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Abstract 
The existence of strongly polynomial algorithm for linear programming (LP) 
has been widely sought after for decades. Recently, a new approach called 
Gravity Sliding algorithm [1] has emerged. It is a gradient descending method 
whereby the descending trajectory slides along the inner surfaces of a polyhe-
dron until it reaches the optimal point. In R3, a water droplet pulled by gravi-
tational force traces the shortest path to descend to the lowest point. As the 
Gravity Sliding algorithm emulates the water droplet trajectory, it exhibits 
strongly polynomial behavior in R3. We believe that it could be a strongly po-
lynomial algorithm for linear programming in Rn too. In fact, our algorithm 
can solve the Klee-Minty deformed cube problem in only two iterations, ir-
respective of the dimension of the cube. The core of gravity sliding algorithm 
is how to calculate the projection of the gravity vector g onto the intersection 
of a group of facets, which is disclosed in the same paper [1]. In this paper, we 
introduce a more efficient method to compute the gradient projections on 
complementary facets, and rename it the Sliding Gradient algorithm under 
the new projection calculation. 
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1. Introduction 

The simplex method developed by Dantiz [2] has been widely used to solve 
many large-scale optimizing problems with linear constraints. Its practical per-
formance has been good and researchers have found that the expected number 
of iterations exhibits polynomial complexity under certain conditions [3] [4] [5] 
[6]. However, Klee and Minty in 1972 gave a counter example showing that its 
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worst case performance is ( )2n  [7]. Their example is a deliberately con-
structed deformed cube that exploits a weakness of the original simplex pivot 
rule, which is sensitive to scaling [8]. It is found that, by using a different pivot 
rule, the Klee-Minty deformed cube can be solved in one iteration. But for all 
known pivot rules, one can construct a different deformed cube that requires 
exponential number of iterations to solve [9] [10] [11]. Recently, the interior 
point method [12] has been gaining popularity as an efficient and practical LP 
solver. However, it was also found that such method may also exhibit similar 
worse case performance by adding a large set of redundant inequalities to the 
Klee-Minty cube [13]. 

Is it possible to develop a strongly polynomial algorithm to solve the linear 
programming problem, where the number of iterations is a polynomial function 
of only the number of constraints and the number of variables? The work by 
Barasz and Vempala shed some light in this aspect. Their AFFINE algorithm [14] 
takes only ( )2n  iterations to solve a broad class of deformed products de-
fined by Amenta and Ziegler [15] which includes the Klee-Minty cube and many 
of its variants. 

In certain aspect, the Gravity Sliding algorithm [1] is similar to the AFFINE 
algorithm as it also passes through the interior of the feasible region. The main 
difference is in the calculation of the next descending vector. In the gravity fall-
ing approach, a gravity vector is first defined (see Section 3.1 for details). This is 
the principle gradient descending direction where other descending directions 
are derived from it. In each iteration, the algorithm first computes the descend-
ing direction, then it descends from this direction until it hits one or more facets 
that forms the boundary of the feasible region. In order not to penetrate the 
feasible region, the descending direction needs to be changed. The trajectory is 
likened a water droplet falling from the sky but is blocked by linear planar 
structures (e.g. the roof top structure of a building) and needs to slide along the 
structure. The core of gravity sliding algorithm is how to calculate the projection 
of the gravity vector g onto the intersection of a group of facets. This projection 
vector lies on the intersection of the facets and hence lies on the null space de-
fined by these facets. Conventional approach is to compute the null space first 
and then find the projection of g onto this null space. An alternative approach is 
disclosed in [1] which operates directly from the subspace formed by the inter-
secting facets. This direct approach is more suitable to the Gravity Sliding algo-
rithm. In this paper, we further present an efficient method to compute the gra-
dient projections on complementary facets and also introduce the notion of se-
lecting the steepest descend projection among a set of candidates. With these re-
finements, we rename the Gravity Sliding algorithm as the Sliding Gradient al-
gorithm. We have implemented our algorithm and tested it on the Klee-Minty 
cube. We observe that it can solve the Klee-Minty deformed cube problem in 
only two iterations, irrespective of the dimension of the cube. 

This paper is organized as follows: Section 2 gives an overview of the 
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Cone-Cutting Theory [16], which is the intuitive background of the Gravity 
Sliding algorithm. Section 3 discusses the Sliding Gradient algorithm in details. 
The pseudo-code of this algorithm is summarized in Section 4 and Section 5 
gives a walk-through of this algorithm using the Klee-Minty as an example. This 
section also discusses the practical implementation issues. Finally, Section 6 dis-
cuss about future work. 

2. Cone-Cutting Principle 

The cone-cutting theory [16] offers a geometric interpretation of a set of inequa-
lity equations. Instead of considering the full set constraint equations in a LP 
problem, the cone-cutting theory enables us to consider a subset of equations, 
and how an additional constraint will shape the feasible region. The geometric 
insight forms the basis of our algorithm development. 

2.1. Cone-Cutting Principle 

In an m-dimension space m
 , a hyperplane T c=y τ  cuts m

  into two half 
spaces. Here τ  is the normal vector of the hyperplane and c is a constant. We 
denote the positive half space { }T| c≥y y τ  the accepted zone of the hyperplane 
and the negative half space where { }T| c<y y τ  is rejected zone. Note that the 
normal vector τ  points to accepted zone area and we call the hyperplane with 
such orientation a facet ( ): ,cα τ . When there are m facets in m

  and 
{ }1 2, , , mτ τ τ  are linear independent, this set of linear equations has a unique 
solution which is a point V in m

 . Geometrically, { }1 2, , , mα α α  form a cone 
and V is the vertex of the cone. We now give a formal definition of a cone, which 
is taken from [1]. 

Definition 1. Given m hyperplanes in m , with rank ( )1, , mr mα α =  and 
intersection V, ( )1 1; , , m mC C α α α α= =V    is called a cone in m

 . The 
area ( ){ }T| 1, 2, ,i ic i m≥ =y y τ  is called the accepted zone of C. The point V 
is the vertex and αj is the facet plane, or simply the facet of C. 

