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Abstract 

The star SO-2 at the galactic center will be soon at its closest distance to the 
supermassive black hole (SMBH). It will allow measuring relativistic effects. 
In [1] the dark matter is explained by the second component (gravitic field) of 
the general relativity generated by the clusters. In this theoretical frame, the 
gravitic field of the galaxies cannot explain the dark matter at their ends. But 
despite this, it seems possible that this gravitic field is in general underesti-
mated. In the current paper, we study the component of the SO-2’s gravita-
tional redshift due to the gravitic field of the galactic center ( Hz ) compared to 

the expected gravitational redshift due to the gravity field ( 43 10Gz −×~ ). The 
value of the gravitic field of SMBH is not known but depending on its value, 
four cases (in agreement with general relativity) can be obtained. If the dis-
crepancy measured on the gravitational redshift of SO-2 is 510Hz −

 , it will 
mean that the gravitic field at the center of the Galaxy is too weak to be meas-
ured and, as expected, that the gravity field dominates. If a discrepancy is 
measured of around 510Hz −~ , the gravitic field at the Galaxy center will be 
greater than expected but always inferior to the effect of the gravity field. With 
a measure of around 410Hz −~ , this discrepancy could always be explained 
in agreement with general relativity. It will mean that the effect of the gravitic 
field at the Galaxy center is greater than expected and can even be of the same 
order of magnitude than the effect of the gravity field. Furthermore the calcu-
lation of the mass could have to be revised. If a discrepancy is measured of 
around 310Hz −~  this discrepancy could always be explained in agreement 
with general relativity. It will mean that the effect of the gravitic field at the 
Galaxy center is greater than expected and even greater than the effect of the 
gravity field. The calculation of the mass will have to be revised. In the three 
previous cases, this discrepancy will be a measure of the gravitic field of 
SMBH and would be an important clue that would indirectly corroborate the 
explanation of the dark matter as the effect of the term of gravitic field. And to 
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end, if the discrepancy is larger, it will be more difficult to explain it in the 
frame of the general relativity (even in the frame of the explanation of dark 
matter as the effect of the term of gravitic field). 
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1. Introduction 

General relativity implies the existence of two gravitational components. In ad-
dition to the gravity field, there is a gravitic field just like the magnetic field in 
electromagnetism. These both components give what is called the gravitomag-
netism, obtained from the linearization of the general relativity. This new gra-
vitic field can be measured by its effect, known as Lense-Thirring effect. Several 
experiments have validated this effect for the Earth gravitic field, NASA’s 
LAGEOS satellites or Gravity Probe B [2]. In [1], a solution is proposed to ex-
plain the dark matter, compliant with general relativity and without exotic mat-
ter. This explanation leads to the assumption that we are embedded in a rela-
tively uniform gravitic field generated by larger structures than galaxies (likely 
the clusters). More generally, this solution implies that large structures generate 
greater gravitic field (and then Lense-Thirring effect) than expected. In particu-
lar the center of galaxies could be a first example of such a phenomenon. Even if 
the gravitic field of the galaxies’ center can’t explain the dark matter at the ends 
of the galaxies [1], it could be locally an important component of the dynamic of 
the object near the center (perhaps of the same order of the gravity field). The 
goal of our study is to predict what could be the effect of the gravitic field at the 
center of our galaxy (SgrA*) on the measure of the gravitational redshift of the 
star SO-2 which will be soon very close to SgrA*. That will allow testing the gen-
eral relativity in extreme conditions. We will see that unexpected discrepancies 
are possible due to this gravitic field. Some of these discrepancies could corro-
borate the previous mentioned solution of dark matter (and then by the same 
time could be in agreement with general relativity). Let’s first demonstrate what 
general relativity gives for the expressions of the gravitic field, which will allow 
giving us an expression for the gravitational redshift.  

