
Journal of Quantum Information Science, 2018, 8, 24-45 
http://www.scirp.org/journal/jqis 

ISSN Online: 2162-576X 
ISSN Print: 2162-5751 

 

DOI: 10.4236/jqis.2018.81003  Mar. 30, 2018 24 Journal of Quantum Information Science 
 

 
 
 

Bound State Solutions of the Schrödinger 
Equation for the More General Exponential 
Screened Coulomb Potential Plus Yukawa 
(MGESCY) Potential Using Nikiforov-Uvarov 
Method 

B. I. Ita1, H. Louis1,2, O. U. Akakuru1, T. O. Magu1, I. Joseph3, P. Tchoua4, P. I. Amos3,  
I. Effiong5, N. A. Nzeata1 

1Physical/Theoretical Chemistry Research Group, Department of Pure and Applied Chemistry, University of Calabar, CRS,  
Calabar, Nigeria 
2CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience,  
National Centre For Nanoscience and Technology, University of Chinese Academy of Science, Beijing, China 
3Nano-Chemistry Research Group, Department of Chemistry, School of Physical Sciences,  
Modibbo Adama University of Technology, Yola, Nigeria 
4Department of Mathematics, Ngaoundere University, Ngaoundere, Cameroon 
5Scientific Equipment Development Institute (SEDI), Enugu, Nigeria 

 
 
 

Abstract 
The solutions of the Schrödinger with more general exponential screened 
coulomb (MGESC), Yukawa potential (YP) and the sum of the mixed poten-
tial (MGESCY) have been presented using the Parametric Nikiforov-Uvarov 
Method (pNUM). The bound state energy eigenvalues and the corresponding 
un-normalized eigenfunctions expressed in terms of hypergeometric func-
tions were obtained. Some derived equations were used to calculate numerical 
values for MGESC, YP, and MGESCY potentials for diatomic molecules with 
different screening parameters (α) for l = 0 and l = 1 state with V0 = 2.75 MeV 
and V1 = 2.075 MeV. We observed an increase in l value; the particles behave 
more repulsive than attractive. The numerical values for different l-states at 
different screening parameters for CO molecules (r = 1.21282) and NO mole-
cule (r = 1.1508) were obtained using the bound state energy eigenvalue of the 
Schrodinger equation for MGESC, YP and MGESCY potentials. Potential 
variation with intermolecular distance (r) for some of the particles moving 
under the influence of MGESC, Yukawa and the mixed potential (MGESCY) 
were also studied. We also observed the variation of the MGESC potential 
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with the radial distance of separation between the interacting particles (r) for 
different screening parameters (α) with V0 = 2.75 MeV at l = 0 and l = 1 and 
YP with V1 = 2.075 MeV at l = 0 and l = 1 as purely diatomic particles in na-
ture. The energies plotted against the principal quantum number n for differ-
ent values of (α) for both CO and NO show closed resemblance even at dif-
ferent values of the potential depth. The energy plots of the YP and MGESC 
potential for both CO and NO molecules as n→∞, and the energy E→0, shows 
exothermal behaviour. The energy expression for the mixed potentials V0 = 5 
MeV and V1 = 10 MeV, shows that both diatomic molecules possesses similar 
behaviour. 
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1. Introduction 

The more general exponential screened coulomb (MGESC) potential expressed as  

( ) ( )( )20 1 1 e rVV r r
r

αα −= − + +                   (1) 

is a potential of great interest which on expansion comprises of the sum of cou-
lomb potential, modified screened coulomb or the Yukawa potential and a mod-
ified exponential potential given as  

( ) 2 20 0
0e er rV VV r V

r r
α αα− −= − − −                  (2) 

This potential is known to describe adequately the effective potential of a 
many-body system of a variety of fields such as the atomic, solid state, plasma 
and quantum field theory [1]. The problem arising from screened coulomb po-
tential is of indubitable importance in physics and chemistry of atomic incidence. 
To tackle this problem, various methods have been applied both numerically and 
analytically to obtain the energy spectrum of the particle under investigation. 
This method includes the WKB method [2], and various types of perturbation 
method [3] [4] [5]. The expansion of the MGESC Potential in Equation (1) gives 

( ) ( )0 0
0

i
ii

V VV r V r
r r

α∞

=
= − − ∑                   (3) 

The coefficient iV  of Equation (3) can be obtained so that the perturbation 
method of [5] may be applied. Recently, a novel perturbative formalism which is 
based on decomposing the radial part of the Schrodinger equation into two hav-
ing an Exact solvable part and approximate treatment depending on the nature 
of the perturbed potential [1] have been applied on the MGESC potential and 
bound state energies as well as wave functions to both bound and continuum re-
gion have been obtained. Hence, the Schrodinger equation for the MGESC Po-
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tential doesn’t admit exact solution. For this reason, Sever and Tezcan [6] ap-
plied the large-N expansion following the method proposed by Mlodinow and 
Shatz [7] to obtain the energy eigenvalues for the ground state and the first ex-
cited state as well as their corresponding wavefunctions. Roy in 2013 [8] carried 
out extensive studies on some exponential screened coulomb potentials such as 
the Exponential Cosine Screened Coulomb (ECSC) and General Exponential 
Screened Coulomb (GESC) potential with special emphasis on higher states and 
stronger interactions. In his speculative studies, he obtained bound state solu-
tions for both screened potentials via the Generalized Pseudospectral (GPS) me-
thod and computed reasonable results for the energy eigenvalues at different 
states compared with other results obtained in the literatures. Ita and Ekuri [9], 
carried out studies on the MGESC potential for diatomic molecules to obtain 
boundstate solutions of the Schrodinger equation using the Nikiforov-Uvarov 
(NU) Method. 