A cone C also has m edge lines. They are formed by the intersection of (m − 1) 
facets. Hence, a cone can also be defined as follows. 

Definition 2. Given m rays { }( )| 0 1, ,j jR t t j m= + ≤ < +∞ =V r 
 shooting 

from a point V with rank ( )1, , mr m=r r , ( ) [ ]1 1; , , , ,m mC C c R R= =V r r  , 
the convex closure of m rays is called a cone in m

 . jR  is the edge, jr  the 
edge direction, and { }|j jR t t+ = + ∞ < < +∞V r  the edge line of the cone C. 

The two definitions are equivalent. Furthermore, P.Z. Wang [11] has observed 
that iR+  and iα  are opposite to each other for 1, ,i m= 

. Edge-line iR+  is 
the intersection of all C-facets except iα , while facet iα  is bounded by all 
C-edges except iR+ . This is the duality between facets and edges. For 

{ }1, , , ,i ii m R=  τ  is called a pair of cone C. 
It is obvious that T 0j i =r τ  (for i j≠ ) since jr  lies on iα . Moreover, we 

have 

( )T 0 for 1, ,i i i m≥ =r τ                      (1) 
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2.2. Cone Cutting Algorithm 

Consider a linear programming (LP) problem and its dual: 

 (Primary): { }Tmax | ; 0A ≤ ≥c x x b x

                
(2) 

(Dual): { }T Tmin | ; 0A c≥ ≥y b y y
                 

(3) 

In the following, we focus on solving the dual LP problem. The standard 
simplex tableau can be obtained by appending an m m×  identity matrix m mI ×  
which represents the slack variables as shown below: 

11 1 1

1

1

1 0

0 1
0 0 0

n

m mn m

n

a a b

a a b
c c

… 
 
 
 
 
 



      

 

 
 

 

We can construct a facet tableau whereby each column is a facet denoted as 

( ): ,j j jcα τ , where ( )T
1 2, , ,i i i mia a a= τ  and 

for 1
0 for

i
i

c i n
c

n i m n
≤ ≤

= 
< ≤ +



                     
(4) 

The facet tableau is depicted as follow. The last column ( )T
1 2, , , ,0mb b b

 is 
not represented in this tableau. 

1 2

1 2

1 2

m n

m n

m nc c c

α α α +

+

+

 
 
  







τ τ τ  

When a cone ( ) ( )1 1; , , ; , ,m mC C Cα α= =V V r r   is intersected by another 
facet jα , the ith edge of the cone is intersected by jα  at certain point ijq . We 
call jα  cuts the cone C and the cut points ijq  can be obtained by the following 
equations: 

( )T Twhereij i i i i j jit t c= + = −q V r V rτ τ
              

(5) 

The intersection is called real if 0it ≥  and fictitious if 0it < . Cone cutting 
greatly alters the accepted zone, as can be seen from the simple 2-dimension 
example as shown in Figures 1(a)-(e). In 2-dimension, a facet ( ): ,cα τ  is a 
line. The normal vector τ  is perpendicular to this line and points to the ac-
cepted zone of this facet. Furthermore, a cone is formed by two non-parallel fa-
cets in 2-dimension. Figure 1(a) shows such a cone ( )1 2; ,C α αV . The accepted 
zone of the cone is the intersection of the two accepted zones of facets α1 and α2. 
This is represented by the shaded area A in Figure 1(a). In Figure 1(b), a new 
facet α3 intersects the cone at two cut points 13q  and 23q . They are both real 
cut points. Since the arrow of normal vector 3τ  points to the same general di-
rection of the cone, V lies in the rejected zone of α3 and we say α3 rejects V. 
Moreover, the accepted zone of α3 intersects with the accepted zone of the cone 
so that the overall accepted zone is reduced to the shaded area marked as B. In 
Figure 1(c), 3τ  points to the opposite direction. α3 accepts V and the overall  
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Figure 1. Accepted zone area of a cone and after it is cut by a facet. 

 
accepted zone is confined to the area marked as C. As the dual feasible region 𝒟𝒟 
of a LP problem must satisfy all the constraints, it must lie within area C. In 
Figure 1(d), α3 cuts the cone at two fictitious points. Since 3τ  points to the 
same direction of the cone, V is accepted by α3. However, the accepted zone of α3 
covers that of the cone. As a result, α3 does not contribute to any reduction of 
the overall accepted zone area, and so it can be deleted for further consideration 
without affecting the LP solution. In Figure 1(e), 3τ  points to the opposite di-
rection of the cone. The intersection between the accepted zone of α3 and that of 
the cone is an empty set. This means that the dual feasible region 𝒟𝒟 is empty and 
the LP is infeasible. This is actually one of the criteria that can be used for de-
tecting infeasibility. 

Based on this cone-cutting idea, P.Z. Wang [16] [17] have developed a 
cone-cutting algorithm to solve the dual LP problem. Each cone is a combina-
tion of m facets selected from (m + n) choices. Let  ∆ denotes the index set of fa-
cets of C, (i.e. if ( )Δ i j= , then ( )Δ ji =τ τ ). The algorithm starts with an initial 
coordinate cone Co, then finds a facet 𝛼𝛼𝑖𝑖𝑖𝑖  to replace one of the existing facet 

outα  thus forming a new cone. This process is repeated until an optimal point is 
found. The cone-cutting algorithm is summarized in Table 1 below. 

This algorithm finds a facet that rejects V the least as the cutting facet in steps 
2 and 3. This facet cuts the edges of the cone at m points. In step 4 and 5, the real 
cut point *I

q  that is closest to the vertex V is identified. This becomes the 
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Table 1. Cone-cutting algorithm. 

steps 

Input: A, b and c  

Output: either V as the optimal point & VTb as optimal value or declare the 
LP problem as infeasible. 

