
American Journal of Operations Research, 2018, 8, 112-131
http://www.scirp.org/journal/ajor

ISSN Online: 2160-8849
ISSN Print: 2160-8830

DOI: 10.4236/ajor.2018.82009 Mar. 30, 2018 112 American Journal of Operations Research

The Sliding Gradient Algorithm
for Linear Programming

Hochung Lui, Peizhuang Wang

College of Intelligence Engineering and Mathematics, Liaoning Technical University, Fuxin, China

Abstract
The existence of strongly polynomial algorithm for linear programming (LP)
has been widely sought after for decades. Recently, a new approach called
Gravity Sliding algorithm [1] has emerged. It is a gradient descending method
whereby the descending trajectory slides along the inner surfaces of a polyhe-
dron until it reaches the optimal point. In R3, a water droplet pulled by gravi-
tational force traces the shortest path to descend to the lowest point. As the
Gravity Sliding algorithm emulates the water droplet trajectory, it exhibits
strongly polynomial behavior in R3. We believe that it could be a strongly po-
lynomial algorithm for linear programming in Rn too. In fact, our algorithm
can solve the Klee-Minty deformed cube problem in only two iterations, ir-
respective of the dimension of the cube. The core of gravity sliding algorithm
is how to calculate the projection of the gravity vector g onto the intersection
of a group of facets, which is disclosed in the same paper [1]. In this paper, we
introduce a more efficient method to compute the gradient projections on
complementary facets, and rename it the Sliding Gradient algorithm under
the new projection calculation.

Keywords
Linear Programming, Mathematical Programming, Complexity Theory,
Optimization

1. Introduction

The simplex method developed by Dantiz [2] has been widely used to solve
many large-scale optimizing problems with linear constraints. Its practical per-
formance has been good and researchers have found that the expected number
of iterations exhibits polynomial complexity under certain conditions [3] [4] [5]
[6]. However, Klee and Minty in 1972 gave a counter example showing that its

How to cite this paper: Lui, H.C. and
Wang, P.Z. (2018) The Sliding Gradient
Algorithm for Linear Programming. Ameri-
can Journal of Operations Research, 8,
112-131.
https://doi.org/10.4236/ajor.2018.82009

Received: February 26, 2018
Accepted: March 27, 2018
Published: March 30, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ajor
https://doi.org/10.4236/ajor.2018.82009
http://www.scirp.org
https://doi.org/10.4236/ajor.2018.82009
http://creativecommons.org/licenses/by/4.0/

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 113 American Journal of Operations Research

worst case performance is ()2n [7]. Their example is a deliberately con-
structed deformed cube that exploits a weakness of the original simplex pivot
rule, which is sensitive to scaling [8]. It is found that, by using a different pivot
rule, the Klee-Minty deformed cube can be solved in one iteration. But for all
known pivot rules, one can construct a different deformed cube that requires
exponential number of iterations to solve [9] [10] [11]. Recently, the interior
point method [12] has been gaining popularity as an efficient and practical LP
solver. However, it was also found that such method may also exhibit similar
worse case performance by adding a large set of redundant inequalities to the
Klee-Minty cube [13].

Is it possible to develop a strongly polynomial algorithm to solve the linear
programming problem, where the number of iterations is a polynomial function
of only the number of constraints and the number of variables? The work by
Barasz and Vempala shed some light in this aspect. Their AFFINE algorithm [14]
takes only ()2n iterations to solve a broad class of deformed products de-
fined by Amenta and Ziegler [15] which includes the Klee-Minty cube and many
of its variants.

In certain aspect, the Gravity Sliding algorithm [1] is similar to the AFFINE
algorithm as it also passes through the interior of the feasible region. The main
difference is in the calculation of the next descending vector. In the gravity fall-
ing approach, a gravity vector is first defined (see Section 3.1 for details). This is
the principle gradient descending direction where other descending directions
are derived from it. In each iteration, the algorithm first computes the descend-
ing direction, then it descends from this direction until it hits one or more facets
that forms the boundary of the feasible region. In order not to penetrate the
feasible region, the descending direction needs to be changed. The trajectory is
likened a water droplet falling from the sky but is blocked by linear planar
structures (e.g. the roof top structure of a building) and needs to slide along the
structure. The core of gravity sliding algorithm is how to calculate the projection
of the gravity vector g onto the intersection of a group of facets. This projection
vector lies on the intersection of the facets and hence lies on the null space de-
fined by these facets. Conventional approach is to compute the null space first
and then find the projection of g onto this null space. An alternative approach is
disclosed in [1] which operates directly from the subspace formed by the inter-
secting facets. This direct approach is more suitable to the Gravity Sliding algo-
rithm. In this paper, we further present an efficient method to compute the gra-
dient projections on complementary facets and also introduce the notion of se-
lecting the steepest descend projection among a set of candidates. With these re-
finements, we rename the Gravity Sliding algorithm as the Sliding Gradient al-
gorithm. We have implemented our algorithm and tested it on the Klee-Minty
cube. We observe that it can solve the Klee-Minty deformed cube problem in
only two iterations, irrespective of the dimension of the cube.

This paper is organized as follows: Section 2 gives an overview of the

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 114 American Journal of Operations Research

Cone-Cutting Theory [16], which is the intuitive background of the Gravity
Sliding algorithm. Section 3 discusses the Sliding Gradient algorithm in details.
The pseudo-code of this algorithm is summarized in Section 4 and Section 5
gives a walk-through of this algorithm using the Klee-Minty as an example. This
section also discusses the practical implementation issues. Finally, Section 6 dis-
cuss about future work.

2. Cone-Cutting Principle

The cone-cutting theory [16] offers a geometric interpretation of a set of inequa-
lity equations. Instead of considering the full set constraint equations in a LP
problem, the cone-cutting theory enables us to consider a subset of equations,
and how an additional constraint will shape the feasible region. The geometric
insight forms the basis of our algorithm development.

2.1. Cone-Cutting Principle

In an m-dimension space m
 , a hyperplane T c=y τ cuts m

 into two half
spaces. Here τ is the normal vector of the hyperplane and c is a constant. We
denote the positive half space { }T| c≥y y τ the accepted zone of the hyperplane
and the negative half space where { }T| c<y y τ is rejected zone. Note that the
normal vector τ points to accepted zone area and we call the hyperplane with
such orientation a facet (): ,cα τ . When there are m facets in m

 and
{ }1 2, , , mτ τ τ are linear independent, this set of linear equations has a unique
solution which is a point V in m

 . Geometrically, { }1 2, , , mα α α form a cone
and V is the vertex of the cone. We now give a formal definition of a cone, which
is taken from [1].