2. Dark matter Explained by General Relativity  

2.1. From General Relativity to Linearized General Relativity 

From general relativity, one deduces the linearized general relativity in the ap-
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proximation of a quasi-flat Minkowski space ( ; 1g h hµν µν µν µνη= +  ). With 
the following Lorentz gauge, it gives the following field equations as in [3] (with  

2

2 2

1
c t

∂
= − ∆

∂
): 

4

8π0; 2 Gh h T
c

µν µν µν
µ∂ = = −                   (1) 

With: 

1 ; ; ;
2

h h h h h h hµν µν µν σ µ µσ
σ ν σνη η= − ≡ =  

h h= −                             (2) 

The general solution of these equations is: 

( ) ( ) 3
4

,4, d
T ctGh ct

c

µν
µν − −

= −
−∫
x y y

x y
x y

             (3) 

In the approximation of a source with low speed, one has: 
00 2 0; ;i i ij i jT c T c u T u uρ ρ ρ= = =                  (4) 

And for a stationary solution, one has: 

( ) ( ) 3
4

4 d
TGh

c

µν
µν = −

−∫
y

x y
x y

                    (5) 

At this step, by proximity with electromagnetism, one traditionally defines a 
scalar potential φ and a vector potential iH . There are in the literature several 
definitions as in [4] for the vector potential iH . In our study, we are going to de-
fine:  

00 0
2

4 4; ; 0
i

i ijHh h h
cc

ϕ
= = =                    (6) 

With gravitational scalar potential φ and gravitational vector potential iH : 

( ) ( ) 3dG
ρ

ϕ ≡ −
−∫
y

x y
x y

 

( ) ( ) ( ) ( ) ( )3 1 3
2 d d

i i
i u uGH K

c
ρ ρ−≡ − = −

− −∫ ∫
y y y y

x y y
x y x y

        (7) 

With K a new constant defined by: 
2GK c=                             (8) 

This definition gives 1 28~ 7.4 10K − −×  very small compare to G. 
The field Equation (1) can be then written (Poisson equations): 

1
2

4π4π ; 4πi i iGG H u K u
c

ϕ ρ ρ ρ−∆ = ∆ = =               (9) 

With the following definitions of g  (gravity field) and k  (gravitic field), 
those relations can be obtained from the following equations (also called gravi-
tomagnetism): 
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;ϕ= − =g grad k rotH  

0; 0;div= =rotg k                       (10) 

14π ; 4π pdiv G Kρ −= − = −g rotk j  

With the Equation (2), one has: 

00 11 22 33 0
2

2 4; ; 0
i

i ijHh h h h h h
cc

ϕ
= = = = = =             (11) 

The equations of geodesics in the linear approximation give: 

( )
2

2
00 0 02

d 1~
2d

i
ij ik j

j k j j k
x c h c h h v
t

δ δ− ∂ − ∂ − ∂             (12) 

It then leads to the movement equations: 

( )
2

2

d ~ 4 4
dt

ϕ− + ∧ = + ∧
x grad v rotH g v k              (13) 

From relation (11), one deduces the metric in a quasi flat space: 

( )22 2 2
2 2

82 2d 1 d d d 1 di iiHs c t c t x x
cc c

ϕ ϕ   = + + − −   
   

∑         (14) 

In a quasi-Minkowski space, one has: 

d d di j i
i ijH x H xδ= − = − ⋅H x                  (15) 

We retrieve the known expression [3] with our definition of iH : 

( )22 2 2
2 2

2 8 d 2d 1 d d 1 d is c t c t x
cc c

ϕ ϕ⋅   = + − − −   
   

∑
H x        (16) 

Remark: The interest of our notation (compare to the traditional notation of 
gravitomagnetism) is that the field equations are strictly equivalent to Maxwell 
idealization (in particular the speed of the gravitational wave obtained from these 
equations is the light celerity). Only the movement equations are different with 
the factor “4”. But of course, all the results of our study could be obtained in the  

traditional notation of gravitomagnetism with the relation 
4

g=
B

k .  

2.2. From Linearized General Relativity to Gravitational Redshift 

In our approximation, we are going to seek for a relation of the gravitational po-
tential that contain the gravitic component in addition to the gravity’s term. It 
could be seen as a correction of the traditional gravitational potential that take in 
account only the gravity field. By this way (in the linearized approximation), oth-
ers relations in which the gravitational potential intervenes could be adapted to 
take in account the gravitic field.  

