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Abstract 
Low cycle fatigue life consumption analysis was carried out in this work. Fa-
tigue cycles accumulation method suitable even if engine is not often shut 
down was applied together with the modified universal sloped method for es-
timating fatigue cycles to failure. Damage summation rule was applied to es-
timate the fatigue damage accumulated over a given period of engine opera-
tion. The concept of fatigue factor which indicates how well engine is operat-
ed was introduced to make engine life tracking feasible. The developed fatigue 
life tracking method was incorporated in PYTHIA, Cranfield University 
in-house software and applied to 8 months of engine operation. The results 
obtained are similar to those of real engine operation. At a set power level, fa-
tigue life decreases with increase in ambient temperature with the magnitude 
of decrease greater at higher power levels. The fatigue life tracking methodol-
ogy developed could serve as a useful tool to engine operators. 
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1. Introduction 

The hot section components of gas turbines are prone to failure due to creep [1] 
[2] fatigue [3] [4] and creep-fatigue interaction [5] [6]. Despite the combined 
failure mode, creep failure and fatigue failure are often studied in isolation. This 
work centres on the estimation and tracking of low cycle fatigue life of industrial 
gas turbine blades. Low cycle fatigue life analysis involves the strain-life ap-
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proach to fatigue life analysis. Fatigue life consumption analysis of a component 
involves the determination of the number of cycles to failure at a given stress 
amplitude, and the number of stress cycles corresponding to a given block of 
load defined by the stress amplitude. The number of stress cycles corresponding 
to a given block of load involves stress cycle counting and different techniques 
can be employed [7] [8] [9] [10]. Considering the manner of operation of indus-
trial gas turbines, a cycle counting model [11] which incorporates the frequent 
load variations is utilized in this work. The number of cycles to failure at a given 
load amplitude can be obtained using several methods. These include among 
others Morrow’s equation, Smith-Watson-Topper relation, Universal slopes 
method, Mitchell’s method and the modified universal slopes method [12] [13] 
[14] [15] [16]. In this work, the modified universal slopes method is adopted 
because it provides the best results in fitting fatigue data [15]. The target blade 
life is tracked by applying the damage summation rule provided by Palmgren 
and Miner [17]. 

Knowing that fatigue failure is stochastic in nature [18], obtaining an absolute 
value of fatigue failure from accumulated engine operation data will not be very 
appropriate. In the light of this, the time to fatigue failure obtained at a given pe-
riod of engine operation is compared to that of a reference life where the refer-
ence life is estimated at a predefined point of engine operation. Fatigue factor, 
which is the ratio of the fatigue life obtained to the reference life is introduced in 
this work. This is similar to the concept of creep factor in [19] in creep life con-
sumption analysis. Fatigue factor is a new concept introduced in this work for 
fatigue life consumption analysis in gas turbine blades. When the fatigue factor 
is less than 1, the engine was operated in worse condition but if greater than 1, 
then engine operation is favourable (dictated mainly by the power level and var-
iation of power level) compared to the reference condition. This concept will 
enable engine operators to have an idea of the nature of fatigue life consumption 
of the engine over a given period of engine operation even if the absolute life es-
timated is not completely accurate. A stress model was developed to estimate the 
stress at different points of engine operation. All the models developed and 
adopted in this work for blade fatigue life estimation and tracking are incorpo-
rated in PYTHIA [20], Cranfield University in-house gas turbine software, to 
make the life estimation and tracking feasible in a single platform by merely 
providing engine operation data. In this work, LM2500+ engine at Pulrose Pow-
er Station, Isle of Man was used as a case study. Details of this engine are in [21]. 
The fatigue life consumption of the gas producer turbine blades is considered in 
this work. The fatigue life of 8 different months of engine operation was esti-
mated and tracked. 

2. Methodology 
The basic steps involved in estimating the fatigue life consumption of the gas 
producer turbine blades are estimation of the maximum stress at the 8 different 
sections of the blade at each point of engine operation/placing of the maximum 
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stress into blocks, estimation of the cycles to failure corresponding to each block 
of maximum stresses, carrying out of damage summation to know the damage 
from the various blocks of stresses. 

2.1. Blade Stress Model 

The blade span is divided into 8 equal sections and the stresses due to centrifugal 
forces and the bending moment forces are estimated at the 8 different sections of 
the blade where the maximum value in the 8 sections is used for the fatigue life 
estimation. The stress model is also similar to that presented in [19]. At each 
section, the stresses are evaluated at the leading edge (LE), trailing edge (LE) and 
furthest point at the blade suction surface indicated as (SB). The centrifugal 
stress at each node ,C iσ  is given by Equation (1), 

,
,

i
C i

cs i

F
A

σ =                              (1) 

where ,cs iA  is the cross-sectional area of the blade at node i , and iF  is the 
centrifugal force at node i . 

