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Abstract 
We propose a nanotube-based erbium-doped fiber laser that can deliver con-
ventional soliton (CS) and stretched pulse (SP) based on D-shaped fiber sa-
turable absorber (DF-SA) where evanescent-field interaction works. The novel 
Nanotube-based Fiber Laser can generate SP or CS by tuning pump power 
and polarization controller (PC) properly. The net cavity dispersion of laser is 
slightly negative. In our experiment, by optimizing the PC in the cavity, CS 
and SP can be obtained at the central wavelengths of 1530.6 nm and 1530.3 
nm due to on carbon nanotubes and the spectral filtering effect induced by 
nonlinear polarization rotation. Although the acquired CS and SP nearly have 
the same central wavelengths, they show distinct optical spectra, 3-dB band-
widths. The proposed fiber laser with switchable CS and SP is attractive for 
ultrashort pulse generation and fast measurements in practical applications. 
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1. Introduction 

Due to their excellent features of generating ultra-short pulses, passively mode- 
locked fiber lasers have drawn a lot of attention [1] [2] [3] [4]. Ultrafast fiber 
lasers with the merits of excellent heat dissipation [5] [6] [7], freedom from 
alignment [8] [9] and compact laser cavity design [10] [11] are widely applied in 
the fields of biomedical diagnostics [12], optical communications [12] [13] [14] 
and nonlinear optics [13] [15]. Passively mode-locked fiber lasers can be ob-
tained by different types of nonlinear elements, such as nonlinear polarization 
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rotation (NPR) [16] [17] [18] [19], semiconductor saturable absorber mirrors 
[11] [20] [21], nonlinear optical loop mirrors [22] [23] [24], graphene [25] [26], 
graphite nano-particles [27] and single-wall carbon nanotubes (SWNTs) [28] 
[30]. Among them, SWNTs can work as excellent saturable absorbers (SAs) due 
to their advantages of fast recovery time, high damage threshold, good modula-
tion depth, broad operation bandwidth, outstand environmental stability, and 
affordable fabrication [31] [32] [33]. There are many investigators that pay great 
attention to SWNTs as SAs. A fiber laser generating a 74 fs pulse with 63 nm 
spectral width based on nanotube mode locker have been proposed by Popa et 
al. [34]. Recently, a distributed ultrafast laser was proposed firstly by Liu et al. by 
means of the linearly chirped grating technique [40]. Moreover, broadband op-
eration which is the superior feature of SWNTs can be realized by mixing 
SWNTs with different diameters, because the diameter and chirality of nano-
tubes determine the absorption peak of SWNTs [35]. 

A long interaction length for the guided light and the nanotubes is introduced 
by the D-shaped fiber saturable absorber, which guarantees an efficient nonli-
near effect so that it facilitates laser mode locking even though the laser is under 
various conditions [36]. Higher intracavity power can be introduced for higher 
energy pulse formation, because only a part of the optical power of the propa-
gating mode interacts with the SWNTs for mode locking. Lots of researchers 
have focused on evanescent-field interaction with SWNTs due to the outstanding 
performance of higher energy pulse formation and low CNT-density threshold 
[37]. The first experimental observation of four-wave mixing in SWNTs deposited 
on a DF has been reported by Chow et al. [38]. By using the evanescent-field inte-
raction of propagating light with the nanotubes, a mode locker that is immu-
nized to the high optical power induced damage have been demonstrated by 
Song et al. [36] [39].  

Different types of mode-locked pulses have been obtained due to different de-
signs of fiber laser cavity, such as CS [29] [40] [41], SP [42], self-similar pulse 
[43] [44], and dissipative soliton (DS) [5] [17] [45]. Because of the interaction 
between the fiber anomalous dispersion and nonlinear optical Kerr effect, CSs 
can be formed in negative dispersive regime [5] [41] [46]. When the frequencies 
of dispersive waves are phase-matched, discrete sidebands whose positions are 
determined by the cavity length, net dispersion, and pulse duration will generate 
and distribute on both sides of the spectrum [46] [47] [48]. When the net cavity 
dispersion approaches zero, SPs propagating in such a cavity are stretched and 
compressed periodically [21] [43] [49] [50]. Self-similar pluses operating in 
normal-dispersion regime are the parabolic pulses with self-similar evolution 
[43] [51] [52]. Moreover, the linear-chirped self-similar pulses can avoid pulse 
breaking when they propagate in the routes [53]. The multiple interactions be-
tween fiber nonlinearity, normal dispersion, saturable absorption effect, and 
spectral filtering effect result in the formation of DS [54]. DS has higher energy 
and wilder pulse width than that of CS, and its characteristics change dramati-
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cally when it travels along the laser cavity [55]. 
Although as a lot of progress has been made, fiber laser on many key physical 