0 

( )0 0,0, ,0= =V V   % the coordinate cone; 

( )j n j∆ = +  𝑓𝑓𝑓𝑓𝑓𝑓 1, ,j m= 

 

( ) ( ) ( )1 21,0, ,0 , 0,1, ,0 , , 0,0, ,1mr r r= = =    ; 

1 while (true) 

2 

% For all facets not in C & reject V, find one that rejects V the least. 
   ( ){ }1: \m n∆ = + ∆ ; % ∆  are facets not in C 

   ( ) ( )( ){ }* Targ m |in ,j j j j j
j e e V c jτ

∆ ∆
= = − ∈ ∆  

3 
   if * 0

j
e ≥  return (V & VTb) as optimal vertex & optimal value 

else ( )* *J j= ∆ ; % j* is the facet index to enter 

4    * *

*
T

T

; 1, ,
i

J J
i

J

c
t i m= =

V
r



τ
τ

; 1, ,i m=  }; i i it= +q V r ; 

5 

   if ( )0 1, ,it i m< ∀ =   return(“LP is infeasible”) 
   else % For all the real cuts qi,, find the qI* that is closest to V 
     { }T* arg min | 0i i iI t= >q b  % I* is the facet index to leave 

6 

   % Form new cone Ck+1 by updating Vk+1; edge vectors and facets 

   *1k I
V + = q ; ( )[ ]

*

*
1

i
i

i i k

r i I
r

sign t V i I+

==  − ≠ q  

    ( )* *Δ I J= ; 

7 end 

 
vertex of a new cone. This new cone retains all the facets of the original cone ex-
cept that the cutting facet replaces the facet corresponding to the edge I*. Yet the 
edge I* is retained but the rest of the edges must be recomputed as shown in step 
6. Amazingly, P.Z. Wang shows that when 0>b , this algorithm produces ex-
actly the same result as the original simplex algorithm proposed by Dantz [2]. 
Hence, the cone-cutting theory offers a geometric interpretation of the simplex 
method. More significantly, it inspires the authors to explore new approach to 
tackle the LP problem. 

3. Sliding Gradient Algorithm 

Expanding on the cone-cutting theory, the Gravity Sliding Algorithm [1] was 
developed to find the optimal solution of the LP problem from a point within 
the feasible region 𝒟𝒟. Since then, several refinements have been made and they 
are presented in the following sections. 

3.1. Determining the General Descending Direction 

The feasible region 𝒟𝒟 is a convex polyhedron formed by constraints  
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( )T ;1j jc j n m≥ ≤ ≤ +y τ , and the optimal feasible point is at one of its vertices. 
Let { }T| ; 1, ,i ji j c j n mΩ = ≥ = +V V τ  be the set of feasible vertices. The dual 
LP problem (3) can then be stated as: { }Tmin | ii ∈ΩV b V . As T

iV b  is the in-
ner-product of vertex iV  and b, the optimal vertex *V  is the vertex that yields 
the lowest inner-product value. Thus we can set the principle descending direc-
tion 0g  to be the opposite of the b vector (i.e. 0 = −g b ) and this is referred to 
as the gravity vector. The descending path then descends along this principle di-
rection inside 𝒟𝒟 until it reaches the lowest point in 𝒟𝒟 viewed along the direction 
of b. This point is then the optimal vertex *V . 

3.2. Circumventing Blocking Facets 

The basic principle of the new algorithm can be illustrated in Figure 2. Notice 
that in 2-dim, a facet is a line. In this figure, these facets (lines) form a closed 
polyhedron which is the dual feasible region 𝒟𝒟. Here the initial point P0 is inside 
𝒟𝒟. From P0, it attempts to descend along the 0 = −g b  direction. It can go as far 
as P1 which is the point of intersection between the ray 0 0t= +R P g  and the 
facet α1. In essence, α1 is blocking this ray and hence it is called the blocking facet 
relative to this ray. In order not to penetrate 𝒟𝒟, the descending direction needs 
to change from g0 to g1 at P1, and slides along g1 until it hits the other blocking 
facet α2 at P2. Then it needs to change course again and slides along the direction 
g2 until it hits P3. In this figure, P3 is the lowest point in this dual feasible region 
𝒟𝒟 and hence it is the optimal point *V . 

It can be observed from Figure 2 that g1 is the projection of g0 onto α1 and g2 
is the projection of g0 onto α2. Thus from P1, the descending path slides along α1 
to reach P2 and then slides along α2 to reach P3. Hence we call this algorithm 
Sliding Gradient Algorithm. The basic idea is to compute the new descending 
direction to circumvent the blocking facets, and advance to find the next one 
until it reaches the bottom vertex viewed along the direction of b. 

Let tσ  denotes the set of blocking facets at the tth iteration. From an initial 
point P0 and a gradient descend vector g0, the algorithm iteratively performs the 
following steps: 

1) compute a gradient direction gt based on tσ . In this example, the initial set  
 

 
Figure 2. Sliding gradient illustration. 
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of blocking facets 0σ  is empty and 0 = −g b . 
2) move tP  to 1t+P  along tg  where 1t+P  is a point at the first blocking 

facet. 
3) Incorporate the newly encountered blocking facet to tσ  to form 1tσ + . 
4) go back to step 1. 
The algorithm stops when it cannot find any direction to descend in step (1). 

This is discussed in details in Section 3.6 where a formal stopping criterion is 
given. 

3.3. Minimum Requirements for the Gradient Direction gt 

For the first step, the gradient descend vector tg  needs to satisfy the following 
requirements. 

Proposition 1. tg  must satisfy ( )T
0 0t ≥g g  so that the dual objective func-

tion Ty b  will be non-increasing when y move from tP  to 1t+P  along the di-
rection of tg . 

Proof. Since ( )T
0 0t ≥g g , tg  aligns to the principle direction of 0g . As 

1t t tt+ = +P P g , 1t +P  moves along the principle direction of 0g  when 0t > .  
Since ( ) ( )T TT T T

1 0t t t t tt t+ = + = −P b P b g b P b g g , T T
1t t+ ≤P b P b  when ( )T

0 0t ≥g g . 
END 

This means that if ( )T
0 0t ≥g g , then 1t+P  is “lower than” tP  when viewed 

along the b direction. 