The Yukawa potential, in atomics and particle physics expressed in the form 

( )yukaw
2

a
0e e

kmr
rVgV

r
r

r
α

−
−− ≡ −=                   (4) 

where g is the magnitude scaling constant, m is the mass of the affected particle, 
r is the radial distance to the particles, k is another scaling constant which was 
first proposed by Hideki Yukawa in 1935on the paper titled “On the interaction 
of Elementary Particles” a work in which, he explained the effect of heavy nuclei 
interaction on pions. According to Yukawa, the interactions of particles is not 
always accompanied by emission of light particles when heavy particles are 
transmitted from neutron state to proton state, but the liberated energy due to 
the transmission is taken up sometimes by another heavy particles, which will be 
transformed from proton state into neutron state [10]. The Yukawa potential is a 
potential that decreases more rapidly with distance and can be expressed as the 
coulomb potential when 0m → . Since then, numerous researches have been 
conducted by various scientists to obtain bound state of the potential by apply-
ing different scientific Methods. Gerry and Lamb in 1984 [11] studied the 
screened coulomb potential of the Yukawa type by using a scaling variational 
method based on the SO(2,1) Subgroup of the full SO(4.2) dynamic group of the 
point coulombic problem to obtain both energy eigenvalues for different states 
and Normalized wave functions. Gerry and Lamb, 1984 [11] applied the large-N 
phase Integral approximation based on the coherent states of SO (2, 1) (SU (1, 1)) 
to coulomb-like problems where they obtained energy eigenvalue for s-states of 
the Yukawa potential. Hamzavi and co-workers in 2012 [12] studied the Yukawa 
potential via a two body semi-relativistic (Spinless Salpeter) SS equation and ob-
tained bound state energy values and their corresponding Normalized wave-
functions for short range Yukawa potential with arbitrary l-state using parame-
tric NU Method. In their literature, it was spelt out that the known Static 
Screened Coulomb Potential (SSCP) yields reasonable results only for the in-
nermost state when Z is Large while it gives a rather poor result for the outer-
most and middle atomic states. Dutt et al., in 1984 [13], carried out studies on a 
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screened coulomb potential by using a Rayleigh-Schrodinger Perturbation 
theory and obtained energy eigen values for large values of screening parameters. 
Their calculations to the energy eigenvalue yielded reasonable result compared 
to other numerical and analytical methods. Hamzavi and his colleagues in 2012 
[14], applied the NU Method to the Yukawa potential for any l-state and ob-
tained bound state approximate analytical solutions. Computed values for the 
bound state energy for different states were obtained and compared with the 
(Asymptotic Iteration Method) AIM, Supersymmetric (SUSY) and Numerical 
method as stated in their literature. Gerry and Lamb [15] obtained the energy 
eigenvalues for the Yukawa potential by using the Generalized Scaling Varia-
tional method for a system with a spherically symmetric columbic potential at 
the origin. The energy eigenvalues for different states and different screening 
parameters for bound states were obtained and these values were in agreement 
with those obtained in the literature Dutt and Varshni [13] studied the energy 
levels of neutral atoms by applying the shifted large-N expansion to the Yukawa 
potential with a modified screening parameter. They obtained energy values for 
the k-shell over the range of atomic number Z up to 84 and compared with those 
obtained within the framework of hyper-viral-pad scheme they observed that the 
large-N techniques may also be applied in other areas of atomic physics. Sharma 
et al. [16] calculated bound state for all angular momenta for superposed two 
static screened coulomb potentials (SSCP) expressed as  

( ) ( )1 2e er rV r g g rα γα− −= − +                      (5) 

where 1g  and 2g  are coupling constants, α is the screening parameter and γ 
is the screening strength. By subjecting 1 0g = , the modified screened coulomb 
potential as well as its numerical calculations for the bound state is obtained. 
Pakdel et al. [17] studied the Dirac equation with scalar and vector potential for 
the Yukawa potential and obtained both bound and scattering states. In their 
calculations, the energy eigenvalues for different values of n and k were reported 
numerically as well as their corresponding eigenstates. Since the screened cou-
lomb potential plays significant role in microscopic fields, this potential has been 
applied in different branches of atomic and molecular physics and chemistry. 
For this reason, Roy [18] carried out studies on the critical parameters and 
spherical confinement of H atom in screened Coulomb potential using the GPS 
method. He extended his studies towards finding bound state energy eigenvalues 
for the screened coulomb potential  

( ) ( )0
0

i
ii

VV r V r
r

α∞

=
= − ∑                    (6) 

and their corresponding wavefunctions as well as providing information re-
garding sample dipole polarizability. Onate and Ojunubah [19] applied the su-
persymmetric shape invariance approach and formalism on a class of YP ex-
pressed as  
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( )
2

2

e er rbr rc aV r
r

α α− −− + −
=                      (7) 

and obtained bound state energy eigenvalue calculations. They deduced three 
different energy representations for the following potentials namely the coulomb, 
Yukawa and inversely quadratic Yukawa as they obtained their normalized wa-
vefunctions and energy eigenvalues, compared to other related work via the NU 
and AP method in their literature and the values obtained yielded reasonable 
result. Ita et al. [20] obtained bound state solutions of the Schrödinger’s equation 
for Manning-Rosen plus a Class of Yukawa (MRCY) potential given as 