parameters (such as pulse energy, pulse width and peak power, etc.) still lags be-
hind that of the solid laser. Therefore, development of ultrashort pulse fiber laser 
has important practical significance and broad market prospect. In this paper, 
we propose a fiber laser that can deliver switchable CS and SP based on a SWNT 
mode-locker deposited on D-shaped fiber (DF). The proposed fiber laser can 
generate SP or CS with central wavelength of 1530 nm by tuning pump power 
and polarization controller (PC) properly. The spectral bandwidth and pulse 
duration of the CS are 4.46 nm and ~0.7 ps, and these of the SP are 9.59 nm and 
~1.0 ps. A NPR-induced filter is formed by the polarization sensitive DF-SA and 
PC. The stretching factor plays a key role on the switchable mode-locking opera-
tion, which can be tuned by the NPR-induced filter. The saturable absorber (SA) 
can withstand pump power up to 550 mW and deliver stable SP or CS without 
damage. It is attractive for practical applications of ultrashort pulse generation 
and fast measurements to implement our fiber laser with switchable CS and SP. 

2. Experimental Setup 

Figure 1 shows the schematic diagram of our experimental setup. In the fiber 
laser cavity, a 980 nm laser diode (LD) is used as pump source via a 980/1550 nm 
wavelength-division multiplexer (WDM) coupler; an 18-m erbium-doped fiber 
(EDF) with the group velocity dispersion (GVD) parameter of -9 ps/nm/km and 
the absorption of 3 dB/m at 980 nm acts as the gain media; a PC in the cavity is 
used to adjust the state of polarization; the 10% port of a 90/10 coupler is 
adopted to extract the laser for measurement; the DF-SA integrated into the  

 

 
Figure 1. Schematic diagram of the laser system. LD, laser diode; WDM, wavelength-division 
multiplexer; EDF, erbium-doped fiber; PC, polarization controller; DF-SA, D-shaped-fiber sa-
turable absorber; PI-ISO, polarization-insensitive isolator. 
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cavity is made by using an optical-deposition technique to deposit SWNTs on 
the DF [56]; a polarization independent isolator (PI-ISO) is adopted to realize 
unidirectional operation. And all the rest of fibers are single mode fibers (SMFs) 
whose dispersion parameter is 17 ps/nm/km. The devices of a commercial auto-
correlator (AC), a radio frequency (RF) analyzer, a digital storage oscilloscope, 
and an optical spectrum analyzer (OSA) are employed to monitor the laser out-
puts simultaneously. 

The employed DF is fabricated by side-polishing SMFs [57] [58]. The whole 
procedure is monitored by a power meter to estimate the distance from polished 
surface to the fiber core. The DF-SA is made by using an optical-deposition 
technique to deposit SWNTs on the DF [45] and the insertion loss of the DF-SA 
is measured as 5 dB. As shown in Figure 1, the propagating light follows the 
route as WDM → EDF → PC → OC → DF-SA → PI-ISO →WDM. The dispersion 
parameters D of EDF and SMF are about −9 and 17 ps/(nm∙km). The net disper-
sion and the cavity length are −0.045 ps2 and ~29.6 m, respectively. By tuning 
the polarization state of propagating light through adjusting PC and providing 
different pump power appropriately, we can realize switchable SP and CS. 

3. Results and Discussions 

With the pump power of ~50 mW, the continuous wave (CW) is observed from 
the outputted fiber laser. When the total pump power is increased to ~70 mW, 
CS with its typical spectrum is shown in Figure 2(a). Figure 2(a) shows the 
output spectrum of CS with a bandwidth of 4.46 nm. It can be seen that obvious 
Kelly sidebands discretely distribute on both sides of spectrum, which reflects 
the soliton features of the pulses [28] [37] [59]. The sidebands originate from the 
constructive interference between the soliton and dispersive waves [26] [59]. The  

 