From the previous relation (16), one can write: 

( )22 2 2
2 2 2

2 8 d 2d 1 d 1 d
d

is c t x
c c t c
ϕ ϕ⋅   = + − − −   

   
∑

H x           (17) 

( )( ) ( )22 2 2
2 2

2 4 d d 2d 1 d 1 d it
s c t x

c c
ϕ ϕ − ⋅  = + − −       

∑
H x

        (18) 
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One can then define, in this approximation, a gravitational potential that could 
be qualified as “corrected” in the sense that the gravitic term is added to the tradi-
tional gravitational potential as a corrected term (with the velocity of the test par-
ticle, d dt=v x ): 

14CORR Kϕ ϕ ϕ ϕ= − ⋅ = +H v                     (19) 

We can then apply these relations for the gravitational redshift: 

( )

( )

1 2 1 2

, 1,2 2

, 1,2 2

2 21 1
1 ~2 21 1

CORR E E K E

CORR R R K R

c cz

c c

ϕ ϕ ϕ

ϕ ϕ ϕ

   − − +   
+ =    

   − − +   
   

          (20) 

3. Gravitic Field and Gravitational Redshift at the Center of  
Our Galaxy 

3.1. Simplified Relation for the Gravitational Redshift 

With GM
r

ϕ = −  and 1~ K
r

H  as in the approximation of [1], i.e. galaxy as  

a punctual mass distribution, one has (with ,θH v  the angle between H  and 
v ): 

1
1 ,4 cosCORR K

KGM v
r r

ϕ ϕ ϕ θ= + = − − H v               (21) 

In our case of SO-2, one can write the contribution of each object (SO-2 
and SgrA*): 

, * 1 * 2 1 2

, 1 1

CORR E SgrA K SgrA SO K SO

CORR R Sun K Sun Terre K Terre

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ
− − − −

− −

= + + +

= + + +
             (22) 

Concretely it gives for the gravity potentials with the radius of SO-2 and 
distance to SgrA* ( 8

2 ~ 7 7 10 mSOr − × ×  and 13
2 * ~2 10 mSO SgrAr − ↔ × ) and the 

mass of SO-2 and SgrA* ( 30
2 ~13 2 10 kgSOM − × ×  and 

6 30
* ~ 4 10 2 10 kgSgrAM × × × ) [5] [6]: 

30
11 112

2 8
2

6 30
* 11 13

* 13
2 *

24
11 7

6

30
11

13 2 10~ 6 10 ~ 3 10
7 7 10

4 10 2 10~ 6 10 ~ 2 10
2 10

6 10~ 6 10 ~ 6 10
6 10

2 10~ 6 10

SO
SO

SO

SgrA
SgrA

SO SgrA

Terre
Terre

Terre

Sun
Sun

Terre Sun

GM
r

GM
r

GM
r

GM
r

ϕ

ϕ

ϕ

ϕ

−−
−

−

−

− ↔

−

−

−

× ×
= − − × × − ×

× ×

× × ×
= − − × × − ×

×

×
= − − × × − ×

×

×
= − − × × 9

11 ~ 10
10

−

     (23) 

That is: 

6
22

4
*2

2 ~ 7 10 1

2 ~ 5 10 1

SO

SgrA

c

c

ϕ

ϕ

−
−

−

− ×

− ×




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9
2

8
2

2 ~ 10 1

2 ~ 3 10 1

Terre

Sun

c

c

ϕ

ϕ

−

−

−

− ×





                      (24) 

The gravity term of SgrA* is the main term. The others can be neglected. 
Or the gravitic terms, even if we don’t know the value of the gravitic poten-
tials 1Kϕ  (it is the goal of the next section), we can expect that they will be 
less than 1.  

In our case of SO-2, this relation can be then simplified ( ,2

2 1CORR Ec
ϕ   

and ,2

2 1CORR Rc
ϕ  ): 

,2

, ,2 2

,2

, ,2 2

1 221 1 11 ~ 1 121

1 1~ 1

CORR E

CORR E CORR R

CORR R

CORR E CORR R

cz
c c

c

c c

ϕ
ϕ ϕ

ϕ

ϕ ϕ

 −    + = − +    
   − 

 

− +

      (25) 

One can also expect that the gravitic terms ( 1Kϕ ) will follow the same order 
of classification than the gravity terms. The relation (25) can then be written 
(with (22)):  

, , * 1 *2 2 2 2

1 1 1 1~ ~CORR E CORR R SgrA K SgrA G Hz z z
c c c c
ϕ ϕ ϕ ϕ −− + − − = +    (26) 

We are now going to study what could be the value of 1 *K SgrAϕ −  and Hz . 

3.2. Possible Values for the Gravitational Redshift 

3.2.1. Comparison of φCORR and φ at the Scale of Our Galaxy (at Its Ends) 
For our galaxy we have 42~ 2 10M × . It gives 32~ 10GM . At the ends of the ga-
laxy 5~ 2 10v ×  and from [1], in the galaxies we have the order of magnitude 

24
1 ~ 10K , it then gives 30

14  ~ 10K v . At the better case for 1Kϕ  (with 

, 0θ =H v ), in our galaxy, one would have 2
1 ~ 10Kϕ ϕ−  and then ~CORRϕ ϕ  in 

agreement with the fact that the gravitic interaction is negligible at the scale of the 
galaxy (that’s also the reason why the dark matter cannot be explained by the own 
gravitic field of the galaxies). 