( )
( )

22
0 0

2 2

e ee e

1 e

r rr r

r

V VC DV r
r r

α αα α

α

− −− −

−

  ′+ = − − −
 − 

              (8) 

From their calculations, they deduced three different potentials such as the 
Manning-Rosen, Yukawa and inversely quadratic Yukawa potential and ob-
tained bound state energy eigenvalues as well as wave functions for different 
principal quantum number n for the s-state. In view of the relativistic quantum 
mechanics, a particle moving in a potential field is described particularly with 
the Klein-Gordon (KG) equation. Over the years numerous works have been 
reported concerning the Klein-Gordon equations for various kinds of potentials 
by using different Methods such as supersymmetry [21], supersymmetric WKB 
approach [22], Nikiforov-Uvarov Method [23]-[30]. Ikhdair [31] obtained ap-
proximate analytical bound state solution of the Klein-Gordon equation with 
equal Scalar and Vector Eckart type potential given as  

( ) ( ) ( )
2 2

1 22 2

e 1 e, 4
1 e 1 e

r r

r r

qV r q V V
q q

α α

α α

− −

− −

+
= −

− −
                (9) 

via the NU Method. Both energy equation as well as the un-normalized wave 
functions expressed in terms of the Jacobi polynomial were obtained. Ikot et al. 
[32] obtained approximate analytic solutions of the Klein-Gordon in D-dimension 
for any l-state for a seven parameter type potential expressed as  

( ) ( ) ( ) ( ) ( )
2 2

2 22 22 2

e e
e ee e

r r

r rr r

B C Fb GbV r A
q qq q

α α

α αα α
= + + + +

+ ++ +
       (10) 

where A,B,C,F and G are potential parameters, q is the deformation parameter, 
2e erb α= , er  is the distance from equilibrium position and α is the  screening 

parameter. In their work, they obtained both bound and scattering state with 
energy spectrum of some special potential such as Hulthen, Manning-Rosen, 
Eckart and Wood-Saxon potential. Hansabadi et al. [33] studied a special kratz-
er-type potential where ( ) ( )V r S r≠  and obtained bound state solution  

of the Klein-Gordon equation with position dependent mass ( ) 1
0

mm r m
r

= +   

as well as the wavefunction.Since then many literatures have reported different 
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special case of potential such as, Poschl-Teller potential [34], Rosen-Morse [16] 
and many more by applying different methods. Moreover when arbitrary angu-
lar momentum quantum number l is present, one can only solve the SE and 
KGE approximately using suitable approximation scheme [35]. Some of such 
approximations include convectional approximation scheme proposed by 
Greene and Aldrich [36], improved approximation scheme [37], an elegant ap-
proximation scheme [38]. These approximations are used to deal with the cen-
trifugal term or potential barrier arising from the problem of interest. Not much 
has been achieved on the Schrodinger equation for the MGESCY potential over 
the years. The aim of this report is to obtain bound state solutions of the 
Schrödinger equation for the More General Exponential Screened Coulomb Po-
tential plus Yukawa (MGESCY) potential. 

2. Theoretical Approach 

The Nikiforov-Uvarov method is based on the solutions to a second-order linear 
differential equation with special orthogonal function [23]. The hyper-geometric 
type has been used to solve the Schrödinger, Klein-Gordon and Dirac equation 
for different kind of potentials [25]-[30]. 

2.1. The More Generalized Form of Nikiforov-Uvarov Method 

Given a second order differential equation of the form 

( ) ( )
( ) ( ) ( )

( ) ( )2 0
s s

s s s
s s

τ σ
ψ ψ ψ

σ σ
′′ ′+ + =                  (11) 

In order to find the exact solutions to Equation (11), we set the wavefunction 
as 

( ) ( ) ( )s s sψ φ χ=                           (12) 

where ( )sφ  and ( )sχ  are the hypergeometric-type functions 
And on substituting Equation (12) into Equation (11), then Equation (11) re-

duces to hypergeometric type 

( ) ( ) ( ) ( ) ( ) 0s ss s sχ τ χσ χ λ′′ ′+ + =                 (13) 

where the wave function ( )sφ  is defined as the logarithmic derivative, 

( )
( )

( )
( )

s s
s s

φ π
φ σ
′

=                             (14) 

where ( )sπ  is at most first order polynomials. 
Likewise, the hypergeometric type function ( )sφ  in Equation (13) for a fixed 

n is given by the Rodriques relation as 

( ) ( ) ( ) ( )d
d

n
nn

n n

Bs s s
S s

χ σ ρ
ρ

 =                     (15) 

where nB  is the normalization constant and the weight function ( )sρ  must 
satisfy the condition 
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( ) ( ) ( ) ( )d
d

n

s
ss ssσ ρ τ ρ =                     (16) 

with 

( ) ( ) ( )2s ss τ πτ = +                         (17) 

In order to accomplish the condition imposed on the weight function ( )sρ , 
it is necessary that the classical or polynomials ( )sτ  be equal to zero to some 
point of an interval ( ),a b  and its derivative at this interval at ( ) 0sσ >  will be 
negative, that is 

( )d
0

d
s

s
τ

< .                           (18) 

Therefore, the function ( )sπ  and the parameters λ required for the NU me-
thod are defined as follows: 

( )
2

2 2
s kσ τ σ τ

π σ σ
′ ′− − = ± − + 

 

 

                 (19) 

( )k sλ π ′= +                           (20) 

The s-values in Equation (19) are possible to evaluate if the expression under 
the square root be square of polynomials. This is possible, if and only if its dis-
criminant is zero. With this, the new eigenvalues equation becomes 

( ) 2

2

1d d , 0,1,2,
d 2 dn

n nn n
s s
τ σ

λ λ
−

= = − − =                 (21) 

On comparing Equation (20) and Equation (21), we can obtain the energy ei-
genvalues. 