Definition 1. Given m hyperplanes in m , with rank ()1, , mr mα α = and
intersection V, ()1 1; , , m mC C α α α α= =V   is called a cone in m

 . The
area (){ }T| 1, 2, ,i ic i m≥ =y y τ is called the accepted zone of C. The point V
is the vertex and αj is the facet plane, or simply the facet of C.

A cone C also has m edge lines. They are formed by the intersection of (m − 1)
facets. Hence, a cone can also be defined as follows.

Definition 2. Given m rays { }()| 0 1, ,j jR t t j m= + ≤ < +∞ =V r 
 shooting

from a point V with rank ()1, , mr m=r r , () []1 1; , , , ,m mC C c R R= =V r r  ,
the convex closure of m rays is called a cone in m

 . jR is the edge, jr the
edge direction, and { }|j jR t t+ = + ∞ < < +∞V r the edge line of the cone C.

The two definitions are equivalent. Furthermore, P.Z. Wang [11] has observed
that iR+ and iα are opposite to each other for 1, ,i m= 

. Edge-line iR+ is
the intersection of all C-facets except iα , while facet iα is bounded by all
C-edges except iR+ . This is the duality between facets and edges. For

{ }1, , , ,i ii m R=  τ is called a pair of cone C.
It is obvious that T 0j i =r τ (for i j≠) since jr lies on iα . Moreover, we

have

()T 0 for 1, ,i i i m≥ =r τ (1)

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 115 American Journal of Operations Research

2.2. Cone Cutting Algorithm

Consider a linear programming (LP) problem and its dual:

 (Primary): { }Tmax | ; 0A ≤ ≥c x x b x

(2)

(Dual): { }T Tmin | ; 0A c≥ ≥y b y y

(3)

In the following, we focus on solving the dual LP problem. The standard
simplex tableau can be obtained by appending an m m× identity matrix m mI ×
which represents the slack variables as shown below:

11 1 1

1

1

1 0

0 1
0 0 0

n

m mn m

n

a a b

a a b
c c

… 
 
 
 
 
 



      

 

 
 

We can construct a facet tableau whereby each column is a facet denoted as

(): ,j j jcα τ , where ()T
1 2, , ,i i i mia a a= τ and

for 1
0 for

i
i

c i n
c

n i m n
≤ ≤

= 
< ≤ +



(4)

The facet tableau is depicted as follow. The last column ()T
1 2, , , ,0mb b b

 is
not represented in this tableau.

1 2

1 2

1 2

m n

m n

m nc c c

α α α +

+

+

 
 
  







τ τ τ

When a cone () ()1 1; , , ; , ,m mC C Cα α= =V V r r  is intersected by another
facet jα , the ith edge of the cone is intersected by jα at certain point ijq . We
call jα cuts the cone C and the cut points ijq can be obtained by the following
equations:

()T Twhereij i i i i j jit t c= + = −q V r V rτ τ

(5)

The intersection is called real if 0it ≥ and fictitious if 0it < . Cone cutting
greatly alters the accepted zone, as can be seen from the simple 2-dimension
example as shown in Figures 1(a)-(e). In 2-dimension, a facet (): ,cα τ is a
line. The normal vector τ is perpendicular to this line and points to the ac-
cepted zone of this facet. Furthermore, a cone is formed by two non-parallel fa-
cets in 2-dimension. Figure 1(a) shows such a cone ()1 2; ,C α αV . The accepted
zone of the cone is the intersection of the two accepted zones of facets α1 and α2.
This is represented by the shaded area A in Figure 1(a). In Figure 1(b), a new
facet α3 intersects the cone at two cut points 13q and 23q . They are both real
cut points. Since the arrow of normal vector 3τ points to the same general di-
rection of the cone, V lies in the rejected zone of α3 and we say α3 rejects V.
Moreover, the accepted zone of α3 intersects with the accepted zone of the cone
so that the overall accepted zone is reduced to the shaded area marked as B. In
Figure 1(c), 3τ points to the opposite direction. α3 accepts V and the overall

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 116 American Journal of Operations Research

Figure 1. Accepted zone area of a cone and after it is cut by a facet.

accepted zone is confined to the area marked as C. As the dual feasible region 𝒟𝒟
of a LP problem must satisfy all the constraints, it must lie within area C. In
Figure 1(d), α3 cuts the cone at two fictitious points. Since 3τ points to the
same direction of the cone, V is accepted by α3. However, the accepted zone of α3
covers that of the cone. As a result, α3 does not contribute to any reduction of
the overall accepted zone area, and so it can be deleted for further consideration
without affecting the LP solution. In Figure 1(e), 3τ points to the opposite di-
rection of the cone. The intersection between the accepted zone of α3 and that of
the cone is an empty set. This means that the dual feasible region 𝒟𝒟 is empty and
the LP is infeasible. This is actually one of the criteria that can be used for de-
tecting infeasibility.

Based on this cone-cutting idea, P.Z. Wang [16] [17] have developed a
cone-cutting algorithm to solve the dual LP problem. Each cone is a combina-
tion of m facets selected from (m + n) choices. Let ∆ denotes the index set of fa-
cets of C, (i.e. if ()Δ i j= , then ()Δ ji =τ τ). The algorithm starts with an initial
coordinate cone Co, then finds a facet 𝛼𝛼𝑖𝑖𝑖𝑖 to replace one of the existing facet

outα thus forming a new cone. This process is repeated until an optimal point is
found. The cone-cutting algorithm is summarized in Table 1 below.

This algorithm finds a facet that rejects V the least as the cutting facet in steps
2 and 3. This facet cuts the edges of the cone at m points. In step 4 and 5, the real
cut point *I

q that is closest to the vertex V is identified. This becomes the

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 117 American Journal of Operations Research

Table 1. Cone-cutting algorithm.

steps

Input: A, b and c

Output: either V as the optimal point & VTb as optimal value or declare the
LP problem as infeasible.