The bending moment stresses at the base of each section and at the three loca-
tions is given by Equation (2), 

, , , ,
,

, ,
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σ
× ×

= +                 (2) 

,
BM
G iσ  is the bending moment stress, G  stands for LE  at the leading edge, 

TE  at the trailing edge and SB  at the farthest point in the blade suction sur-
face. XXI  and YYI  are the second moments of areas about the blade axial di-
rection and tangential direction respectively. ,G iX  and ,G iY  are the distances 
from the centre of gravity to the respective three locations in the axial and tan-
gential directions respectively. The total stress ,

Tot
G iσ  at each of the three loca-

tions at the base of each section of the blade is, 

, , ,
Tot BM
G i C i G iσ σ σ= +                         (3) 

The overall maximum stress ,Max iσ  at the base of all the sections considered 
is used for the life analysis of the blade. 

2.2. Cycle Counting Model 

The cycle counting model adopted in this work is that presented in [11]. Using 
this model, the number of stress cycles accumulated (termed equivalent stress 
cycles as the cycles are accumulated from different blocks of loads), eqN  for a 
given period of engine operation is given by Equation (4), 

1
, ,

1 ,

ki in
Tot d Tot d

eq S
i Tot d
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σ σ
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+

=

 −
 =
 
 

∑                       (4) 

where ,
i
Tot dσ , 1

,
i
Tot dσ + , ,

S
Tot dσ  and k  are the total stresses at each node for the 

i th data point, the next data point, at a set speed level and cycle determining ex-
ponent respectively. 
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2.3. Fatigue Life Estimation Model 

The modified universal slopes method [15] was applied in this work for esti-
mating the fatigue cycles to failure at each maximum stress level estimated. This 
is given by Equation (5), 

( ) ( )
0.832 0.53

0.09 0.560.1550.623 2 0.0196 2
2

u u
f f fN N

E E
σ σε ε

−
− −∆    = +   

   
    (5) 

2
ε∆  is the total strain amplitude, uσ  is the ultimate tensile strength of the  

material, E  is the Young’s Modulus of the material, fε  is the true fracture 
ductility, and fN  is the number of stress cycles to failure. Equation (5) is ex-
pressed in terms of nominal alternating stress amplitude, aσ  as, 

( ) ( )0.530.09 0.560.832 0.168 0.155 1.530.623 2 0.0196 2a u f f u fE N E Nσ σ ε σ
−− −

= +     (6) 

The stress amplitude aσ  is equivalent to the overall maximum stress ,Max iσ  
obtained from the stress model. The number of stress cycles to failure fN  is es-
timated from Equation (6) using the algorithm presented in Figure 1. 

2.4. Fatigue Life Estimation and Damage Accumulation 

When the number of fatigue cycles at each block of load is estimated and the 
numbers of cycles to failure corresponding to each block of load are obtained, 
the cumulative fatigue damage is estimated using damage summation rule given 
by Equation (6), 

,
,

1 ,

m
eq i

f i
i f i

N
D

N=

= ∑                            (6) 

where m  is the number of blocks of load formed, ,eq iN  is the number of 
cycles corresponding to the ith block, ,f iN  is the number of cycles to failure 
corresponding to the stress amplitude at the ith block. ,f iD  is the fatigue dam-
age parameter which is a fraction of the fatigue life consumed during the period 
of engine operation. For fatigue failure in practice, the damage parameter varies 
from 0.8 to 1.2; failure at unity damage parameter is assumed in this work. Thus, 
at the point of fatigue failure, 

,
1

1
m

f i
i

D
=

=∑                             (7) 

The equivalent number of stress cycles could be estimated at any period of en-
gine operation while the cycles to failure for a given block of loads in the given 
period is estimated using average stress level or the maximum stress in the block 
to be conservative. In any period of engine operation, the sum of the fatigue 
damage parameters, ,f sD  is given by Equation (8), 

, ,
1 1 ,

m m
a

f s f i
i i f i

N
D D

N= =

= =∑ ∑                       (8) 

where aN  is the mean value of the equivalent cycles accumulated for the entire 
period of engine operation, and m  is the total number of engine operation  
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Figure 1. Algorithm for estimating fatigue cycles to failure. 

 
points where fatigue damage parameters are evaluated. If 
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taken to obtain ,f sD , the time to fatigue failure at any point of engine operation 

,f eqt  is given as, 
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In terms of cycles to failure, the relation will be in the form, 
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Results of fatigue life analysis are presented in terms of relative fatigue life 
analysis considered next. 