Proposition 2. If 0 ∈P  , tg  must satisfy ( )( )T
0

t tjστ ≥g  for all tj σ∈  to 

ensure that 1t+P  remains dual feasible (i.e. 1tP+ ∈ ). 

Proof. If for some j, ( )( )T
0

t tjστ <g , this means that tg  is in the opposite 
direction of the normal vector of facet ( )t jσα  so a ray t tt= +Q P g  will even-
tually penetrate this facet for certain positive value of t. This means that Q will 
be rejected by ( )t jσα  and hence Q is no longer a dual feasible point. END 

3.4. Maximum Descend in Each Iteration 

To ensure that 1t+ ∈P  , we need to make sure that it won’t advance too far. The 
following proposition stipulates the requirement. 

Proposition 3. Assuming that 𝒟𝒟 is non-empty and 0 ∈P  . If tg  satisfies 
Propositions 1 and 2; and not all T 0t j =g τ  for 1, ,j m n= + , then 1t+ ∈P   
provided that the next point 1t+P  is determined according to (6) below: 

*1t t tj
t+ = +P P g

                         
(6) 

where 
T

*
Targ min | ; 0; 1, ,j t j

j j j j
t j

c
j t t t j m n

  = = > = + 
 

−

 

P
g



τ
τ

. 

Proof. The equation for a line passing through P along the direction g is 
t+P g . If this line is not parallel to the plane (i.e. T 0≠g τ ), it will intersect a 

facet ( ): ,cα τ  at a point Q according to the following equation: 

( )T Twheret t c= + = −Q P g P gτ τ .
               

(7) 
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We call t the displacement from P to Q. So 
T

T
j t j

j
t j

c
t =

− P
g

τ
τ

 is the displace-

ment from tP  to αj. The condition tj > 0 ensures that 1t+P  moves along the 

direction tg  but not the opposite direction. *j  is the smallest of all the dis-
placements thus *j

α  is the first blocking facet that is closest to tP . 

To show that 1t+ ∈P  , we need to show T
1 0t j jc+ − ≥P τ  for 1, ,j m n= + . 

Note that 

( ) ( )* *

T
T T T
1t j j t t j j t j j t jj j

c t c c t+ − = + − = − +P P g P gτ τ τ τ . 

Since t ∈P  , ( )T 0t j jc− ≥P τ  for 1, ,j m n= + , so we need to show that 

*
T 0t jj

t ≥g τ  for 1, ,j m n= + . 
The displacements jt  can be split into two groups. For those displacements 

where 0jt < , 
T

T 0j t j
j

t j

c
t=

−
<

P
g

τ
τ

 so ( ) ( )T T T
1t j j t j j j t jc t c k= = −− −g P Pτ τ τ , 

where 1 jk t= −  is a positive constant. Since * 0
j

t > . 

( ) ( )*

*
T T T

2
1

0j
t j j t j t j jj

t
t c k c

k
= − = − ≥−g P Pτ τ τ  since t ∈P   & 2 0k > . 

For those displacements where 0jt ≥ , we have that *j
t  is the minimum of 

all jt  in this group. Let 3k  be the ratio between *j
t  and jt . Obviously, 

*

3 1j

j

t
k

t
= ≤  

( )

( ) ( )

( ) ( )

*
T T

T
T T T T

3 3 T

T T
3 0

t j j t jj

j t j
t j j j t j t j j t j

t j

t j j t j j

c t

c
c k t c k

c k c

− +

= − + = − +

= − − − ≥

−

P g

P
P g P g

g

P P

τ τ

τ
τ τ τ τ

τ

τ τ

 

So 1t+ ∈P  . END 
If T 0t j =g τ , tg  is parallel to jα . Unless all facets are parallel to tg , Propo-

sition 3 can still find the next descend point 1t+P . If all facets are parallel to tg , 
this means that facets are linearly dependent with each other. The LP problem is 
not well formulated. 

3.5. Gradient Projection 

We now show that the projection of 0g  onto the set of blocking facets tσ  sa-
tisfies the requirements of Proposition 1 and 2. Before we do so, we discuss the 
projection operations in subspace first. 

3.5.1. Projection in Subspaces 
Projection is a basic concept defined in vector space. Since we are only interested 
in the gradient descend direction of tg  but not the actual location of the pro-
jection, we can ignore the constant c in the hyperplane { }T| c=y y τ . In other 
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words, we focus on the subspace ( )V τ  spanned by τ  and its null space 
( )N τ  rather than the affine space spanned by the hyperplanes. 
Let Y be the vector space in m , ( ) { }| ;V t tτ = = ∈y y τ  and its corres-

ponding null space is ( ) ( ){ }T| 0 for andN Y Vτ τ= = ∈ ∈x x y x y . Extending to 

k hyperplanes, we have ( ) { }1 2, , , | ;k
k j j jjV t t Rτ τ τ = = ∈∑y y τ  and the null 

space is ( ) ( ){ }T
1 2 1 2, , , | 0 for and , , ,k kN Y Vτ τ τ τ τ τ= = ∈ ∈x x y x y 

. It can be 

shown that ( ) ( ) ( ) ( )1 2 1 2, , , k kN N N Nτ τ τ τ τ τ=   . Since ( )1 2, , , kV τ τ τ  

and ( )1 2, , , kN τ τ τ  are the orthogonal decomposition of the whole space Y, a 

vector g in m  can be decomposed into two components: the projection of g 
onto ( )1 2, , , kV τ τ τ  and the projection of g onto ( )1 2, , , kN τ τ τ . We use the 

notation [ ]1 2, , , k
g τ τ τ↓



 and 
1 k

g α α↓


 to denote them and they are called direct 

projection and null projection respectively. 
The following definition and theorem were first presented in [1] and is re-

peated here for completeness. 
Let the set of all subspaces of mY =   be 𝒩𝒩, and let 𝒪𝒪 stand for 0-dim sub-

space, we now give an axiomatic definition of projection. 
Definition 3. The projection defined on a vector space Y is a mapping 