3.2.2. Comparison of φCORR and φ in the Center of Our Galaxy (SO-2 Case) 
The difficulties of this computation are that we don’t know the value of K1, so 
close to the center of the Galaxy, and we don’t know the angle between the 
velocity’s vector v  of SO-2 and the vector H . Let’s make a first computa-
tion by applying a scale factor compare to the previous situation of the whole 
galaxy. The mass of the supermassive black hole at the center of our galaxy is 

36~ 8 10M × . For the whole galaxy 42~ 2 10M × , one can then apply the same 
factor ( 6 36 424 10 ~ 8 10 2 10−× × × ) to K1, it then gives 18

1 ~ 4 10K × . If we take 
for the velocity at the periastron of SO-2 6 1~ 4 10 m sv −× ⋅ , one has 

https://doi.org/10.4236/oalib.1104607


S. Le Corre 
 

 

DOI: 10.4236/oalib.1104607 7 Open Access Library Journal 

 

26
*

25
1 * 1

~ 5 10

4 ~ 6 10
SgrA

K SgrA

GM

K v

ϕ

ϕ −

∝ ×

∝ ×
                    (27) 

One can also note that in addition to the difficulty of knowing the value of 
K1, there is also the difficulty of knowing the angle ,θH v . If , 84θ <H v

  one 
has 1

,cos 10θ −>H v , if ,84 89.4θ< < 

H v  one has 1 2
,10 cos 10θ− −> >H v  and 

for angles nearer to 90˚ the cosine will be smaller. The vector H  is expected 
to be in the plane of the galaxy [1], tangent to circles centered on the galaxy 
center. At the periastron, the velocity seems close to the plane of the galaxy. It 
seems likely that v  and H  are not too close to the perpendicularity and 
then that ,cosθH v  is not too small. 

But the application of our scale factor on K1 most likely decreases the true 
value. Our previous values are an approximation when we have a punctual 
mass (when the studied body is far from a spatially extended source of mass). 
When we apply a scale factor for our case of SO-2 (from the whole galaxy to 
the center of the galaxy), unfortunately physically we are in a situation where 
there are masses beyond SO-2 (where the studied body is embedded in the 
spatially extended source). The punctual approximation must be enhanced by 
taking into account the surrounding matter. Unlike the centripetal gravity 
vector, the gravitic vector (similar to the magnetic vector in electromagnet-
ism) can stay more constant because it is not a centripetal force. As the gravi-
ty field, the gravitic field will be more diluted (compare to the punctual idea-
lization) but the gravity field of this surrounding mass can in addition be par-
tially neutralized by some mass that are in the opposite side of SgrA* from 
SO-2, an effect that doesn’t happen for the gravitic field. Then, the effect of 
the surrounding matter would less modify the computation of the gravitic 
field. Consequently to take in account this correction, one could modify K1. 
This then means that K1 should be greater. And only one order of magnitude 
( 19

1 ~ 4 10K × ) could be enough to be of the same magnitude than the gravity 
field at the periastron of SO-2: 

26
*

26
1 * 1

~ 5 10

4 ~ 6 10
SgrA

K SgrA

GM

K v

ϕ

ϕ −

∝ ×

∝ ×
                     (28) 

Then in the case of the measure of the gravitational redshift at the perias-
tron, a discrepancy with the expected value could be measured, the value of 
K1 and the velocity of SO-2 would be enough to generate a gravitic compo-
nent of the same magnitude than the expected gravitational redshift due to 
the only gravity field.  

