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Abstract 

Because imines could be used as convenient starting materials in various 
fields, the development of an easy synthetic method of imine was strongly de-
sired. In response to this demand, we thought that it would be an effective 
synthesis method if an aldehyde and an amine could be reacted to give an im-
ine in good yield under solvent- and catalyst-free conditions. In fact, we tried 
the reaction of benzaldehyde with various amines under solvent- and cata-
lyst-free conditions followed by removal of water that was produced in the 
reaction system by a vacuum pump, and desired imines could be obtained in 
good yields. Observation of this reaction using a nuclear magnetic resonance 
spectrometer revealed that the reaction rate was extremely fast at the initial 
stage but slowed over time. However, the reaction of benzaldehyde with ani-
line differed greatly, and the reaction rate dramatically improved in 47 - 48 
minutes after the start of the reaction. At this time, we found that the reac-
tion system underwent a phase transition from the liquid phase to the solid 
phase. 
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1. Introduction 

In recent years, because the concept of green chemistry was generalized and em-
phasized, the development of that technology was progressing rapidly. In partic-
ular, in the field of the organic synthesis, the progress of the study was remarka-
ble. Among the series of investigations, it had been recognized that a solvent-free 
reaction was suitable for green chemistry [1]-[7]. Various solvent-free reaction 
systems had been developed so far, they were often accelerated by using the mi-
crowave irradiation [8]-[16], the ultrasonic method [17] [18] [19] [20] [21], or 
the UV lamp irradiation [1] [2] [3] [22] [23] [24] [25] in many cases. We thought 
that these reactions had some disadvantages. These reactions proceeded by sup-
plying energy from the outside. Moreover, these reactions often required the cat-
alyst. On the other hand, the neat reaction was known as another good idea for 
green chemistry. Although it was necessary to select a reaction system in which 
the reaction efficiency was extremely high and little or no by-products were gen-
erated, it was the excellent method that the desired product could be obtained by 
mixing the starting materials. Therefore, when researchers wanted to synthesize a 
useful organic compound, it was one of realistic ideas to carry out the neat reac-
tion. In view of this point, we decided to study the development of the neat reac-
tion. We focused on syntheses of imines (Schiff bases) from aromatic aldehydes 
and amines. This type of reaction had already been known. Previously, it was re-
ported that benzaldehyde and aniline were mixed in a molar ratio of 1:1 and 
reacted for 15 minutes followed by the purification with alcohol to obtain the de-
sired product in good yield [26]. In this reaction, the reaction procedure was very 
simple, but it was insufficient as a synthetic method from the viewpoint of the 
yield of the target product. On the other hand, this method was very attractive, 
because an imine could be a starting material for the superior building block that 
was used in various fields [27]-[35]. Thus, we believed it was a very useful syn-
thetic method of various imines if this reaction system could be refined to a high 
performance method. As mentioned above, the main disadvantage of this system 
was the low yield of the corresponding imine. Then, we thought that the target 
compound could be obtained in high yield, if it was possible to remove generated 
water from the reaction system. Actually, it was found that the target compound 
could be obtained in high yield by the removal of water from this reaction system 
using a vacuum pump. This synthesis was the excellent method which could be 
carried out by a very simple operation that consisted of mixing materials, stirring, 
and reducing the pressure. In addition, comparing to other neat reactions, no ac-
tivation such as heating was required at all in our method, and then it was consi-
dered to be advantageous from the viewpoint of green chemistry. In this paper, 
we will report the details of the reaction method. 

2. Experimental 

2.1. Chemicals and Instruments 

Standard bench top techniques were employed for handling air-sensitive rea-

https://doi.org/10.4236/gsc.2018.82012


S. Suzuki et al. 
 

 

DOI: 10.4236/gsc.2018.82012 169 Green and Sustainable Chemistry 

 

gent. Benzaldehyde and various amines were distilled under nitrogen before use. 
All reactions were carried out under nitrogen atmospheres. All yields of target 
compounds were isolated yields. ULVAC G-50DA (ULVAC KIKO Inc.) was 
used for carrying out this reducing pressure operation. IR spectra were recorded 
on an FT/IR-610 (JASCO) spectrophotometer. 1H-NMR and 13C-NMR spectra 
were measured on Bruker BioSpin AVANCE III 400 Nanobay spectrometer at 
400.1 and 100.6 MHz, respectively. Chemical shifts were given in ppm relative to 
TMS. 