0

()0 0,0, ,0= =V V  % the coordinate cone;

()j n j∆ = + 𝑓𝑓𝑓𝑓𝑓𝑓 1, ,j m= 

() () ()1 21,0, ,0 , 0,1, ,0 , , 0,0, ,1mr r r= = =    ;

1 while (true)

2

% For all facets not in C & reject V, find one that rejects V the least.
 (){ }1: \m n∆ = + ∆ ; % ∆ are facets not in C

 () ()(){ }* Targ m |in ,j j j j j
j e e V c jτ

∆ ∆
= = − ∈ ∆

3
 if * 0

j
e ≥ return (V & VTb) as optimal vertex & optimal value

else ()* *J j= ∆ ; % j* is the facet index to enter

4 * *

*
T

T

; 1, ,
i

J J
i

J

c
t i m= =

V
r



τ
τ

; 1, ,i m=  }; i i it= +q V r ;

5

 if ()0 1, ,it i m< ∀ =  return(“LP is infeasible”)
 else % For all the real cuts qi,, find the qI* that is closest to V
 { }T* arg min | 0i i iI t= >q b % I* is the facet index to leave

6

 % Form new cone Ck+1 by updating Vk+1; edge vectors and facets

 *1k I
V + = q ; ()[]

*

*
1

i
i

i i k

r i I
r

sign t V i I+

==  − ≠ q

 ()* *Δ I J= ;

7 end

vertex of a new cone. This new cone retains all the facets of the original cone ex-
cept that the cutting facet replaces the facet corresponding to the edge I*. Yet the
edge I* is retained but the rest of the edges must be recomputed as shown in step
6. Amazingly, P.Z. Wang shows that when 0>b , this algorithm produces ex-
actly the same result as the original simplex algorithm proposed by Dantz [2].
Hence, the cone-cutting theory offers a geometric interpretation of the simplex
method. More significantly, it inspires the authors to explore new approach to
tackle the LP problem.

3. Sliding Gradient Algorithm

Expanding on the cone-cutting theory, the Gravity Sliding Algorithm [1] was
developed to find the optimal solution of the LP problem from a point within
the feasible region 𝒟𝒟. Since then, several refinements have been made and they
are presented in the following sections.

3.1. Determining the General Descending Direction

The feasible region 𝒟𝒟 is a convex polyhedron formed by constraints

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 118 American Journal of Operations Research

()T ;1j jc j n m≥ ≤ ≤ +y τ , and the optimal feasible point is at one of its vertices.
Let { }T| ; 1, ,i ji j c j n mΩ = ≥ = +V V τ be the set of feasible vertices. The dual
LP problem (3) can then be stated as: { }Tmin | ii ∈ΩV b V . As T

iV b is the in-
ner-product of vertex iV and b, the optimal vertex *V is the vertex that yields
the lowest inner-product value. Thus we can set the principle descending direc-
tion 0g to be the opposite of the b vector (i.e. 0 = −g b) and this is referred to
as the gravity vector. The descending path then descends along this principle di-
rection inside 𝒟𝒟 until it reaches the lowest point in 𝒟𝒟 viewed along the direction
of b. This point is then the optimal vertex *V .

3.2. Circumventing Blocking Facets

The basic principle of the new algorithm can be illustrated in Figure 2. Notice
that in 2-dim, a facet is a line. In this figure, these facets (lines) form a closed
polyhedron which is the dual feasible region 𝒟𝒟. Here the initial point P0 is inside
𝒟𝒟. From P0, it attempts to descend along the 0 = −g b direction. It can go as far
as P1 which is the point of intersection between the ray 0 0t= +R P g and the
facet α1. In essence, α1 is blocking this ray and hence it is called the blocking facet
relative to this ray. In order not to penetrate 𝒟𝒟, the descending direction needs
to change from g0 to g1 at P1, and slides along g1 until it hits the other blocking
facet α2 at P2. Then it needs to change course again and slides along the direction
g2 until it hits P3. In this figure, P3 is the lowest point in this dual feasible region
𝒟𝒟 and hence it is the optimal point *V .

It can be observed from Figure 2 that g1 is the projection of g0 onto α1 and g2
is the projection of g0 onto α2. Thus from P1, the descending path slides along α1
to reach P2 and then slides along α2 to reach P3. Hence we call this algorithm
Sliding Gradient Algorithm. The basic idea is to compute the new descending
direction to circumvent the blocking facets, and advance to find the next one
until it reaches the bottom vertex viewed along the direction of b.

Let tσ denotes the set of blocking facets at the tth iteration. From an initial
point P0 and a gradient descend vector g0, the algorithm iteratively performs the
following steps:

1) compute a gradient direction gt based on tσ . In this example, the initial set

Figure 2. Sliding gradient illustration.

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 119 American Journal of Operations Research

of blocking facets 0σ is empty and 0 = −g b .
2) move tP to 1t+P along tg where 1t+P is a point at the first blocking

facet.
3) Incorporate the newly encountered blocking facet to tσ to form 1tσ + .
4) go back to step 1.
The algorithm stops when it cannot find any direction to descend in step (1).

This is discussed in details in Section 3.6 where a formal stopping criterion is
given.

3.3. Minimum Requirements for the Gradient Direction gt

For the first step, the gradient descend vector tg needs to satisfy the following
requirements.

Proposition 1. tg must satisfy ()T
0 0t ≥g g so that the dual objective func-

tion Ty b will be non-increasing when y move from tP to 1t+P along the di-
rection of tg .

Proof. Since ()T
0 0t ≥g g , tg aligns to the principle direction of 0g . As

1t t tt+ = +P P g , 1t +P moves along the principle direction of 0g when 0t > .
Since () ()T TT T T

1 0t t t t tt t+ = + = −P b P b g b P b g g , T T
1t t+ ≤P b P b when ()T

0 0t ≥g g .
END

This means that if ()T
0 0t ≥g g , then 1t+P is “lower than” tP when viewed

along the b direction.

Proposition 2. If 0 ∈P  , tg must satisfy ()()T
0

t tjστ ≥g for all tj σ∈ to

ensure that 1t+P remains dual feasible (i.e. 1tP+ ∈).

Proof. If for some j, ()()T
0

t tjστ <g , this means that tg is in the opposite
direction of the normal vector of facet ()t jσα so a ray t tt= +Q P g will even-
tually penetrate this facet for certain positive value of t. This means that Q will
be rejected by ()t jσα and hence Q is no longer a dual feasible point. END

3.4. Maximum Descend in Each Iteration

To ensure that 1t+ ∈P  , we need to make sure that it won’t advance too far. The
following proposition stipulates the requirement.

Proposition 3. Assuming that 𝒟𝒟 is non-empty and 0 ∈P  . If tg satisfies
Propositions 1 and 2; and not all T 0t j =g τ for 1, ,j m n= + , then 1t+ ∈P 
provided that the next point 1t+P is determined according to (6) below:

*1t t tj
t+ = +P P g

(6)

where
T

*
Targ min | ; 0; 1, ,j t j

j j j j
t j

c
j t t t j m n

  = = > = + 
 

−

 

P
g



τ
τ

.

Proof. The equation for a line passing through P along the direction g is
t+P g . If this line is not parallel to the plane (i.e. T 0≠g τ), it will intersect a

facet (): ,cα τ at a point Q according to the following equation:

()T Twheret t c= + = −Q P g P gτ τ .