2.2. Parametric Nikiforov-Uvarov Method 

The parametric form is simply using parameters to obtain explicitly energy ei-
genvalues and it is still based on the solutions of a generalized second order li-
near differential equation with special orthogonal functions. The hypergeometric 
NU method has shown high utility in calculating the exact energy levels of all 
bound states for some solvable quantum systems.  

Given a second order differential equation of the form 

( ) ( )
( ) ( ) ( )

( ) ( )2 0
s s

s s s
s s

τ σ
ψ ψ ψ

σ σ
′′ ′+ + =                  (22) 

where ( )sσ  and ( )sσ  are polynomials at most second degree and ( )sτ  is 
first degree polynomials. The parametric generalization of the N-U method is 
given by the generalized hypergeometric-type equation 

( ) ( ) ( )
( )

( )21 2
1 2 322

3 3

1 0
1 1

c c ss s s s s
s c s s c s

−  ′′ ′Ψ + Ψ + − + − Ψ = − −
          (23) 

Thus Equation (22) can be solved by comparing it with Equation (23) and the 
following polynomials are obtained 
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( ) ( ) ( ) ( ) ( ) 2
1 2 3 1 2 3, 1 ,s c c s s s c s s s sτ σ σ= − = − = − + −        (24) 

The parameters obtainable from Equation (23) serve as important tools to 
finding the energy eigenvalue and eigenfunctions.  

Now substituting Equation (24) into Equation (19): 

( ) ( ) ( )
1

2 2
4 5 6 3 7 8s c c s c c k s c k s cσ ± ± = + ± − + + +               (25) 

where 

( ) ( ) 2
4 1 5 2 3 6 5 1 7 4 5 2

2 2
8 4 3 9 3 7 3 8 6

1 11 , 2 , , 2

,

,
2 2

c c c c c c c c c c

c c c c c c c c

= − = − = + = −

= + = + +

 


        (26) 

The resulting value of k in Equation (25) is obtained from the condition that 
the function under the square root is square of a polynomials and it yields, 

( )7 3 8 8 92 2k c c c c c± = − + ±                     (27) 

The new ( )sπ  for k−  becomes 

( ) ( )4 5 9 3 8 8s c c s c c c s cπ  + − + −=               (28) 

for the k−  value, 

( )7 3 8 8 92 2k c c c c c− = − + −                     (29) 

Using Equation (17), we obtain  

( ) ( ) ( )1 4 2 5 9 3 8 82 2 2s c c c c s c c c s cτ  = + − − − + −  .        (30) 

The physical condition for the bound state solution is 0τ ′ <  and thus 

( ) ( )3 9 3 82 2 0s c c c cτ ′ = − − + <                   (31) 

with the aid of Equations (20) and (21), we obtain the energy equation as  

( ) ( ) ( )( )2
2 3 3 5 9 3 8 7 3 8 8 92 1 2 1 2 2 0c c n c n n c n c c c c c c c c− + − + + + + + + + =   (3

2) 

The weight function ρ(s) is obtained from Equation (16) as 

( ) ( )
11

1010 3
11

31
c

cc cs s c sρ − −−= −                    (33) 

and together with Equation (15), we have 

( ) ( )
11

10 10
3

1, 1

31 2
c

c c
c

n ns P c sχ
 

− − −  
 = −                   (34) 

where 

( )10 1 4 8 11 2 5 9 3 82 2 , 2 2c c c c c c c c c c= + + = − + +           (35) 

and ( ),
nP α β  are the Jacobi polynomials. The second part of the wave function is 

obtained from Equation (14) as 

( ) ( )
13

1212 331
c

cc cs s c sφ − −= −                     (36) 

where 

( )12 4 8 13 5 9 3 8,c c c c c c c c= + = − +                (37) 
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Thus, the total wave function becomes 

( ) ( ) ( )
11

13 10 10
12 312 3

1, 1

3 31 1 2n

cc c cc cc cns N s c s P c sψ
 

− − −  − −  = − −          (38) 

where nN  is the normalization constant. 

3. Bound State Solutions of Schrodinger Equation 
3.1. Solutions to the Radial Part of the Schrodinger Equation with  

More General Exponential Screened Coulomb Potential  
(MGESCP) 

Given the radial Schrodinger equation as [26] 

( ) ( ) ( ) ( )
2 2

2 2 2

d d2 2 0
dd 2

nl nl
nl

R r R r ћE V r R r
r rr ћ r

µ λ
µ

 
+ + − − = 

 
,        (39) 

( )1l lλ = +  and ( )V r  is the potential energy function given as 

( ) ( )( )20 1 1 e rV
V r r

r
αα −= − + + ,                  (40) 

where 0V  is the potential depth of the MGESC potential and α is an adjustable 
positive parameter and takes any value between zero and infinity 

( ) ( ) ( ) ( )( ) ( )2 2
20

2 2

1 1
1 1 e

2 2
r

eff

l l ћ l l ћV
V r V r r

rr r
αα

µ µ
−+ +

= + = − + + +     (41) 