#:Y Y∗ ↓ × →  

where ∗ is a vector in Y, # is a subspace X in 𝒩𝒩 satisfying that 
(N.1) (Reflectivity). 
For any , YY∈ ↓ =g g g ; 
(N.2) (Orthogonal additivity). 
For any Y∈g  and subspaces ,X Z ∈ , if X and Z are orthogonal to each 

other, then X Z X Z+↓ + ↓ = ↓g g g , where X Z+  is the direct sum of X and Z.  
(N.3) (Transitivity). 
For any Y∈g  and subspaces ,X Z ∈ , ( )X X Z X Z=↓ ↓ ↓g g

 

, 

(N.4) (Attribution). 
For any Y∈g  and subspace X ∈ , X X↓ ∈g , and especially, 
(N.5) For any Y∈g  and subspace X ∈ , T 0X↓ ≥g g . 
A convention approach to find 

1 kα α↓g


 is to compute it directly from the 

null space ( )1 2, , , kN τ τ τ . We now show another approach that is more suita-
ble to our overall algorithm. 

Theorem 1. For any Y∈g , we have 

1

T
k

k

i
i

α α↓ = − ∑g g g o


                     
(8) 

where { }1, , ko o  are an orthonormal basis of subspace ( )1 2, , , kV τ τ τ . 
Proof. Since 1 kα α  and [ ]1 2, , , kτ τ τ  are the orthonormal decompo-

sition of Y, according to (N.2) and (N.1) we have 

[ ] 11, , kk α ατ τ= ↓ + ↓g g g




. 

According to (N.2) and (N.4), the first term becomes 
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[ ]1

T T
1, , k kτ τ↓ = + +



g g o g o . 

Hence (8) is true. END 
The following theorem shows that the projection of 0g  onto the set of all 

blocking facets σt always satisfies Propositions 1 and 2. First, let us simplify the 
notation and use σ to represent σt in the following section and 0 σ↓g  to stand 
for 

( ) ( )10 kσ σα α↓g


 where k σ=  is the number of elements in σ. 

Theorem 2. ( )( ) ( )T

0 0j σστ ↓ =g  and ( )0
T
0 0σ↓ ≥g g  for all 1, ,j k=  . 

Proof. Since 0 σ↓g  lies on the intersection of ( ) ( )( )1 kσ σα α
, it lies on 

each facet ( )jσα  for 1, ,j k=  . Thus 0 σ↓g  is perpendicular to the normal 

vector of ( )jσα  (i.e. ( )( ) ( )T

0 0j σστ ↓ =g ). So it satisfies Proposition 2. 

According to (N.5), ( )T
0 0 0σ↓ ≥g g . So it satisfies proposition 1 too. END 

As such, 0 σ↓g , the projection of 0g  onto all the blocking facets, can be 
adopted as the next gradient descend vector tg . Hence, 0 σ↓g , the projection 
of 0g  onto all the blocking facets, can be adopted as the next gradient descend 
vector tg . 

3.5.2. Selecting the Sliding Gradient 
In this section, we explore other projection vectors which also satisfy Proposi-
tions 1 and 2. Let the jth complement blocking set c

jσ  be the blocking set σ ex-
cluding the jth element; i.e. 1 1 1

c
j j j kσ α α α α− +=    . We examine the  

projection 0 c
jσ

↓g  for 1, ,j k=  . Obviously, ( )T
0 0 0c

jσ
↓ ≥g g  according to 

(N.5) as 0 c
jσ

↓g  is a projection of 0g . So if ( )( ) ( )T

0 0c
jjσ σ

τ ↓ ≥g  for all j σ∈ ,  

it satisfies Proposition 2 and hence is a candidate for consideration. For all the 
candidates, including 0 σ↓g , which satisfy this proposition, we can compute the 
inner product of each candidate with the initial gradient descend vector 0g , (i.e. 

( )T
0 0 c

jσ
↓g g ) and select the maximum. This inner product is a measure of how 

close or similar a candidate is to 0g  so taking the maximum means getting the 
steepest descend gradient. Notice that if a particular 0 c

jσ
↓g  is selected as the 

next gradient descending vector, the corresponding jα  is no longer a blocking 
facet in computing 0 c

jσ
↓g . Thus jα  needs to be removed from tσ  to form 

the set of effective blocking facets *
tσ . The set of blocking facets for the next ite-

ration 1tσ +  is *
tσ  plus the newly encountered blocking facet. In summary, the 

next gradient descend vector tg  is: 

( ) [ ]( ) [ ]( ) [ ]( )( )T T T T
0 0 0 0 01 2max , , , ,t kσ= ↓g g g g g g g g g

         
(9) 

where [ ] 0 ;c
jj j

σ
σ= ↓ ∈g g  with ( )( ) ( )T

0 0c
jjσ σ

τ ↓ ≥g  and k σ= . 

The effective blocking set *
tσ  is 

{ }
1 0*

1 0

if

\ if c
j

t t

t
t j t

σ

σ

σ
σ

σ α
+

+

 = ↓=  = ↓

g g

g g
.

                 

(10) 
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At first, this seems to increase the computation load substantially. However, 
we now show that once 0 σ↓g  is computed, 0 c

jσ
↓g  can be obtained efficiently. 

3.5.3. Computing the Gradient Projection Vectors 
This session discusses a method of computing σ↓g  and c

jσ
↓g  for any vector 

g. According to (8), 
1

T
k

k
iiσ α α↓ = ↓ = − ∑g g g g o



. The orthonormal basis 
{ }1 2, , , ko o o  can be obtained from the Gram Schmidt procedure as follows: 

1 1 1 1 1;= =o o o oτ                       (11) 

T
2 2 2 1 2 2 2;= − =o o o o oτ τ                    (12) 

Let us introduce the notation ↓a b  to denote the projection of vector a onto 

vector b. We have 
T

T

 
↓ =  

 

a ba b b
b b

, then 2 2 2 1= − ↓o oτ τ  as ( )T
1 1 1=o o . Like-

wise, 
1

1
;

j

j j j i j j j
i

−

=

= − ↓ =∑o o o o oτ τ .
                 

