 2. The values of the threshold parameters and the equilibria of system (26)-(29)

with different values of 7°.

DOI: 10.4236/jamp.2018.65096

T R, R’ The steady states
0.0 6.73 3.47 E, =(480.24,10.4,10,74)
8 3.13 1.57 E, =(479.88,10.42,10.01,16.8)
15 1.65 0.77 E, =(603.61,7.73,5.76,0)
23 0.85 0.35 E, =(1000,0,0,0,0,0)
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1000
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Figure 4. The effect of delays on the behaviour of all trajectories of system (26)-(29). (a)
The concentration of uninfected hepatocytes; (b) The concentration of infected hepato-

cytes; (c) The concentration of free HCV particles; (d) The concentration of antibodies.

decreases the concentration of infected hepatocytes, free HCV particles, antibo-

dies, and increases the population of uninfected hepatocytes. Therefore, the

steady states of the system will eventually stabilized around the healthy state

T, .
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