2.2. Typical Experimental Procedure 1 (Scheme: R = Isobutyl,  
Reaction of Benzaldehyde with Isobutylamine) 

To a stirring benzaldehyde (2.12 g, 20.0 mmol) was added dropwise isobutylamine 
(1.46 g, 20.0 mmol) at room temperature. The reaction mixture was sampled at 
10 minutes after the start of the reaction and was measured by 1H-NMR. After 
20, 30, 40, 50, and 60 minutes, the mother liquor was sampled in a same manner 
and these reaction mixtures were analyzed by 1H-NMR. After 60 minutes, the 
reaction system was connected to a vacuum pump, the pressure was reduced to 
1.0 mmHg and stirred for three hours. After then, the crude mixture was taken 
out from the reaction vessel and it was purified by the silica gel chromatography 
(n-hexane/Et2O = 10/1) to yield the desired compound as pale yellow clear oil in 
95.2% yield (3.07 g). All physical properties of this product were completely 
consistent with literature values [36] [37]; Rf = 0.42 (n-hexane/Et2O = 10/1); IR 
(neat): 693, 752, 1029, 1311, 1386, 1450, 2870, 2955, 3027, 3063 cm–1; 1H-NMR 
(CDCl3) δ (ppm): 0.95 (d, J = 6.72 Hz, 6H, H1), 2.00 (sept, J = 6.68 Hz, 1H, H2), 
3.43 (t, J = 6.68 Hz, 2H, H3), 7.38 - 7.40 (m, 3H, H4 and H5), 7.70 - 7.74 (m, 2H, 
H6), 8.22 (s, 1H, H7); 13C-NMR (CDCl3) δ (ppm): 20.72 (C1), 29.60 (C2), 69.85 
(C3), 128.08 (C4), 128.59 (C5), 130.46 (C6), 136.38 (C7), 160.88 (C8). 
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2.3. Typical Experimental Procedure 2 (Scheme: R = Phenyl,  
Reaction of Benzaldehyde with Aniline) 

To a stirring benzaldehyde (2.12 g, 20.0 mmol) was added dropwise aniline (1.86 
g, 20.0 mmol) at room temperature. The reaction mixture was sampled at 10 
minutes after the start of the reaction and was measured by 1H-NMR. After 20, 
30, 40, 50, and 60 minutes, the mother liquor was sampled in a same manner 
and these reaction mixtures were analyzed by 1H-NMR. After 60 minutes, the 
reaction system was connected to a vacuum pump, the pressure was reduced to 
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1.0 mmHg and stirred for three hours. After then, the compound was taken out 
from the reaction vessel and recrystallized from dichloromethane and hexane to 
obtain the desired imine as pale yellow crystals (3.45 g, 95.2%). All physical 
properties of this product were completely consistent with literature values [38] 
[39] [40]; IR (KBr): 435, 519, 541, 692, 765, 869, 906, 976, 1072, 1170, 1193, 1590, 
1627, 2890, 3061 cm–1; 1H-NMR (CDCl3) δ (ppm): 7.19 - 7.25 (m, 3H, H1 and 
H2), 7.35 - 7.42 (m, 2H, H3), 7.43 - 7.50 (m, 3H, H4), 7.87 - 7.93 (m, 2H, H5), 8.45 
(s, 1H, H6); 13C-NMR (CDCl3) δ (ppm): 120.85 (C1), 125.92 (C2), 128.75 (C3), 
128.78 (C4), 129.13 (C5), 131.37 (C6), 136.16 (C7), 152.04 (C8), 160.41 (C9). 
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Other imines obtained in this study were synthesized by the same method as 
typical experimental procedures. In addition, the physical properties of the ob-
tained imines were perfectly consistent with those reported in literature 
[41]-[48]. 

 

H

O

+  RNH2

H

N

+  H2O

R

1) Solvent-free
    Catalyst-free, 1 h

2) In vacuo, 3 h

1 : 1

 
 

Scheme. Solvent- and catalyst-free syntheses of imine derivatives. 

3. Results and Discussion 

First, benzaldehyde and isobutylamine were chosen as substrates, and the reac-
tion conditions of this reaction were investigated by using a nuclear magnetic 
resonance (NMR). In NMR, 1H nucleus was observed and the conversion to im-
ine was determined using the ratio of the integral value of the aldehyde proton 
to the imine proton. The results were shown in Table 1. 