2.5. Relative Fatigue Life Analysis—The Concept of Fatigue Factor 

In the low cycle fatigue idealization, obtaining the equivalent number of fatigue 
cycles to failure at a given period of engine operation and estimating the fatigue 
damage parameter will only reveal the amount of fatigue life consumed, but this 
will not tell how well the engine is being operated for the period considered. Like 
the creep factor approach, if the number of cycles to failure is compared with the 
cycles to failure at a particular reference point, fatigue life will be obtained rela-
tive to the reference point, and this will give the operator of the engine an idea of 
the wellness of the operation of his engine. The fatigue factor (FF) is given by 
Equation (11), 
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( )
,Re

Fatigue Factor f

f f

N
FF

N
=                    (11) 

where fN  is the number of cycles to failure at a given engine operation point 
(corresponding to a particular block of load), and ,Ref fN  is the number of 
cycles to failure at the defined reference point. If ,Ref f fN N< , the engine is op-
erated at a worse condition with respect to the reference point, if ,Ref f fN N> , 
the engine is operated at a favourable condition with respect to the reference 
condition. In a given period of engine operation, the equivalent fatigue factor 
will be estimated. This is the ratio of the equivalent fatigue life (equivalent cycles 
to fatigue failure) to the cycles to fatigue failure at the reference point; this is 
given by Equation (12), 

,

,Re

f eq

f f

N
EFF

N
=                          (12) 

EFF  is the equivalent fatigue factor, and ,f eqN  is the equivalent cycles to 
failure based on the entire period of engine operation. 

3. Fatigue Life Tracking and Results 

The fatigue life algorithm developed in this research is applied to 8 months of 
engine operation using real engine field data to ascertain the feasibility of blade 
life tracking process. The LM2500+ engine operated by Manx Utilities at Isle of 
Man was used as a case study and the power turbine blades were the target. Fig-
ure 2 shows the equivalent daily fatigue factors for the 8 months of engine oper-
ation considered while Figure 3 shows the monthly equivalent fatigue factors for 
each of the months of engine operation and the overall equivalent fatigue factor 
(indicated as OEFF). The effect of ambient temperature on fatigue life consump-
tion at different shaft power levels was also investigated the results are presented 
in Figure 4. Here, ambient temperature was varied from 5˚C to 30˚C, and shaft 
power levels of 70% to 100% were used. 

The equivalent daily fatigue factors in Figures 2(a)-(h) are lower in January, 
February, March and December of engine operation compared to those obtained 
in June, July, August and November. This is because fatigue life depends on the 
stresses on the blades which arise from engine shaft speed and momentum 
changes. The latter depends on the amount of air intake. In January, February, 
March and December, lower ambient temperatures were recorded leading to 
higher air intake and hence higher alternating stress amplitude on the blades. 
The equivalent fatigue factor for each month of engine operation are thus lower 
in the months of January, February, March and December as in Figure 3. The 
overall equivalent fatigue factor (OEFF) is a little above unity, indicating that the 
fatigue life consumption of the blades is favourable in the 8 months of engine 
operation considered. The OEFF used is actually the equivalent fatigue life for 
the entire 8 months of engine operation. 

At any given power level, increasing the ambient temperature through the 
range of temperatures considered lead to a decrease in the fatigue factor on the  
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Figure 2. Equivalent fatigue factors for 8 months of engine operation. 

 
average. The fatigue factors decrease with ambient temperature because increase 
in ambient temperature leads to lower mass intake. This is accompanied by low-
er momentum change stresses and tendency in shaft power level reduction. To 
keep the shaft power level constant, the engine speed increases leading to in-
crease in centrifugal stresses. The increase in centrifugal stresses is more than the 
decrease in the momentum change stresses. This leads to reduction in fatigue 
life. The reduction in fatigue life increases with power level as higher stress am-
plitudes are experienced at higher power levels. This is shown in Figure 4. 

4. Conclusion 

Fatigue life consumption analysis and tracking methodology is developed in this 
work. The concept of fatigue factor is introduced which tells the wellness of en-
gine operation and makes the engine life tracking feasible. The developed me-
thodology was applied to 8 months of engine operation to track the fatigue life  
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Figure 3. Equivalent fatigue factors for each month of engine operation. 

 

 
Figure 4. Average percentage decrease in fatigue factors with ambient 
temperature at different power levels. 

 
consumption of the engine for the entire period, and to also test the feasibility of 
the life tracking process. The fatigue life consumption results obtained for the 
different months are in line with what is obtainable in real engine operations in 
many other works—higher fatigue life for lower power level operation and 
vice-versa. The effect of ambient temperature on fatigue life was investigated at 
different shaft power levels and two basic observations were made. Fatigue life 
decreases with increase in ambient temperature at a fixed shaft power level, and 
the value of the decrease in fatigue life is greater at higher power levels. The set 
power level is any power level in which the engine operates, say 80% or 900% of 
engine design power. The fatigue life tracking algorithm developed in this work 
could be used by engine operators in engine fatigue life consumption monitor-
ing and hence aid them in their decision making pertaining to engine mainten-
ance. Since gas turbine blade failure is hardly due to any single mode of compo-
nent failure, creep-fatigue interaction failure need to be looked employing same 
relative life analysis methodology. 
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