(7)

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 120 American Journal of Operations Research

We call t the displacement from P to Q. So
T

T
j t j

j
t j

c
t =

− P
g

τ
τ

 is the displace-

ment from tP to αj. The condition tj > 0 ensures that 1t+P moves along the

direction tg but not the opposite direction. *j is the smallest of all the dis-
placements thus *j

α is the first blocking facet that is closest to tP .

To show that 1t+ ∈P  , we need to show T
1 0t j jc+ − ≥P τ for 1, ,j m n= + .

Note that

() ()* *

T
T T T
1t j j t t j j t j j t jj j

c t c c t+ − = + − = − +P P g P gτ τ τ τ .

Since t ∈P  , ()T 0t j jc− ≥P τ for 1, ,j m n= + , so we need to show that

*
T 0t jj

t ≥g τ for 1, ,j m n= + .
The displacements jt can be split into two groups. For those displacements

where 0jt < ,
T

T 0j t j
j

t j

c
t=

−
<

P
g

τ
τ

 so () ()T T T
1t j j t j j j t jc t c k= = −− −g P Pτ τ τ ,

where 1 jk t= − is a positive constant. Since * 0
j

t > .

() ()*

*
T T T

2
1

0j
t j j t j t j jj

t
t c k c

k
= − = − ≥−g P Pτ τ τ since t ∈P  & 2 0k > .

For those displacements where 0jt ≥ , we have that *j
t is the minimum of

all jt in this group. Let 3k be the ratio between *j
t and jt . Obviously,

*

3 1j

j

t
k

t
= ≤

()

() ()

() ()

*
T T

T
T T T T

3 3 T

T T
3 0

t j j t jj

j t j
t j j j t j t j j t j

t j

t j j t j j

c t

c
c k t c k

c k c

− +

= − + = − +

= − − − ≥

−

P g

P
P g P g

g

P P

τ τ

τ
τ τ τ τ

τ

τ τ

So 1t+ ∈P  . END
If T 0t j =g τ , tg is parallel to jα . Unless all facets are parallel to tg , Propo-

sition 3 can still find the next descend point 1t+P . If all facets are parallel to tg ,
this means that facets are linearly dependent with each other. The LP problem is
not well formulated.

3.5. Gradient Projection

We now show that the projection of 0g onto the set of blocking facets tσ sa-
tisfies the requirements of Proposition 1 and 2. Before we do so, we discuss the
projection operations in subspace first.

3.5.1. Projection in Subspaces
Projection is a basic concept defined in vector space. Since we are only interested
in the gradient descend direction of tg but not the actual location of the pro-
jection, we can ignore the constant c in the hyperplane { }T| c=y y τ . In other

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 121 American Journal of Operations Research

words, we focus on the subspace ()V τ spanned by τ and its null space
()N τ rather than the affine space spanned by the hyperplanes.
Let Y be the vector space in m , () { }| ;V t tτ = = ∈y y τ and its corres-

ponding null space is () (){ }T| 0 for andN Y Vτ τ= = ∈ ∈x x y x y . Extending to

k hyperplanes, we have () { }1 2, , , | ;k
k j j jjV t t Rτ τ τ = = ∈∑y y τ and the null

space is () (){ }T
1 2 1 2, , , | 0 for and , , ,k kN Y Vτ τ τ τ τ τ= = ∈ ∈x x y x y 

. It can be

shown that () () () ()1 2 1 2, , , k kN N N Nτ τ τ τ τ τ=   . Since ()1 2, , , kV τ τ τ

and ()1 2, , , kN τ τ τ are the orthogonal decomposition of the whole space Y, a

vector g in m can be decomposed into two components: the projection of g
onto ()1 2, , , kV τ τ τ and the projection of g onto ()1 2, , , kN τ τ τ . We use the

notation []1 2, , , k
g τ τ τ↓



 and
1 k

g α α↓


 to denote them and they are called direct

projection and null projection respectively.
The following definition and theorem were first presented in [1] and is re-

peated here for completeness.
Let the set of all subspaces of mY =  be 𝒩𝒩, and let 𝒪𝒪 stand for 0-dim sub-

space, we now give an axiomatic definition of projection.
Definition 3. The projection defined on a vector space Y is a mapping

#:Y Y∗ ↓ × →

where ∗ is a vector in Y, # is a subspace X in 𝒩𝒩 satisfying that
(N.1) (Reflectivity).
For any , YY∈ ↓ =g g g ;
(N.2) (Orthogonal additivity).
For any Y∈g and subspaces ,X Z ∈ , if X and Z are orthogonal to each

other, then X Z X Z+↓ + ↓ = ↓g g g , where X Z+ is the direct sum of X and Z.
(N.3) (Transitivity).
For any Y∈g and subspaces ,X Z ∈ , ()X X Z X Z=↓ ↓ ↓g g

 

,

(N.4) (Attribution).
For any Y∈g and subspace X ∈ , X X↓ ∈g , and especially,
(N.5) For any Y∈g and subspace X ∈ , T 0X↓ ≥g g .
A convention approach to find

1 kα α↓g


 is to compute it directly from the

null space ()1 2, , , kN τ τ τ . We now show another approach that is more suita-
ble to our overall algorithm.

Theorem 1. For any Y∈g , we have

1

T
k

k

i
i

α α↓ = − ∑g g g o


(8)

where { }1, , ko o are an orthonormal basis of subspace ()1 2, , , kV τ τ τ .
Proof. Since 1 kα α and []1 2, , , kτ τ τ are the orthonormal decompo-

sition of Y, according to (N.2) and (N.1) we have

[] 11, , kk α ατ τ= ↓ + ↓g g g




.

According to (N.2) and (N.4), the first term becomes

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 122 American Journal of Operations Research

[]1

T T
1, , k kτ τ↓ = + +



g g o g o .

Hence (8) is true. END
The following theorem shows that the projection of 0g onto the set of all

blocking facets σt always satisfies Propositions 1 and 2. First, let us simplify the
notation and use σ to represent σt in the following section and 0 σ↓g to stand
for

() ()10 kσ σα α↓g


 where k σ= is the number of elements in σ.

Theorem 2. ()() ()T

0 0j σστ ↓ =g and ()0
T
0 0σ↓ ≥g g for all 1, ,j k=  .

Proof. Since 0 σ↓g lies on the intersection of () ()()1 kσ σα α
, it lies on

each facet ()jσα for 1, ,j k=  . Thus 0 σ↓g is perpendicular to the normal

vector of ()jσα (i.e. ()() ()T

0 0j σστ ↓ =g). So it satisfies Proposition 2.