In this reaction system, we found that the formation of the imine and water 
were observed, and no by-products including the structural isomer of imine 
were detected by 1H-NMR. The reaction mother liquor was sampled at 10 
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Table 1. Reaction of isobutylamine with benzaldehyde. 

H

O

+  i-C4H9NH2

H

N

+  H2O

i-C4H9

Solvent-free

1 : 1

 
Entry Time (min.) Conversiona) (%) 

1 10 94.8 

2 20 95.7 

3 30 95.9 

4 40 96.0 

5 50 96.1 

6 60 96.1 

a)Conversion data were calculated by 1H-NMR spectrum. 

 
minutes after the start of the reaction and the reaction mixture was measured by 
1H-NMR. As a result, benzaldehyde was found to be converted to the corres-
ponding imine at 94.8% (Entry 1). In this system, the amount of the imine was 
increased as the reaction time passed. When samplings from the mother liquor 
were carried out in 20 minutes, 30 minutes, 40 minutes, 50 minutes and 60 mi-
nutes after the start of the reaction and these reaction mixtures were analyzed by 
1H-NMR, we could find that the degree of the conversion to the imine gradually 
improved (Entries 2 - 6). It could be found that the change of the conversion 
value became gentler over time by comparing the results at each time. From 
these results, although the reaction rate at the initial stage of this reaction was 
very fast and more than 90% of the substrate reacted within 10 minutes, the 
reaction rate decelerated from around 10 minutes. When the reaction vessel was 
decompressed to 1.0 mmHg using a vacuum pump and water in the reaction 
system was removed over 3 hours, only a trace amount of benzaldehyde was ob-
served. Thus, it was thought that the reaction progressed further in the reduced 
pressure. In this case, the desired imine was isolated in 95.2% yield. In the pre-
vious study, the synthesis of this target compound had been reported, and the 
study showed that the yield of the imine was 100% [49]. However, because acetic 
acid and methanol were used as a catalyst and a solvent in that study, it could be 
said that our reaction system was more useful, because only starting materials 
were used. 

Next, we applied this reaction to syntheses of various imines. The results were 
shown in Table 2. 
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Table 2. Syntheses of various imines. 

H

O

+  RNH2

H

N

+  H2O

R

1) Solvent-free, 1 h

2) In vacuo, 3 h

1 : 1

 
Entry RNH2 Isolated Yield (%) 

1 CH3
H2N  

95.1 

2 
H2N

 

94.0 

3 

H2N  

95.2 

4 

H2N

H3C

 

94.9 

5 

H2N CH3  

94.5 

6 

H2N

CH3

 

94.0 

 
When this reaction was carried out using propylamine, the desired imine was 

obtained in 95.1% (Entry 1). Then, we used benzylamine as a substituent. It was 
found that the corresponding target compound could be obtained in high yield 
(Entry 2). The maximum yields of imines synthesized from propylamine or 
benzylamine reported in the past papers were 96% [50] (in the propylamine sys-
tem) and 92% [51] (in the benzylamine system), but in these reactions, they were 
necessary to use a solvent and an acid catalyst so on. At this point of view, our 
method was considered to be superior. This reaction system could also be ap-
plied to aromatic amines. When aniline was used as a substrate, the target Schiff 
base could be obtained in high yield (Entry 3). In the case of a solvent-free reac-
tion that was reported previously, the yield of the target product was about 87% 
[26], so it was clear that our method was more effective [52]-[59]. Even if 
o-toluidine, m-toluidine and p-toluidine were used as aromatic amines, synthet-
ic reactions proceeded smoothly. These reactions gave target compounds in high 
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yields regardless of the substitution position of the methyl group (Entries 4 - 6). 
Some methods of synthesizing imines derived from toluidines had been reported. 
Target compounds were obtained in 92% (o-toluidine) [60], 100% (m-toluidine) 
[59], and 98% (p-toluidine) [61] [62] [63], respectively. Although the yields of 
imines were high in these reaction systems, they still had some disadvantages 
that a solvent and/or a catalyst were necessary, or the microwave irradiation was 
needed for the promotion of synthetic reactions. Thus, our reaction systems 
were considered to be more useful for imine syntheses. From above results, it 
was revealed that we could use various amines as substrates in this reaction sys-
tem, and it was an excellent method to easily obtain the desired imines with high 
yields. 