Substituting the effective potential of Equation (41) into radial Schrodinger 
equation of Equation (39), we obtain 

( ) ( )

( )( ) ( ) ( )

2

2

2
20

2 2

d d2
dd

12 1 1 e 0
2

nl nl

r
nl

R r R r
r rr

l l ћV
E r R r

rћ r
αµ α

µ
−

+

 +
+ + + + − = 

  

        (42) 

( ) ( )

( ) ( )

2

2

2
2 20 0

02 2

d d2
dd

12 e e 0
2

nl nl

r r
nl

R r R r
r rr

l l ћV V
E V R r

r rћ r
α αµ α

µ
− −

+

++ + + + − = 

       (43) 

( ) ( )

( ) ( ) ( )

2

2

2 2 2
0 0 02 2 2

d d2
dd

1 2 2e e 0

nl nl

r r
nl

R r R r
r rr

E V r V V r R r
r ћ ћ

α αµ µα γ− −

+

 + + + + − =  

      (44) 

Introducing the following dimensional parameters, 

( )

( )
( )

2 2
02

2
0 02

2 e

2 e

1

r

r

E V
ћ

V V
ћ
l l

α

α

µβ α

µε

γ

−

−

− = +

= +

= +

                     (45) 

( ) ( ) ( )
2

2 2
2 2

d d2 1 0
dd

nl nl
nl

R r R r
r r R r

r rr r
β ε γ + + − + − =             (46) 
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Comparing Equation (46) with Equation (32) yields the following dimensional 
parameters 

( ) ( ) ( ) ( ) ( ) 2 2
1 2 32, 1 ,r c c r r r c r r r r rτ σ σ β ε γ= − = = − = = − + −      (47) 

( ) ( )1 2 3 4 1 5 2 3

2 2 2
6 5 1 7 4 5 2 8 4 3

2 2
9 3 7 3 8 6

1 1 12, 0, 1 , 2 0,
2 2 2

1, 2 , ,
4

c c c c c c c c

c c c c c c c

c c c c c c

β ε γ

β

= = = = − = − = − =

= + = = − = = + = +

= + + =

         (48) 

Substituting the polynomial of Equation (47) into Equation (28), the following 
is obtained 

( )

( )

2 2

2 2

1 1 1
2 2 4

1 1 4 4 4 1
2 2

r r r kr

r k r

π β ε γ

β ε γ

= ± + − + +

= − ± + − + +

                 (49) 

The discriminant of the expression under the square root in Equation (49) has 
to be zero for it to have equal roots. Therefore, we obtain 

( )( ) ( )( )2 24 4 4 4 1 0k ε β γ− − + =                       (50) 

On solving Equation (50), the following is obtained for  

( ) ( )7 3 8 8 92 2 4 1k c c c c c ε β γ± = − + ± = − ± +                 (51) 

where 

( )4 1k ε β γ− = − − +                          (51a) 

( )4 1k ε β γ+ = − + +                         (51b) 

Substituting k± into Equation (49), gives the following four possible solutions 
obtained for π(r) as 

( )
( ) ( )

( ) ( )

1 4 1 for 4 11 2
12 4 1 for 4 1
2

r k
r

r k

β γ ε β γ
π

β γ ε β γ

−

+

 − + = − − += − ± 
 + + = − + +


        (52) 

From the four possible forms of π(r) in Equation (34), we select the one for 
which the function τ(s) in Equation (19) has a negative derivative. τ(s) satisfies 
these requirements with: 

( ) 1 2 4 1s rτ β γ= − + +                         (53) 

and 

( ) 2 0sτ β′ = − <                            (54) 

Hence the new ( )rπ  for which k−  becomes 

( ) ( )1 1 4 1
2 2

r rπ β γ= − − + +                      (55) 
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( )rπ β′ = −                              (56) 

From Equation (20), 

( ) ( )4 1k sλ π ε β γ β′= + = − − + −                   (57) 

and also from Equation (21), 

( ) ( )
2

2

1d d 2 0,1,2,
d 2 dn

n nn n n
s s
τ σ

λ λ β
−

= = − − = =            (58) 

solving Equation (57) and Equation (58) explicitly, we obtain 

( )

2

2

2 1 4 1n
ε

β
γ

 
 =
 + + + 

                        (59) 

Substituting the values of 2 ,β ε  and γ  of Equation (45) into Equation (59) 
yield 

( ) 22
0 02

, 0 2

e
e

12

r
r

n l

V V
E V

n lћ

α
α µ

α
−

−
 +
 = − −
 + + 

                   (60) 

To obtain the radial wave function o Equation (3), where 3 0c → , the follow-
ing expressions are obtained  

( ) ( )10 1
11

c
n nr L c rχ −=                          (61a) 

( ) 1312ec rcr rφ =                             (61b) 

where 

( ) ( )
11

10 10
3 10

3

1, 1

3 110
lim 1 2

cc c
c c

n nc
P c r L c r
 

− − −  
 

→
− =                    (61c) 

( )
13

12 133
3

30
lim 1 e

c
c c sc

c
c r − −

→
− =                          (61d) 

Then, the radial wave function can be expressed 

( ) ( )13 1012
11ec r cc

nl n nR r N r L c r=                          (62) 

where 

( ) ( )10 12 13 11
1 11 4 1 1, 4 1 1, , 2
2 2

c l l c l l c cβ β= + + + = − + + + = − =      (63) 