According to (N.5), ()T
0 0 0σ↓ ≥g g . So it satisfies proposition 1 too. END

As such, 0 σ↓g , the projection of 0g onto all the blocking facets, can be
adopted as the next gradient descend vector tg . Hence, 0 σ↓g , the projection
of 0g onto all the blocking facets, can be adopted as the next gradient descend
vector tg .

3.5.2. Selecting the Sliding Gradient
In this section, we explore other projection vectors which also satisfy Proposi-
tions 1 and 2. Let the jth complement blocking set c

jσ be the blocking set σ ex-
cluding the jth element; i.e. 1 1 1

c
j j j kσ α α α α− +=    . We examine the

projection 0 c
jσ

↓g for 1, ,j k=  . Obviously, ()T
0 0 0c

jσ
↓ ≥g g according to

(N.5) as 0 c
jσ

↓g is a projection of 0g . So if ()() ()T

0 0c
jjσ σ

τ ↓ ≥g for all j σ∈ ,

it satisfies Proposition 2 and hence is a candidate for consideration. For all the
candidates, including 0 σ↓g , which satisfy this proposition, we can compute the
inner product of each candidate with the initial gradient descend vector 0g , (i.e.

()T
0 0 c

jσ
↓g g) and select the maximum. This inner product is a measure of how

close or similar a candidate is to 0g so taking the maximum means getting the
steepest descend gradient. Notice that if a particular 0 c

jσ
↓g is selected as the

next gradient descending vector, the corresponding jα is no longer a blocking
facet in computing 0 c

jσ
↓g . Thus jα needs to be removed from tσ to form

the set of effective blocking facets *
tσ . The set of blocking facets for the next ite-

ration 1tσ + is *
tσ plus the newly encountered blocking facet. In summary, the

next gradient descend vector tg is:

() []() []() []()()T T T T
0 0 0 0 01 2max , , , ,t kσ= ↓g g g g g g g g g

(9)

where [] 0 ;c
jj j

σ
σ= ↓ ∈g g with ()() ()T

0 0c
jjσ σ

τ ↓ ≥g and k σ= .

The effective blocking set *
tσ is

{ }
1 0*

1 0

if

\ if c
j

t t

t
t j t

σ

σ

σ
σ

σ α
+

+

 = ↓=  = ↓

g g

g g
.

(10)

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 123 American Journal of Operations Research

At first, this seems to increase the computation load substantially. However,
we now show that once 0 σ↓g is computed, 0 c

jσ
↓g can be obtained efficiently.

3.5.3. Computing the Gradient Projection Vectors
This session discusses a method of computing σ↓g and c

jσ
↓g for any vector

g. According to (8),
1

T
k

k
iiσ α α↓ = ↓ = − ∑g g g g o



. The orthonormal basis
{ }1 2, , , ko o o can be obtained from the Gram Schmidt procedure as follows:

1 1 1 1 1;= =o o o oτ (11)

T
2 2 2 1 2 2 2;= − =o o o o oτ τ (12)

Let us introduce the notation ↓a b to denote the projection of vector a onto

vector b. We have
T

T

 
↓ =  

 

a ba b b
b b

, then 2 2 2 1= − ↓o oτ τ as ()T
1 1 1=o o . Like-

wise,
1

1
;

j

j j j i j j j
i

−

=

= − ↓ =∑o o o o oτ τ .

(13)

Thus from (8),

T

1

k k

i i
i i

σ
=

↓ = − = − ↓∑ ∑g g g o g g o .

(14)

After evaluating σ↓g , we can find c
jσ

↓g backward from j k= to 1. Firstly,
1

1
c
k

k

i k
i

σσ

−

=

↓ = − ↓ = ↓ + ↓∑g g g o g g o .

(15)

Likewise, it can be shown that

()
1

1 1
for 2 toc

j

j k
j

i i
i i j

j k
σ

−

= = +

↓ = − ↓ − ↓ =∑ ∑g g g o g o .

(16)

The first summation is projections of g onto existing orthonormal basis io .
Each term in this summation has already been computed before and hence is
readily available. However, the second summation is projections on new basis

()j
io . Each of these basis must be re-computed as the facet jα is skipped in c

jσ .
Let

; 0k k kT S= + ↓ =g g o (17)

()
1

1
;

k
j

j j j j i
i j

T T S+
= +

= + ↓ = ↓∑g o g o .

(18)

Then we can obtain c
jσ

↓g recursively from , 1, ,1j k k= −  by:

c
j

j jT S
σ

↓ = −g .

(19)

To compute ()j
io , some of the intermediate results in obtaining the ortho-

normal basis can also be reused.
Let ,1 0jµ = for all 2, ,j k=  and , , 1j i j i j iµ µ −= + ↓ oτ for 1, , 1i j= − ,

then we have

, 1; for 2, ,j j j j j j j j kµ −= − = =o o o o τ .

(20)

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 124 American Journal of Operations Research

The intermediate terms ,j iµ can be reused in computing ()j
mo as follows:

() () ()
()

()

1

, 1
1

; for 1, ,
jm

j j j m
m m m j m i m j

i j m

m kµ
−

−
= +

= − − ↓ = = +∑ 

o
o o o

o
τ τ .

(21)

By using these intermediate results, the computation load can be reduced sub-
stantially.

3.6. Termination Criterion

When a new blocking facet is encountered, it will be added to the existing set of
blocking facets. Hence both tσ and *

tσ will typically grow in each iteration
unless one of the 0 c

jσ
↓g is selected as tg . In this case, ()jσα is deleted from

tσ according to (10). The following theorem, which was first presented in [1]
shows that when *

t mσ = , the algorithm can stop.
Theorem 3 (Stopping criterion) Assuming that the dual feasible region 𝒟𝒟 is

non-empty, let t ∈P  and is descending along the initial direction 0 = −g b ;
let *

tσ be the number of effective blocking facets in *
tσ at the tth iteration. If

*
t mσ = and the rank ()*

tr mσ = , then tP is a lowest point in the dual feasi-

ble region 𝒟𝒟.
Proof. If *

t mσ = and the rank ()*
tr mσ = , then the m facets in *

tσ form a
cone C with vertex t=V P . Since the rank is m, its corresponding null space
contains only the zero vector. So

() ()10 0 0
kσ σσ α α↓ = ↓ =g g



.
As mentioned about the facet/edge duality in Section 2, for 1, ,j m=  ,

edge-line iR+ is the intersection of all C-facets except iα . That means c
i iR σ+ = .