(13) 

Thus from (8), 

T

1

k k

i i
i i

σ
=

↓ = − = − ↓∑ ∑g g g o g g o .
                 

(14) 

After evaluating σ↓g , we can find c
jσ

↓g  backward from j k=  to 1. Firstly, 
1

1
c
k

k

i k
i

σσ

−

=

↓ = − ↓ = ↓ + ↓∑g g g o g g o .
               

(15) 

Likewise, it can be shown that 

( )
1

1 1
for 2 toc

j

j k
j

i i
i i j

j k
σ

−

= = +

↓ = − ↓ − ↓ =∑ ∑g g g o g o .
           

(16) 

The first summation is projections of g onto existing orthonormal basis io . 
Each term in this summation has already been computed before and hence is 
readily available. However, the second summation is projections on new basis 

( )j
io . Each of these basis must be re-computed as the facet jα  is skipped in c

jσ . 
Let 

; 0k k kT S= + ↓ =g g o                     (17)
 

( )
1

1
;

k
j

j j j j i
i j

T T S+
= +

= + ↓ = ↓∑g o g o .
                

(18) 

Then we can obtain c
jσ

↓g  recursively from , 1, ,1j k k= −   by: 

c
j

j jT S
σ

↓ = −g .
                        

(19) 

To compute ( )j
io , some of the intermediate results in obtaining the ortho-

normal basis can also be reused. 
Let ,1 0jµ =  for all 2, ,j k=   and , , 1j i j i j iµ µ −= + ↓ oτ  for 1, , 1i j= − , 

then we have 

, 1; for 2, ,j j j j j j j j kµ −= − = =o o o o τ .
            

(20) 
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The intermediate terms ,j iµ  can be reused in computing ( )j
mo  as follows: 

( ) ( ) ( )
( )

( )

1

, 1
1

; for 1, ,
jm

j j j m
m m m j m i m j

i j m

m kµ
−

−
= +

= − − ↓ = = +∑ 

o
o o o

o
τ τ .

      

(21) 

By using these intermediate results, the computation load can be reduced sub-
stantially.  

3.6. Termination Criterion 

When a new blocking facet is encountered, it will be added to the existing set of 
blocking facets. Hence both tσ  and *

tσ  will typically grow in each iteration 
unless one of the 0 c

jσ
↓g  is selected as tg . In this case, ( )jσα  is deleted from 

tσ  according to (10). The following theorem, which was first presented in [1] 
shows that when *

t mσ = , the algorithm can stop. 
Theorem 3 (Stopping criterion) Assuming that the dual feasible region 𝒟𝒟 is 

non-empty, let t ∈P   and is descending along the initial direction 0 = −g b ; 
let *

tσ  be the number of effective blocking facets in *
tσ  at the tth iteration. If  

*
t mσ =  and the rank ( )*

tr mσ = , then tP  is a lowest point in the dual feasi-

ble region 𝒟𝒟. 
Proof. If *

t mσ =  and the rank ( )*
tr mσ = , then the m facets in *

tσ  form a 
cone C with vertex t=V P . Since the rank is m, its corresponding null space 
contains only the zero vector. So 

( ) ( )10 0 0
kσ σσ α α↓ = ↓ =g g



. 
As mentioned about the facet/edge duality in Section 2, for 1, ,j m=  , 

edge-line iR+  is the intersection of all C-facets except iα . That means c
i iR σ+ = . 

Since an edge-line is a 1-dimensional line, the projection of a vector  

0g  onto iR+  equals to i±r  and hence c
i i

t t iRσ +↓ = ↓ = ±g g r . Since c
i

t σ
↓g  are 

projections of 0g , according to (N.5), ( )T
0 0c

i
t σ

↓ ≥g g .  

Since *
t mσ = , it means that c

i
t σ

↓g  does not satisfy Proposition 2 for all 
1, ,i m= 

. Otherwise, one of the c
i

t σ
↓g  would have been selected as the next 

gradient descend vector and, according to (10), it would be deleted from *
tσ  

and hence *
tσ  would be less than m. This means that at least one of j σ∈   

has a value ( )T 0c
i

j t σ
↓ <gτ . However, for all k i≠ , c

i
t σ

↓g  is in the null space 

of 𝛼𝛼𝑘𝑘  so ( )T 0c
i

k t σ
↓ =gτ . This leaves ( )T 0c

i
i t σ

↓ <gτ . If c
i

t iσ
↓ =g r , then 

( )T T 0c
i

i t i iσ
↓ = <g rτ τ . This contradicts to the fact that T 0i i ≥rτ  in (1). There-

fore, c
j

t iσ
↓ = −g r . Since ( )T

0 0c
i

t σ
↓ ≥g g , ( ) ( )TT

0 0 0i i− = − ≥g r g r . Note that  

( )T
0 i−g r  means that edge ir  is in opposite direction of 0g . As this is true for 

all edges, there is no path for tg  to descend further from this vertex. It is ob-
vious that the vertex V is the lowest point of C when viewed in the b direction. 

Since tP  is dual feasible, and V is a vertex of 𝒟𝒟. Cone C coincides with the 
dual feasible region 𝒟𝒟 in a neighborhood N of V, it is obvious that tP  is the 
lowest point of 𝒟𝒟 when viewed in the b direction. END 
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In essence, when the optimal vertex *V  is reached, all the edges of the cone 
will be in opposite direction of the gradient vector 0 = −g b . There is no path to 
descend further so the algorithm terminates. 

4. The Pseudo Code of the Sliding Gradient Algorithm 

The entire algorithm is summarized as follows in Table 2. 
Step 0 is the initialization step that sets up the tableau and the starting point P. 