Then the wave functions for the MGESC potential is expressed below as 

( ) ( ) ( ) ( )
1 1 4 1 1 1 4 1 12 2 e 2

l l l lr
nl n nR r N r L rβ β

− + + + + + +−=                  (64) 

if ( ) 12r vβ −=  and ( )1 4 1 1
2

l lα = + +                  (65) 

Substituting Equation (65) into Equation (64), we obtain 

( ) ( ) ( )
11

1 22 22, 2 e
v

nl n l nR r N v L v
αα αβ

− + −− +=                          

where ,n lN  is the normalization constant. 
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3.2. Solutions to the Radial Part of the Schrodinger Equation with  
the Yukawa Potential 

Given the radial Schrodinger equation as 

( ) ( ) ( )
2

2 2

d 2
d

nl
eff nl

R r
E V r R r

r ћ
µ  + −  ,                    (67) 

where ( )effV r  is the effective potential energy function given as 

( ) ( ) 2
1

2

1e
2

r l l ћVV r
r r

α

µ

− +
= − + ,                      (68) 

1V  s the potential depth of the YP and α  is an adjustable positive parameter. 
Inserting Equation (68) into Equation (67), we obtain 

( ) ( ) ( )
2 2

1
2 2 2

d 1e2
d 2

r
nl

nl
R r l l ћVE R r

rr ћ r

αµ
µ

− +
+ + − 

  
,             (69) 

Equation (69) cannot be solved exactly for 0l ≠  hence to overcome this bar-
rier, we introduce an approximation of the pekeris type for the centrifugal [24] 
[25] [26] [27] term as 

( ) ( )
2

2 2

1 1;
1 e1 e

rr rr αα

α α
−−

= =
−−

 

making the transformation e rs α−=  Equation (68) becomes 

( ) ( )
( )

( )

2 2
1

2

1
1 2 1

l l ћV sV s
s s

αα
µ

+
= − +

− −
                   (70) 

Again, applying the transformation e rs α−=  to get the form that NU method 
is applicable, Equation (67) gives a generalized hypergeometric-type equation as 

( ) ( )
( )

( )

( )
( ) ( ) ( ) ( )

2

2

2 2 2 2
2 2

d 1 d
1 dd

1 2 0
1

R s s R s
s s ss

B s B s R s
s s

β β β λ

−
+

−

 + − + + + − + = −

       (71) 

where 
2 1

2 2 2

22 , VE B
ћ ћ

µµ
β

α α
− = =                       (72) 

Comparing Equation (71) with Equations (32), (26), (35) and (37) yields the 
following parameters 

2 2
1 2 3 4 5 6 7

2 2 2
8 9 10 11

2 2
12 13

2 2 2
1 2 3

1 11, 0, , , 2 ,
2 4

1 1, , 1 2 , 2 2
4 4

1 1, ,
2 4

, 2 ,

c c c c c c B c B

c c c c

c c

B B

β β

β λ λ β λ λ β λ

β λ λ β λ

β β β λ

= = = = = − = + + = − −

 
= + = + = + + = + + + +  

 
 

= + = − − + + +  
 

= + = + = + 

 (73) 
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Now using Equations (32), (72) and (73) we obtain the energy eigen spectrum 
of the YP as 

( )

( )

2
2

2

1 12 2 1
2 4

12 1 2
4

B n n n

n

λ λ
β λ

λ

  − + + + + + +  
  = −

 
+ + + 

 

,          (74) 

Equation (74) can be solved explicitly and the energy eigen spectrum of YP 
becomes 

( )
( )

22
1

2

12
2 1 2

ћ n lVE
n lћ

αµ
µ

 + +
= − − 

+ +  
                  (75) 

We now calculate the radial wave function of the YP as follows: 
Using Equation (73), the weight function ( )sρ  of Equation (33) is given as  

( ) ( )22 1 VUs s sρ = − ,                        (76) 

where 2U β λ= +  and 1
4

V λ= +  

Also we obtain the wave function ( )sχ  as  

( ) ( ) ( )2 ,2 1 2U V
ns P sχ = − ,                       (77) 

where ( )2 ,2U V
nP  are Jacobi polynomials 

Lastly, 

( ) ( )
13

1212 331
ccc cs s c sϕ − −= − ,                     (78) 

And using Equation (14) we get 

( ) ( )
1
21 VUs s sϕ += − ,                        (79) 

we then obtain the radial wave function from the equation 

( ) ( ) ( ) ( )
1

2 ,221 1 2V U VU
n n nR s N s s P s+= − − ,                (80) 

where n is a positive integer and nN  is the normalization constant. 

3.3. Solutions to the Radial Part of the Schrodinger Equation with  
More General Exponential Screened Coulomb plus Yukawa  
(MGESCY) Potential 

Combining the potential of Equation (40) and the Yukawa potential of Equation 
(4), we obtain 

( ) ( )( )20 1e1 1 e
r

rV VV r r
r r

α
αα

−
−= − + + −                 (81) 

Considering the MGESCY potential expression of Equation (81), on substitu-
tion into Equation (39) given as 
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( ) ( )

( )( ) ( ) ( )

2

2

2
20 1

2 2

d d2
dd

12 1 1 e e 0
2

nl nl

r r
nl

R r R r
r rr

l l ћV VE r R r
r rћ r

α αµ
α

µ
− −

+

 +
+ + + + + − = 

  

  (82) 

we obtained both bound state solution as well as un-normalized wave function 
of the Schrodinger equation after solving Equation (82) explicitly by applying 
the NU method as 

( ) 22
0 0 12

, 0 2

e e
e

12

r r
r

n l

V V V
E V

n lћ

α α
α µ

α
− −

−
 + +
 = − −
 + + 

           (83) 

And the radial wave function expressed as  

( )
( ) ( ) ( )

1 1 4 1 1 1 4 1 12 2 e 2
l l l lr

nl n nR r N r L rβ β
− + + + + + +−=              (84) 

if ( ) 12r vβ −=  and ( )1 4 1 1
2

l lα = + +              (85) 

substituting Equation (85) into Equation (84), we obtain 

( ) ( ) ( )
11

1 22 22, 2 e
v

nl n l nR r N v L v
αα αβ

− + −− +=              (86) 

where ,n lN  is the normalization constant. 