Since an edge-line is a 1-dimensional line, the projection of a vector

0g onto iR+ equals to i±r and hence c
i i

t t iRσ +↓ = ↓ = ±g g r . Since c
i

t σ
↓g are

projections of 0g , according to (N.5), ()T
0 0c

i
t σ

↓ ≥g g .

Since *
t mσ = , it means that c

i
t σ

↓g does not satisfy Proposition 2 for all
1, ,i m= 

. Otherwise, one of the c
i

t σ
↓g would have been selected as the next

gradient descend vector and, according to (10), it would be deleted from *
tσ

and hence *
tσ would be less than m. This means that at least one of j σ∈

has a value ()T 0c
i

j t σ
↓ <gτ . However, for all k i≠ , c

i
t σ

↓g is in the null space

of 𝛼𝛼𝑘𝑘 so ()T 0c
i

k t σ
↓ =gτ . This leaves ()T 0c

i
i t σ

↓ <gτ . If c
i

t iσ
↓ =g r , then

()T T 0c
i

i t i iσ
↓ = <g rτ τ . This contradicts to the fact that T 0i i ≥rτ in (1). There-

fore, c
j

t iσ
↓ = −g r . Since ()T

0 0c
i

t σ
↓ ≥g g , () ()TT

0 0 0i i− = − ≥g r g r . Note that

()T
0 i−g r means that edge ir is in opposite direction of 0g . As this is true for

all edges, there is no path for tg to descend further from this vertex. It is ob-
vious that the vertex V is the lowest point of C when viewed in the b direction.

Since tP is dual feasible, and V is a vertex of 𝒟𝒟. Cone C coincides with the
dual feasible region 𝒟𝒟 in a neighborhood N of V, it is obvious that tP is the
lowest point of 𝒟𝒟 when viewed in the b direction. END

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 125 American Journal of Operations Research

In essence, when the optimal vertex *V is reached, all the edges of the cone
will be in opposite direction of the gradient vector 0 = −g b . There is no path to
descend further so the algorithm terminates.

4. The Pseudo Code of the Sliding Gradient Algorithm

The entire algorithm is summarized as follows in Table 2.
Step 0 is the initialization step that sets up the tableau and the starting point P.

Step 2 is to find a set of initial blocking facets σ in preparation of step 4. In the
inner loop, Step 4 calls the Gradient Select routine. It computes 0 σ↓g and

0 c
jσ

↓g in view of σ using Equations (11) to (21) and select the best gradient
vector g according to (9). This routine not only returns g but also the effective
blocking facets *σ and 0 c

jσ
↓g for subsequent use. Theorem 3 states that

when the size of *σ reaches m, the optimal point is reached. So when it does,
step 5 returns the optimal point and the optimal value to the calling routine. Step
6 is to find the closest blocking facet according to (6). Because P lies on every fa-
cets of σ, 0jt = for j σ∈ . Hence, we only need to compute those jt where
j σ∉ . The newly found blocking facet is then included in σ in step 7 and the

Table 2. The sliding gradient algorithm.

steps
Input: A, b and c ; and 𝒟𝒟 is non-empty and P0 is inside 𝒟𝒟

Output: OptPt & OptVal

0
Construct the Facet Tableau []τ from A, b and c

0=P P ; 0 = −g b

1 T
j j jd cτ= −P for 1, ,j m n= + }

2 { }jj dσ δ= < ; % δ is a small constant
*σ σ= ; % *σ is set of blocking facet

3 while (true)

4

if σ φ≠ % compute , c
jσ

↓g g and update *σ

*,, c
jσ

σ ↓ g g = Gradient Select([]0 , , , ,cσg Pτ)

else 0=g g

5
if * mσ ==

T;OptPt OptVal= =P P b ; return (OptPt, OptVal)
else *σ σ=

6

T

T

j j
j

j

c
t =

P
g

τ
τ

; for { }1,2, , \j m n σ∈ +

{ }* arg min | 0j j jj t t= > ;

*j
t= +Q P g ; =P Q

7 { }*
*

i j
i t tσ σ= − <  % update blocking facets

8 end

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 126 American Journal of Operations Research

inner loop is repeated until the optimal vertex is found.

5. Implementation and Experimental Results
5.1. Experiment on the Klee-Minty Problem

We use the Klee-Minty example presented in [18]1 to walk through the algo-
rithm in this section. An example of the Klee-Minty Polytope example is shown
below:

1 2
1 2 1max 2 2 2m m

m mx x x x− −
−+ + + + .

Subject to

1x ≤ 15

14x + 2x + ≤ 25

18x + 24x + 3x ≤ 35


 

12m x + 1
22m x− + 2

32m x− +


 mx ≤ 5m

For the standard simplex method, it needs to visit all 12m− vertices to find the

optimal solution. Here we show that, with a specific choice of initial point 0P ,
the Sliding Gradient algorithm can find the optimal solution in two itera-
tions—no matter what the dimension m is.

To apply the Sliding Gradient algorithm, we first construct the tableau. For an
example with 5m = , the simplex tableau is:

1 5

4 1 25

8 4 1 125

16 8 4 625

32 16 8 4 1 3125

16 8 4 2 1

The b vector is []T5,25,125,625,3125=b . After adding the slack variables,

the facet tableau becomes:

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

1 0 0 0 0 1 0 0 0 0

4 1 0 0 0 0 1 0 0 0

8 4 1 0 0 0 0 1 0 0

16 8 4 1 0 0 0 0 1 0

32 16 8 4 1 0 0 0 0 1

16 8 4 2 1 0 0 0 0 0

1Other derivations of the Klee-Minty formulas have also been tested and the same results are ob-
tained.

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 127 American Journal of Operations Research

Firstly, notice that 5α and 10α have the same normal vector (i.e. 5 10=τ τ)
so we can ignore 10α for further consideration. This is true for all value of m.

If we choose 0 M=P b , where M is a positive number (e.g. 100M =), It can
be shown that 0P is inside the dual feasible region. The initial gradient descend
vector is: 0 = −g b .

With 0P and 0g as initial conditions, the algorithm proceeds to find the
first blocking facet using (6). The displacements jt for each facet can be found
by:

T T
0

T T T T T
0

j j j j j j
j

j j j j j

c c M c c
t M M= = − = + = −

− − −

− P b
g b b b b

τ τ
τ τ τ τ τ

.

With 0P and 0g as initial conditions, the algorithm proceeds to find the
first blocking facet using (6). The displacements jt for each facet can be found
by:

T T
0

T T T T T
0

j j j j j j
j

j j j j j

c c M c c
t M M= = − = + = −

− − −

− P b
g b b b b

τ τ
τ τ τ τ τ

.