11 36
4

2 13 16

19 6
41

2 13 16

6 10 8 10~ ~ ~ 3 10
2 10 9 10

4 4 10 4 10~ ~ ~ 10
2 10 9 10

G

H

GMz
rc
K vz
rc

−
−

−

× × ×
×

× × ×
× × ×
× × ×

               (29) 

One can note that, far of the periastron, for almost all along the orbit of 
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SO-2, the velocity is of about 5 1~ 10 m sv −⋅  (ten times less than at the perias-
tron). The gravity field stays then the main component. The contribution of 
the gravitic field (zH) compare to the gravity field (zG) would be, at the best 
case (the best orientation of the vectors as mentioned before), of one order of 
magnitude lower all along the orbit of SO-2, far of the periastron:  

11 36
4

2 13 16

18 6
51

2 13 16

6 10 8 10~ ~ ~ 3 10
2 10 9 10

4 4 10 4 10~ ~ 4 ~ 4 10
2 10 9 10

G

H

GMz
rc
K vz
rc

−
−

−

× × ×
×

× × ×
× × ×

×
× × ×

               (30) 

It is then not impossible to forecast a discrepancy on the measure of the 
gravitational redshift of SO-2 at its periastron and to be in agreement with the 
general relativity. This discrepancy would reveal larger gravitic fields than 
expected for large structures.  

What would happen if the gravitic field was greater ( 20
1 4 10K ≥ × ). In this 

case, the gravitic field would be of the same magnitude than the gravity field 
all along the orbit of SO-2 where the velocity is around 5 110 m s−⋅  (and even 
the main interaction at the periastron where 6 1~ 4 10 m sv −× ⋅ ).  

But this means that the deduced mass ( 36~ 8 10M × ) would already take 
into account the gravitic field. The deduced mass would then not only 
represent the baryonic mass BarM  but:  

1 ,
4~ cosBarM M K
G

θ+ H v                       (31) 

In this case, to observe a discrepancy in the gravitational redshift, a large 
difference between the minimal and the maximal velocity would be necessary 
because this “average mass”, which depends on the velocity (by taking into 
account the non-negligible gravitic field), would sufficiently change to gener-
ate a measurable discrepancy. At the periastron the velocity of SO-2 is more 
than ten times the lowest velocity of its orbit. One can then expect to measure 
a discrepancy on the observed gravitational redshift of nearly ten times great-
er than the expected one. One could then observe at the maximum: 

3
2~ 10 ~ 4 10H

GMz
rc

−×                        (32) 

In the frame of general relativity, this last case would be the greater mea-
surable discrepancy. A greater discrepancy would be more difficult to explain 
by the general relativity. 

4. Conclusions 

SO-2 will be soon at its periastron for which its velocity will be around 
6 1~ 4 10 m sv −× ⋅ . The expected gravitational redshift at this position is around 

4~ 3 10Gz −× . From [1], the gravitic field at the Galaxy’s center could generate in 
the best case a measurable discrepancy on this gravitational redshift. The value 
of this gravitic field at the Galaxy’s center remains unknown, but depending on 
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its value several cases with specific consequences appears as a result of this study. 
The discrepancy on the gravitational redshift at the periastron could be due to 
the gravitic component (zH) and could lead to several situations. The order is al-
so indicated in term of ( )nβ  effect (where β is the pericenter velocity of 
SO-2 in light units for which the expected gravitational redshift zG is ( )2β ): 

For ( )( )5 310Hz β−
   the gravitic component would likely be lower 

than the calculated one of [1] at the center of the galaxy. But it will not invalidate 
the explanation of dark matter for which the gravitic field of the clusters must be 
the source. It is the expected measure for the more accepted theoretical frame 
[7]. 

( )( )5 3~ 10 ~Hz β−   would mean that the gravitic component at the center of 
the galaxy is greater than expected but would be always less important than the 
gravity field. In this case, the expected gravitic field for large structure would 
have to be revised upwards. 

( )( )4 2~ 10 ~Hz β−   would mean that the gravitic component at the center 
of the galaxy is greater than expected and could be of the same importance than 
the gravity field (depending on the velocity of the studied object). In this case, 
the gravitic field would have to be revised upwards (as the previous case) but al-
so the calculated mass of large structure would have to be revised downwards, 
following the relation (31) as a first approximation. 

( )( )3 1~ 10 ~Hz β−   would mean that the gravitic component at the center of 
the galaxy is greater than expected and would even be the main gravitational 
component. This case would be at the limit of what it could be explain in the 
frame of the general relativity with a very important gravitic field. 

If the discrepancy is greater, it could be a failure of general relativity. But for 
the other cases, this discrepancy wouldn’t be a failure of the general relativity but 
at the contrary, it could be well explained by the general relativity itself by a more 
important term of gravitic field than expected. Furthermore, the measure of such 
a discrepancy would be a first important point for the way of explanation of the 
dark matter. In [1] the dark matter is explained by a more important gravitic field 
than expected (in particular for the clusters). 
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