4. Numerical Analysis 

The aim of this report is to obtain both bound state and their corresponding ei-
genfunctions of the Schrodinger for the Mixed Potential (MGESCY) potential. 
To fulfil this aim, we now use some of the previously derived equations to calcu-
late numerical values for the MGESC potential, Yukawa potential and also the 
sum of both potential known as the MGESCY potential for diatomic molecules 
with different screening parameters α for 0l =  and 1l =  state using python 
program.  

4.1. Numerical Values 

Considering the bound state energy eigenvalue equation expressed in Equation 
(60), we obtained numerical values for different l-states at different screening 
parameters for CO molecule ( 1.21282r = ) and NO molecule ( 1.1508r = ) as 
shown in Tables 1-6. 

To obtain the bound state energy eigen values of the Yukawa potential for di-
atomic molecules, we considered Equation (83) by subjecting V0 = 0 for two 
states 

For CO and NO diatomic molecules moving under the influence of the mixed 
potential, we obtained the Energy eigenvalues given in Equation (83) and com-
puted numerical values for different screening parameter. 

The r values for N2 (1.0940), CO (1.21282) and NO (1.1508) were adapted 
from M. Karplus and R. N. Porter, Atoms and Molecules [39]. 
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Table 1. Bound State Energy eigenvalues of the MGESC potential at 0.01α =  and 0.03α = , 0l = . 

n 

0.01α =  0.03α =  

CO NO CO NO 

0 2.75 MeVV =  0 2.75 MeVV =  0 5 MeVV =  0 10 MeVV =  0 5 MeVV =  0 10 MeVV =  

1 

2 

3 

4 

5 

6 

7 

8 

−3.7180178 

−1.6673640 

−0.9496352 

−0.6174293 

−0.4369717 

−0.3281615 

−0.2575395 

−0.2091213 

−3.7225783 

−1.6694094 

−0.9508002 

−0.6181869 

−0.4375080 

−0.3285644 

−0.2578557 

−0.2093782 

−11.777558 

−5.3119550 

−3.0489938 

−2.0015661 

−1.4325929 

−1.0895201 

−0.6685268 

−0.7141926 

−46.8312884 

−20.9668751 

−11.9170305 

−7.7273196 

−5.45142726 

−4.07913595 

−3.1884661 

−2.57782580 

−11.8199261 

−5.3310739 

−3.05997575 

−2.00878169 

−1.43776271 

−1.09345627 

−0.86998815 

−0.71677913 

−46.9997199 

−21.0443114 

−11.9599184 

−7.7551422 

−5.4710662 

−4.0934052 

−3.1996031 

−2.5713199 

 
Table 2. Bound State Energy eigenvalues of the MGESC potential for 0.03α =  at 1l = . 

n 

0.03α =  

CO NO 

0 5 MeVV =  0 10 MeVV =  0 5 MeVV =  0 10 MeVV =  

1 

2 

3 

4 

5 

6 

7 

8 

−5.4720184 

−3.0993611 

−2.0011597 

−1.4046059 

−1.0449027 

−0.8114416 

−0.6513814 

−0.5369127 

−21.7904705 

−12.2998410 

−7.9070355 

−5.5202019 

−4.0820076 

−3.1481629 

−2.5079220 

−2.0499615 

−5.4787305 

−3.1031632 

−2.0036148 

−1.4063294 

−1.0461850 

−0.8124375 

−0.6521810 

−0.3755048 

−21.8171974 

−12.3149287 

−7.9167348 

−5.5275928 

−4.0701559 

−3.1520255 

−2.5109943 

−2.0524772 

 
Table 3. Bound State Energy eigenvalues of the yukawa potential at 0.01α =  at 0l = . 

n 

0.01α =  

CO NO 

1 2.075 MeVV =  1 5 MeVV =  1 2.075 MeVV =  1 5 MeVV =  

1 

2 

3 

4 

5 

6 

7 

8 

−0.5253053 

−0.2334690 

−0.1313263 

−0.0840488 

−0.0536725 

−0.0422066 

−0.0323158 

−0.0259410 

−3.0501106 

−1.3556047 

−0.7625276 

−0.4881771 

−0.3389011 

−0.2489886 

−0.1906319 

−0.1506227 

−0.5259573 

−0.2337588 

−0.1314893 

−0.0841531 

−0.0584397 

−0.0429353 

−0.0328723 

−0.0259732 

−3.0538963 

−1.3572873 

−0.7634741 

−0.4886234 

−0.3393218 

−0.2492976 

−0.1908685 

−0.1508026 
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Table 4. Bound State Energy eigenvalues of the yukawa potential at 0.01α =  at 1l = . 