(22)

We now show that the minimum of all displacements is mt .
First of all, at = m, []T0, ,0,1m = τ , 1mc = and 5m

mb = , so 5 m
mt M −= − .

For 2 1m j m< ≤ − , 0jc = , so j mt M t= > .
For 1 j m≤ < , 2m j

jc −= , and the elements of jτ are:

1

0 if
1 if

2 if
ij

i j

i j
i j
j i m

τ
− +

 <
= =
 < ≤

.

The 2nd term of Equation (22) can be re-written as:

T
TT

1 1

2

j

jj j
m j

j

c

c −

= =
 
  
 

 
 
 

b
bb

ττ τ

The inner product of the denominator is:
11 1

T

1 1 1

2 2
2 2 2 2 2

m jm m m
j ij ij ij

i i m i mm j m j m j m j m j
i i i

b b b b b
− +− −

− − − − −
= = =

        
= = + = +        

        
∑ ∑ ∑b

τ τ τ τ

Since all the elements in the b vector and the τ are positive, the summation
is a positive number. Thus

1
T

1
2

2 2

m
j ij

i m mm j m j
i

b b b
τ−

− −
=

   
= + >   

   
∑b

τ

Since the value of the denominator is bigger than 5m
mb = , we have

T

1 5

2

m

j
m j

−

−

<
 
 
 

b
τ

So

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 128 American Journal of Operations Research

T
T

1 5

2

j m
j m

jj
m j

c
t M M M t−

−

= − = − > − =
 
 
 

b
b

ττ
.

Hence mt is the smallest displacement. For the case of 5m = , their values
are shown in the first row (first iteration) of the following Table 3.

Thus mα is the closest blocking facet. Hence, { }*
1 1 mσ σ α= = . For the next

iteration,

()()1 0 0 5 5 5m m m
mt M M M M− − −= + = + − − = − + =P P g b b b b b b .

The gradient vector 1g is 0g projects onto mα . Because []T0, ,1m = τ is
already an orthonormal vector, we have according to (8)

() T TT 2 1
1 0 0 0 0, , 5 5, 5 , , 5 ,0m m

m m
−   = − = − − = − − −   g g g g  τ τ .

In other words, 1g is the same as −b except that the last element is zeroed
out. Using 1P and 1g , the algorithm proceeds to the next iteration and eva-
luates the displacements jt again. For 1j m= + to 2 1m − , since 0jc = and

jτ is a unit vector with only one non-zero entry at the jth element,
T

1
T

T

T
1 1

5
5 5 for 1 2 1

m
j j jm m

j
jj j

b
t m j m

b

−
− −= − = − = − = + ≤ ≤ −

−

b
g g
P τ τ

τ τ
.

Thus the displacements mt to 2 1mt − have the same value of 5 m− .
For 1 j m≤ < , we have:

T
1

T T T
1 1 1

T T5 5
5

m m
j j j j j jm

j
j j j

c c c
t

−
−− − −

= = =
P b b

g g g
τ τ τ

τ τ τ
.

As mentioned before, 1g is the same as −b except that the last element is
zero, we can express T

jb τ in terms of T
1 jg τ as follows:

T
1

T
j j m mjb τ= − +b gτ τ .

The numerator then becomes:
T
1

T5 5m m
j j j j m mjc c b τ− = + −b gτ τ .

Since 2m j
jc −= , 2m j

jc −= and 12m j
mjτ − += , substituting these values to the

above equation, the numerator becomes
T 1 T T

1 15 5 2 5 2 5 2m m m j m m j m m j
j j j jc − − + −− = − + = −b g gτ τ τ .

Thus

T T
1 1

T5 5 25 5 1
m m m j

j jm m
j

j j

c
t

−
− −

 −
= = −  

 

b
g g

τ
τ τ

.

Table 3. Displacement values it in each iterations for 5m = .

 t1 t2 t3 t4 t5 t6 t7 t8 t9

1 99.9999 99.9999 99.9999 99.9998 99.9997 100 100 100 100

2 0.0018 0.0018 0.0018 0.0035 0 0.00032 0.00032 0.00032 0.00032

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 129 American Journal of Operations Research

Notice that all elements in 1g are negative but all of jτ are positive. So the
inner product T

1 jg τ is a negative number. As a result, the last term inside the
bracket is a positive number which makes the whole value inside the bracket
bigger than one and hence 5 m

jt −> for 1 1j m≤ < − . Moreover, mt is zero as

1g lies on mα . The actual displacement values for the case of 5m = are
shown in the second row of Table 3.

Since mt to 2 1mt − have the same lowest displacement value, all of them are

blocking facets so { } { } { }*
2 2 1 2 1 1 2 1, , , , ,m m m m m mσ σ α α α α α α+ − + −= = =   . Also,

[]T T2 1
2 1 1 1 5 5 5, 5 , , 5 ,0 0,0, ,0,1m m m

mt
− − −

+  = + = + − − − = P P g b  
.

Now *
t mσ = , so 2P has reached a vertex of a cone. According to Theorem

3, the algorithm stops. The optimal value is T
2 5m=P b , which is the last element

of the b vector.
Thus with a specific choice of the initial point 0 M=P b , the Sliding Gradient

algorithm can solve the Klee-Minsty LP problem in two iterations, and it is in-
dependent of m.

5.2. Issues in Algorithm Implementation

The Sliding Gradient Algorithm has been implemented in MATLAB and tested
on the Klee-Minty problems and also self-generated LP problems with random
coefficients. As a real number can only be represented in finite precision in digi-
tal computer, care must be taken to deal with the round-off issue. For example,
when a point P lies on a plane T c=y τ , the value Td c= −P τ should be ex-
actly zero. But in actual implementation, it may be a very small positive or nega-
tive number. Hence in step 2 of the aforementioned algorithm, we need to set a
threshold δ so that if d δ< , we regard that point P is laid on the plane. Like-
wise for the Klee-Minty problem, this algorithm relies on the fact that in the
second iteration, the displacement values it for 1i m= + to 2 1m − should
be the same and they should all be smaller than the values of jt for 1j = to

1m − . Due to round-off errors, we need to set a tolerant level to treat the first
group to be equal and yet if this tolerant level is set too high, then it cannot ex-
clude members of the second group. The issue is more acute as m increases. It
will require higher and higher precision in setting the tolerant level to distin-
guish these two groups.