 
Figure 2. Conventional soliton (CS) operation of (a) Optical spectra, (b) Radio frequency 
spectrum (RF) spectra, (c) Autocorrelation (AC) trace, (d) Oscilloscope trace. 
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central wavelength of the CS locates at ~1530.6 nm, which is mainly determined 
by the diameter distribution of nanotubes in SWNT-SA, the intracavity loss, the 
transmittance peak of birefringence-induced filter, and the gain profile of EDF 
[42] [60]. In Figure 2(b), the RF spectrum with the range of 1 KHz shows that 
the fundamental repetition rate of CS is ~6.95 MHz, corresponding to a round- 
trip time of ~144 ns. Our experimental setup of the nanotube-based Fiber Laser 
can realize the ultrashort pulse generation and fast measurements. The signal- 
to-noise ratio (SNR) is ~70.6 dB, which confirms that the CS operates at the sta-
ble mode-locking state. As shown in Figure 2(c), the full width at half maximum 
(FWHM) is 1.10 ps, and the pulse duration is estimated as 0.7 ps by using a 
Sech2 fit. The time bandwidth product (TBP) is calculated as 0.39, indicating that 
the output CS is slightly chirped. The oscilloscope trace plotted in Figure 2(d) 
demonstrates that the pulse-to-pulse separation is about 144 ns, corresponding 
to the cavity length of ~29.6 m. 

When the output power is reduced to half of the original power, frequency 
bandwidth is 3-dB bandwidth. With increasing the pump power to ~90 mW and 
optimizing the PC, the typical spectrum of SP is shown in Figure 3(a). The SP 
centered at ~1530.3 nm exhibits a smooth spectral profile with a 3-dB bandwidth 
of ~9.59 nm. Figure 3(b) shows the RF spectrum of SP revealing that funda-
mental repetition rate is ~6.95 MHz, which is almost the same to that of CS due 
to the similar central wavelength. Meanwhile, we can get the SNR of ~52 dB, 
which indicates the stability of the SP. The corresponding autocorrelation trace 
is depicted in Figure 3(c). The FWHM of SP is ~1.42 ps, and the pulse duration 
is estimated as 1.0 ps if a Gaussian fits the curve. Therefore, the TBP of SP is 
calculated as 1.2 which is much larger than the transform limit, and is the typical 
characteristic of SP. Figure 3(d) illustrates the oscilloscope trace, showing that  

 

 
Figure 3. Stretch pulse (SP) operation of (a) Optical spectra, (b) RF spectra, (c) AC trace, 
(d) Oscilloscope trace. 
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the round-trip time of the cavity is ~144 ns. 
In our experiment, the spectral filtering effect plays an important role on the 

pulse formation. The polarization sensitive DF-SA and PC can be considered as 
a NPR-induced spectral filter and the intensity transmission of light through the 
filter, T, can be expressed as [19] 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 2sin sin cos cos 0.5sin 2 sin 2 cosT θ ϕ θ ϕ θ ϕ φ φ= + + +   (1) 

where ϕ1 is the phase delay caused by the PC and ϕ2 is the phase delay resulting 
from the fiber including both the linear phase delay and the nonlinear phase de-
lay. The polarizer and analyzer have an orientation of angles θ and φ with re-
spect to the fast axis of the fiber, respectively. From Equation (1), one knows that 
the bandwidth of NPR-induced filter varies with PC states. Therefore, the dif-
ferent PC’ settings will generate pulses with different bandwidths, which in turn 
lead to various stretching factors [52]. When the stretching factor is small 
enough and the interplay between anomalous cavity dispersion and positive Kerr 
nonlinearity of the fiber is balanced, the laser will operate in the soliton regime 
with spectral sidebands. As the stretching factor increases, spectral sideband 
generation will be reduced and there will be less dispersive radiation between 
pulses. Thus, stretched pulses will be generated with cleaner and broader spectra 
in the cavity when the stretching factor is large enough. Moreover, the solitons 
can be maintained as the pump power changes from the self-starting threshold 
to the maximum available power (550 mW), so the SA displays an ultra-high 
optical damage threshold.  

4. Conclusion 

By employing a DF-SA, we have proposed a simple and compact fiber laser sys-
tem that can deliver CS and SP. With optimizing the PC properly and adjusting 
the pump power appropriately, we can achieve the CS and SP that have the sim-
ilar central wavelengths and fundamental repetition rates. Because of the differ-
ent pump powers and operations on PC, the stretching factor which is tunable 
due to the spectral filtering effect induced by NPR varied dramatically, they have 
different pulse durations, 3-dB bandwidths and optical spectra. The pulse dura-
tion and 3-dB bandwidth of CS centered at 1530.6 nm are ~0.7 ps and 4.46 nm 
while that of SP with central wavelength of 1530.3 nm are ~1.0 ps and 9.59 nm, 
respectively. Our experimental setup of the nanotube-based Fiber Laser can 
realize the ultrashort pulse generation and fast measurements. But the key phys-
ical parameters (such as pulse energy, pulse width and peak power) still lag be-
hind that of the solid laser. It is attractive and convenient for practical research 
applications of ultrashort pulse field because of the proposed fiber laser deliver-
ing two types of pulses.  
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