In the reaction of isobutyamine, the starting material (benzaldehyde) was ra-
pidly converted to the corresponding imine at about 10 minutes after the start of 
the reaction, and thereafter the conversion rate became slowly. Therefore, we 
investigated that this phenomenon could be observed similarly when other 
amines were used. The time profiles of the conversion to various imines using 
aliphatic amines were shown in Graph 1. 

The graph of isobutylamine system was based on the data of Table 1. These 
studies were carried out by 1H-NMR measurement. In addition, the horizontal 
axis of this graph showed the time after the start of the reaction, and the vertical 
axis showed the degree of the conversion to imine derivatives. As shown in 
Graph 1, time profiles of reaction systems with aliphatic amines were similar to 
each other. These results indicated that various imines were formed rapidly 
within 10 minutes after the start of the reaction, after which the conversion rate 
became slow. The cause of the difference in the degree of the conversion to the 
imine using aliphatic amines has not been clarified at present. We will further 
investigate in future. 

The time profiles of the conversion to the imine using o-toluidine, 
m-toluidine and p-toluidine were shown in Graph 2. These reaction systems 
were also examined by 1H-NMR. A typical example of our synthetic method was 
the reaction of o-toluidine. The conversion to the imine at the initial stage of the 
reaction system was very rapid, and its speed became slower over time. Although 
there was a difference in a reaction rate, this phenomenon could be observed in 
the reactions of m-toluidine or p-toluidine as well. It was considered that the 
conversion rate varied depending on the substitution position of the methyl 
group because of its steric hindrance. The methyl group acted as the ster-
ic-hindered substituent, suppressed nucleophilic attack, and it was considered 
that the converting speed decreased as approaching the reaction center at the p-, 
m-, o-position. 

Interestingly, the time course of the conversion to the imine using aniline was 
different from reactions using aliphatic amines and toluidines. Graph 3 showed 
the time profiles of the degree of the conversion to the imine and the recovery of 
benzaldehyde. In this graph, the vertical axis showed the degree of the conversion  
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Graph 1. Time profiles of conversions in cases of aliphatic amines. 

 

 
Graph 2. Time profiles of conversions in cases of toluidine derivatives. 

 

 
Graph 3. The time profile of the reaction of benzaldehyde with aniline. 

 
to the imine and the recovery of benzaldehyde. In the early stage of this reaction, 
the conversion to the imine and the consumption of benzaldehyde proceeded 
very rapidly as in other reaction systems. It was similar to other reaction systems 

https://doi.org/10.4236/gsc.2018.82012


S. Suzuki et al. 
 

 

DOI: 10.4236/gsc.2018.82012 175 Green and Sustainable Chemistry 

 

in that its rate became slow from about 10 minutes after the start of the reaction. 
However, between 40 minutes and 50 minutes, it was found that the degree of 
the conversion to the imine was dramatically improved. Along with this pheno-
menon, the degree of the recovery of benzaldehyde had dramatically decreased. 
When we observed the state of the reaction between 40 minutes and 50 minutes, 
we found that the mother liquor solidified at once at around 47 - 48 minutes. It 
meant that the phase transition of the reaction system had occurred between 40 
minutes and 50 minutes. In other reaction systems, such phenomenon including 
the phase transition had not been observed at all and it could be seen that the 
reaction using aniline was very specific. To the best of our knowledge, there had 
been no report of any significant change in degrees of the conversion and the 
recovery when phase transition was involved. It seemed that dramatic change in 
the reaction rate accompanied by the phase transition. We would like to further 
study this phenomenon in future and to clarify the cause. 

4. Conclusion 

We studied the neat reaction of an aldehyde and an amine. In this system, it was 
found that the desired imine could be obtained in high yield by removing water 
under reduced pressure conditions. We found that this reaction proceeded very 
rapidly in the initial stage, but its rate decreased with the passage of time. It was 
found that the reaction of benzaldehyde with aniline had a specificity that the 
phase transition occurred. We will be planning to investigate reactions using 
various aldehydes and amines. Now we could not investigate the mechanism of 
this synthetic method from 0 to 10 minutes, because the reaction rate was very 
fast. Thus, we will elucidate the mechanism at the initial stage of this reaction 
with various analytical methods in the next investigation. Moreover, we will try 
to develop the suitable purification of the target compound without organic sol-
vents. 
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