6. Conclusions and Future Work

We have presented a new approach to tackle the linear programming problem in
this paper. It is based on the gradient descend principle. For any initial point in-
side the feasible region, it will pass through the interior of the feasible region to
reach the optimal vertex. This is made possible by projecting the gravity vector
to a set of blocking facets and using that as descending vector in each iteration.
In fact, the descending trajectory is a sequence of line segments that hug either a
single blocking facet or the intersections of them, and each line segment is ad-

https://doi.org/10.4236/ajor.2018.82009

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 130 American Journal of Operations Research

vancing towards the optimal point. It should be noted that there is no parame-
ters (such as step-size, ..., etc.) to tune in this algorithm although one needs to
take care of numerical round-off issue in actual implementation.

This work opens up many areas of future research. On the one hand, we are
extending this algorithm so that it can relax the constraint of starting from a
point inside the feasible region. Promising development has been achieved in
this area though more thorough testing on obscure cases need to be carried out.

On the theoretical front, we are encouraged that, from the algorithm walk-through
on the Klee-Minty example, this algorithm exhibits strongly polynomial complex-
ity characteristics. Its complexity does not appear to depend on the bit sizes of
the LP coefficients. However, more rigorous proof is needed and we are working
towards this goal.

Acknowledgements

The authors wish to thank all his friends for their valuable critics and comments
on the research. Special thanks are given to Prof. Yong Shi, Prof. Sizong Guo for
their supports. This study is partially supported by the grants (Grant Nos.
61350003, 70621001, 70531040, 90818025) from the Natural Science Foundation
of China, and grant (Grant No. L2014133) from Department of Education of
Liaoning Province.

References
[1] Wang, P.Z., Lui, H.C., Liu, H.T. and Guo, S.C. (2017) Gravity Sliding Algorithm for

Linear Programming. Annals of Data Science, 4, 193-210.
https://doi.org/10.1007/s40745-017-0108-1

[2] Dantzig, G.B. (1963) Linear Programming and Extensions. Princeton University
Press, Princeton. https://doi.org/10.1515/9781400884179

[3] Megiddo, N. (1987) On the Complexity of Linear Programming. In: Bewley, T., Ed.,
Advances Economic Theory, 5th World Congress, Cambridge University Press,
Cambridge, 225-268. https://doi.org/10.1017/CCOL0521340446.006

[4] Megiddo, N. (1984) Linear Programming in Linear Time When the Dimension Is
Fixed. Journal of ACM, 31, 114-127. https://doi.org/10.1145/2422.322418

[5] Smale, S. (1983) On the Average Number of Steps of the Simplex Method of Linear
Programming. Mathematical Programming, 27, 251-262.
https://doi.org/10.1007/BF02591902

[6] Todd, M. (1986) Todd, Polynomial Expected Behavior of a Pivoting Algorithm for
Linear Complementarity and Linear Programming Problems. Mathematical Pro-
gramming, 35, 173-192. https://doi.org/10.1007/BF01580646

[7] Klee, V. and Minty, G.J. (1972) How Good Is the Simplex Method. In: Shisha, O.,
Ed., Inequalities III, Academic Press, New York, 159-175.

[8] Chvatal, V. (1983) Linear Programming. W.H. Freeman and Company, ‎New York.

[9] Goldfarb, D. and Sit, W. (1979) Worst Case Behavior of the Steepest Edge Simplex
Method. Discrete Applied Mathematics, 1, 277-285.
https://doi.org/10.1016/0166-218X(79)90004-0

[10] Jeroslow, R. (1973) The Simplex Algorithm with the Pivot Rule of Maximizing Im-

https://doi.org/10.4236/ajor.2018.82009
https://doi.org/10.1007/s40745-017-0108-1
https://doi.org/10.1515/9781400884179
https://doi.org/10.1017/CCOL0521340446.006
https://doi.org/10.1145/2422.322418
https://doi.org/10.1007/BF02591902
https://doi.org/10.1007/BF01580646
https://doi.org/10.1016/0166-218X(79)90004-0

H. C. Lui, P. Z. Wang

DOI: 10.4236/ajor.2018.82009 131 American Journal of Operations Research

provement Criterion. Discrete Mathematics, 4, 367-377.
https://doi.org/10.1016/0012-365X(73)90171-4

[11] Zadeh, N. (1980) What Is the Worst Case Behavior of the Simplex Algorithm?
Technical Report 27, Dept. Operations Research, Stanford University, Stanford.

[12] Karmarkar, N.K. (1984) A New Polynomial-Time Algorithm for Linear Program-
ming. Combinatorica, 4, 373-395. https://doi.org/10.1007/BF02579150

[13] Deza, A., Nematollahi, E. and Terlaky, T. (2008) How Good Are Interior Point Me-
thods? Klee-Minty Cubes Tighten Iteration-Complexity Bounds. Mathematical
Programming, 113, 1-14.

[14] Barasz, M. and Vempala, S. (2010) A New Approach to Strongly Polynomial Linear
Programming.

[15] Amenta, N. and Ziegler, G. (1999) Deformed Products and Maximal Shadows of
Polytopes. Contemporary Mathematics, 223, 57-90.
https://doi.org/10.1090/conm/223/03132

[16] Wang, P.Z. (2011) Cone-Cutting: A Variant Representation of Pivot in Simplex.
Information Technology & Decision Making, 10, 65-82.

[17] Wang, P.Z. (2014) Discussions on Hirsch Conjecture and the Existence of Strongly
Polynomial-Time Simplex Variants. Annals of Data Science, 1, 41-71.
https://doi.org/10.1007/s40745-014-0005-9

[18] Greenberg, H.J. (1997) Klee-Minty Polytope Shows Exponential Time Complexity
of Simplex Method. University of Colorado at Denver, Denver.

https://doi.org/10.4236/ajor.2018.82009
https://doi.org/10.1016/0012-365X(73)90171-4
https://doi.org/10.1007/BF02579150
https://doi.org/10.1090/conm/223/03132
https://doi.org/10.1007/s40745-014-0005-9

	The Sliding Gradient Algorithm for Linear Programming
	Abstract
	Keywords
	1. Introduction
	2. Cone-Cutting Principle
	2.1. Cone-Cutting Principle
	2.2. Cone Cutting Algorithm

	3. Sliding Gradient Algorithm
	3.1. Determining the General Descending Direction
	3.2. Circumventing Blocking Facets
	3.3. Minimum Requirements for the Gradient Direction gt
	3.4. Maximum Descend in Each Iteration
	3.5. Gradient Projection
	3.5.1. Projection in Subspaces
	3.5.2. Selecting the Sliding Gradient
	3.5.3. Computing the Gradient Projection Vectors

	3.6. Termination Criterion

	4. The Pseudo Code of the Sliding Gradient Algorithm
	5. Implementation and Experimental Results
	5.1. Experiment on the Klee-Minty Problem
	5.2. Issues in Algorithm Implementation

	6. Conclusions and Future Work
	Acknowledgements
	References