Step 2 is to find a set of initial blocking facets σ in preparation of step 4. In the 
inner loop, Step 4 calls the Gradient Select routine. It computes 0 σ↓g  and 

0 c
jσ

↓g  in view of σ using Equations (11) to (21) and select the best gradient 
vector g according to (9). This routine not only returns g but also the effective 
blocking facets *σ  and 0 c

jσ
↓g  for subsequent use. Theorem 3 states that 

when the size of *σ  reaches m, the optimal point is reached. So when it does, 
step 5 returns the optimal point and the optimal value to the calling routine. Step 
6 is to find the closest blocking facet according to (6). Because P lies on every fa-
cets of σ, 0jt =  for j σ∈ . Hence, we only need to compute those jt  where 
j σ∉ . The newly found blocking facet is then included in σ in step 7 and the  

 
Table 2. The sliding gradient algorithm. 

steps 
Input: A, b and c ; and 𝒟𝒟 is non-empty and P0 is inside 𝒟𝒟 

Output: OptPt & OptVal 

0 
Construct the Facet Tableau [ ]τ  from A, b and c  

0=P P ; 0 = −g b  

1 T
j j jd cτ= −P  for 1, ,j m n= + } 

2 { }jj dσ δ= < ; % δ is a small constant 
*σ σ= ; % *σ  is set of blocking facet 

3 while (true) 

4 

if σ φ≠  % compute , c
jσ

↓g g  and update *σ  

*,, c
jσ

σ ↓ g g  = Gradient Select( [ ]0 , , , ,cσg Pτ ) 

else 0=g g  

5 
if * mσ ==  

T;OptPt OptVal= =P P b ; return (OptPt, OptVal) 
else *σ σ=  

6 

T

T

j j
j

j

c
t =

P
g

τ
τ

; for { }1,2, , \j m n σ∈ +  

{ }* arg min | 0j j jj t t= > ; 

*j
t= +Q P g ; =P Q  

7 { }*
*

i j
i t tσ σ= − <   % update blocking facets 

8 end 
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inner loop is repeated until the optimal vertex is found. 

5. Implementation and Experimental Results 
5.1. Experiment on the Klee-Minty Problem 

We use the Klee-Minty example presented in [18]1 to walk through the algo-
rithm in this section. An example of the Klee-Minty Polytope example is shown 
below: 

1 2
1 2 1max 2 2 2m m

m mx x x x− −
−+ + + + . 

Subject to 
 

1x         ≤ 15  

14x  + 2x  +     ≤ 25  

18x  + 24x  + 3x     ≤ 35  

         
    

12m x  + 1
22m x−  + 2

32m x−  + 


 mx  ≤ 5m  

 
For the standard simplex method, it needs to visit all 12m−  vertices to find the 

optimal solution. Here we show that, with a specific choice of initial point 0P , 
the Sliding Gradient algorithm can find the optimal solution in two itera-
tions—no matter what the dimension m is. 

To apply the Sliding Gradient algorithm, we first construct the tableau. For an 
example with 5m = , the simplex tableau is: 

 
1     5 

4 1    25 

8 4 1   125 

16 8 4   625 

32 16 8 4 1 3125 

16 8 4 2 1  

 
The b vector is [ ]T5,25,125,625,3125=b . After adding the slack variables, 

the facet tableau becomes: 
 

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 

1 0 0 0 0 1 0 0 0 0 

4 1 0 0 0 0 1 0 0 0 

8 4 1 0 0 0 0 1 0 0 

16 8 4 1 0 0 0 0 1 0 

32 16 8 4 1 0 0 0 0 1 

16 8 4 2 1 0 0 0 0 0 

 

 

1Other derivations of the Klee-Minty formulas have also been tested and the same results are ob-
tained. 
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Firstly, notice that 5α  and 10α  have the same normal vector (i.e. 5 10=τ τ ) 
so we can ignore 10α  for further consideration. This is true for all value of m. 

If we choose 0 M=P b , where M is a positive number (e.g. 100M = ), It can 
be shown that 0P  is inside the dual feasible region. The initial gradient descend 
vector is: 0 = −g b . 

With 0P  and 0g  as initial conditions, the algorithm proceeds to find the 
first blocking facet using (6). The displacements jt  for each facet can be found 
by: 

T T
0

T T T T T
0

j j j j j j
j

j j j j j

c c M c c
t M M= = − = + = −

− − −

− P b
g b b b b

τ τ
τ τ τ τ τ

. 

With 0P  and 0g  as initial conditions, the algorithm proceeds to find the 
first blocking facet using (6). The displacements jt  for each facet can be found 
by: 

T T
0

T T T T T
0

j j j j j j
j

j j j j j

c c M c c
t M M= = − = + = −

− − −

− P b
g b b b b

τ τ
τ τ τ τ τ

.
      

(22) 

We now show that the minimum of all displacements is mt . 
First of all, at = m, [ ]T0, ,0,1m = τ , 1mc =  and 5m

mb = , so 5 m
mt M −= − . 

For 2 1m j m< ≤ − , 0jc = , so j mt M t= > . 
For 1 j m≤ < , 2m j

jc −= , and the elements of jτ  are: 

1

0 if
1 if

2 if
ij

i j

i j
i j
j i m

τ
− +

 <
= =
 < ≤

. 

The 2nd term of Equation (22) can be re-written as: 

T
TT

1 1

2

j

jj j
m j

j

c

c −

= =
 
  
 

 
 
 

b
bb

ττ τ
 

The inner product of the denominator is: 
11 1

T

1 1 1

2 2
2 2 2 2 2

m jm m m
j ij ij ij

i i m i mm j m j m j m j m j
i i i

b b b b b
− +− −

− − − − −
= = =

        
= = + = +        

        
∑ ∑ ∑b

τ τ τ τ
 

Since all the elements in the b vector and the τ  are positive, the summation 
is a positive number. Thus 

1
T

1
2

2 2

m
j ij

i m mm j m j
i

b b b
τ−

− −
=

   
= + >   

   
∑b

τ
 

Since the value of the denominator is bigger than 5m
mb = , we have  

T

1 5

2

m

j
m j

−

−

<
 
 
 

b
τ

 

So  
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T
T

1 5

2

j m
j m

jj
m j

c
t M M M t−

−

= − = − > − =
 
 
 

b
b

ττ
. 

Hence mt  is the smallest displacement. For the case of 5m = , their values 
are shown in the first row (first iteration) of the following Table 3. 

Thus mα  is the closest blocking facet. Hence, { }*
1 1 mσ σ α= = . For the next 

iteration, 

( )( )1 0 0 5 5 5m m m
mt M M M M− − −= + = + − − = − + =P P g b b b b b b . 

The gradient vector 1g  is 0g  projects onto mα . Because [ ]T0, ,1m = τ  is 
already an orthonormal vector, we have according to (8) 

( ) T TT 2 1
1 0 0 0 0, , 5 5, 5 , , 5 ,0m m

m m
−   = − = − − = − − −   g g g g  τ τ . 

In other words, 1g  is the same as −b  except that the last element is zeroed 
out. Using 1P  and 1g , the algorithm proceeds to the next iteration and eva-
luates the displacements jt  again. For 1j m= +  to 2 1m − , since 0jc =  and 

jτ  is a unit vector with only one non-zero entry at the jth element, 
T

1
T

T

T
1 1

5
5 5 for 1 2 1

m
j j jm m

j
jj j

b
t m j m

b

−
− −= − = − = − = + ≤ ≤ −

−

b
g g
P τ τ

τ τ
. 

Thus the displacements mt  to 2 1mt −  have the same value of 5 m− .  
For 1 j m≤ < , we have: 

T
1

T T T
1 1 1

T T5 5
5

m m
j j j j j jm

j
j j j

c c c
t

−
−− − −

= = =
P b b

g g g
τ τ τ

τ τ τ
. 

As mentioned before, 1g  is the same as −b  except that the last element is 
zero, we can express T

jb τ  in terms of T
1 jg τ  as follows: 

T
1

T
j j m mjb τ= − +b gτ τ . 

The numerator then becomes: 
T
1

T5 5m m
j j j j m mjc c b τ− = + −b gτ τ . 

Since 2m j
jc −= , 2m j

jc −=  and 12m j
mjτ − += , substituting these values to the 

above equation, the numerator becomes 
T 1 T T

1 15 5 2 5 2 5 2m m m j m m j m m j
j j j jc − − + −− = − + = −b g gτ τ τ . 

Thus 

T T
1 1

T5 5 25 5 1
m m m j

j jm m
j

j j

c
t

−
− −

 −
= = −  

 

b
g g

τ
τ τ

.
 

 
Table 3. Displacement values it  in each iterations for 5m = . 

 t1 t2 t3 t4 t5 t6 t7 t8 t9 

1 99.9999 99.9999 99.9999 99.9998 99.9997 100 100 100 100 

2 0.0018 0.0018 0.0018 0.0035 0 0.00032 0.00032 0.00032 0.00032 
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Notice that all elements in 1g  are negative but all of jτ  are positive. So the 
inner product T

1 jg τ  is a negative number. As a result, the last term inside the 
bracket is a positive number which makes the whole value inside the bracket 
bigger than one and hence 5 m

jt −>  for 1 1j m≤ < − . Moreover, mt  is zero as 

1g  lies on mα . The actual displacement values for the case of 5m =  are 
shown in the second row of Table 3. 

Since mt  to 2 1mt −  have the same lowest displacement value, all of them are 

blocking facets so { } { } { }*
2 2 1 2 1 1 2 1, , , , ,m m m m m mσ σ α α α α α α+ − + −= = =   . Also, 

[ ]T T2 1
2 1 1 1 5 5 5, 5 , , 5 ,0 0,0, ,0,1m m m

mt
− − −

+  = + = + − − − = P P g b  
. 

Now *
t mσ = , so 2P  has reached a vertex of a cone. According to Theorem 

3, the algorithm stops. The optimal value is T
2 5m=P b , which is the last element 

of the b vector. 
Thus with a specific choice of the initial point 0 M=P b , the Sliding Gradient 

algorithm can solve the Klee-Minsty LP problem in two iterations, and it is in-
dependent of m. 

5.2. Issues in Algorithm Implementation 

The Sliding Gradient Algorithm has been implemented in MATLAB and tested 
on the Klee-Minty problems and also self-generated LP problems with random 
coefficients. As a real number can only be represented in finite precision in digi-
tal computer, care must be taken to deal with the round-off issue. For example, 
when a point P lies on a plane T c=y τ , the value Td c= −P τ  should be ex-
actly zero. But in actual implementation, it may be a very small positive or nega-
tive number. Hence in step 2 of the aforementioned algorithm, we need to set a 
threshold δ so that if d δ< , we regard that point P is laid on the plane. Like-
wise for the Klee-Minty problem, this algorithm relies on the fact that in the 
second iteration, the displacement values it  for 1i m= +  to 2 1m −  should 
be the same and they should all be smaller than the values of jt  for 1j =  to 

1m − . Due to round-off errors, we need to set a tolerant level to treat the first 
group to be equal and yet if this tolerant level is set too high, then it cannot ex-
clude members of the second group. The issue is more acute as m increases. It 
will require higher and higher precision in setting the tolerant level to distin-
guish these two groups. 

6. Conclusions and Future Work 

We have presented a new approach to tackle the linear programming problem in 
this paper. It is based on the gradient descend principle. For any initial point in-
side the feasible region, it will pass through the interior of the feasible region to 
reach the optimal vertex. This is made possible by projecting the gravity vector 
to a set of blocking facets and using that as descending vector in each iteration. 
In fact, the descending trajectory is a sequence of line segments that hug either a 
single blocking facet or the intersections of them, and each line segment is ad-
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vancing towards the optimal point. It should be noted that there is no parame-
ters (such as step-size, ..., etc.) to tune in this algorithm although one needs to 
take care of numerical round-off issue in actual implementation. 

This work opens up many areas of future research. On the one hand, we are 
extending this algorithm so that it can relax the constraint of starting from a 
point inside the feasible region. Promising development has been achieved in 
this area though more thorough testing on obscure cases need to be carried out.  

On the theoretical front, we are encouraged that, from the algorithm walk-through 
on the Klee-Minty example, this algorithm exhibits strongly polynomial complex-
ity characteristics. Its complexity does not appear to depend on the bit sizes of 
the LP coefficients. However, more rigorous proof is needed and we are working 
towards this goal. 
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