n 

0.01α =  

CO NO 

1 2.075 MeVV =  1 5 MeVV =  1 2.075 MeVV =  1 5 MeVV =  

1 

2 

3 

4 

5 

6 

7 

8 

−0.2334690 

−0.1313263 

−0.0840488 

−0.0583673 

−0.0428821 

−0.0328316 

−0.0259410 

−0.0211221 

−1.3556047 

−0.7625276 

−0.4880177 

−0.3389011 

−0.2489806 

−0.1906319 

−0.1506227 

−0.1220044 

−0.2337588 

−0.1314893 

−0.0841531 

−0.0584397 

−0.0429352 

−0.0328723 

−0.0259732 

−0.0210329 

−1.3572872 

−0.7634740 

−0.4886234 

−0.3393218 

−0.2492976 

−0.1908685 

−0.1500969 

−0.1221555 

 
Table 5. Bound state energy eigenvalues of the mixed potential at 0l = , 0.01α =  and 0.03α = , 0 5 MeVV = , 1 10 MeVV = . 

n 
0.01α =  0.03α =  

CO NO CO NO 

1 

2 

3 

4 

5 

6 

7 

8 

−48.8541621 

−21.7400730 

−12.2501418 

−7.5765943 

−5.4716195 

−4.0329128 

−3.0991367 

−2.4594302 

−48.9144403 

−21.7668970 

−12.2652568 

−7.6735482 

−5.4737100 

−4.0379117 

−3.1029609 

−2.4619773 

−46.6610242 

−20.1571763 

−11.7696030 

−7.5292080 

−5.3085336 

−3.9371500 

−3.0470693 

−2.4368832 

−46.8319028 

−20.9195255 

−11.8129699 

−7.6100979 

−5.3279823 

−3.9515762 

−3.0582366 

−2.4457656 

 
Table 6. Bound State Energy eigenvalues for 0 0.05α≤ ≤  for different State of Diatomic Molecules in Atomic unit 1µ α= = = ; 

0 2.75 MeVV = , 1 2.075 MeVV = . 

n,l 
0.01α =  0.03α =  

N2 CO NO N2 CO NO 

1.0 

2.0 

2.1 

3.0 

3.1 

3.2 

−7.04486 

−3.14596 

−1.78139 

−1.78139 

−1.14977 

−0.80667 

−7.02827 

−3.13859 

−1.77200 

−1.77200 

−1.14707 

−0.80477 

−7.03692 

−3.14245 

−1.77938 

−1.77938 

−1.14848 

−0.80576 

−6.79940 

−3.06487 

−1.75779 

−1.75779 

−1.15280 

−0.82416 

−6.75229 

−3.04363 

−1.74560 

−1.74560 

−1.14480 

−0.81844 

−6.77682 

−3.05469 

−1.75195 

−1.75195 

−1.14896 

−0.82142 

4.2. Potential Variation 

We start by giving an overview of the differences in the effective potential plots 
against internuclear distance of some particles moving under the influence of the 
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MGESC potential in Figures 1-3 and the Yukawa potential in Figure 4 and 
Figure 5. We have set l = 0, excluding the angular momentum quantum number 
in Figure 1 and Figure 4 for the MGESC potential and Yukawa potential re-
spectively, at α = 0.01, α = 0.03, α = 2 and α = 5. Also, we chose l = 1 in Figure 2 
and Figure 5, and l = 2 in Figure 3 and obtained plots that describes particles 
which are diatomic in nature. The different plots represented below simply show 
how energy varies with distance for different values of the screening potential. In 
Figure 6, we have shown the variation of the effective potential (MGESCY) po-
tential at α = 0.01, for l = 0 and l = 1. 
 

 
Figure 1. Variation of the effective MGESC potential against distance (r) for different α 
values at 0l = , 0 2.75 MeVV = . 

 

 
Figure 2. Variation of the effective MGESC potential against distance for different α val-
ues at 1l = , 0 2.75 MeVV = . 
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Figure 3. Variation of the effective MGESC potential against distance for different α val-
ues at 2l = , 0 2.75 MeVV = . 
 

 
Figure 4. Variation of effective Yukawa potential against distance for different α values at 

0l = , 1 2.075 MeVV = . 

5. Discussions 

The variation of the MGESC potential with the radial distance of separation be-
tween the interacting particles (r) for different screening parameters (α) with 

0 2.75 MeVV =  at l = 0 and l = 1 in Figures 1-3 and the Yukawa potential with 

1 2.075 MeVV =  at l = 0 and l = 1in Figure 4 and Figure 5 gives a full descrip-
tion of the behaviour of particles that are purely diatomic. When the l value in-
creases, keeping the potential strength constant, the particles behave more re-
pulsive than attractive. We tested the energy obtained in the Equations (60) and 
(83) for two diatomic molecules (CO and NO) and obtained results presented in 
Tables 1-6. The energies plot against n for different values of (α) for both CO 
and NO show close resemblance even at different values of the potential depth.  
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Figure 5. Variation of effective Yukawa potential for different α values at 1l = , 

1 2.075 MeVV = . 

 

 
Figure 6. More general exponential screened coulomb plus Yukawa (MGESCY) potential 
versus r with 0 2.75 MeVV = , 0 2.75 MeVV =  and 0.01α =  for 0l =  and 1l = . 

 
Comparing the energy plots of the Yukawa and the MGESC potential for both 
CO and NO molecules, one can see that as n→∞, the energy obtained E→0, 
which describes exothermal behaviour (supporting information). For the mixed 
potentials where  0 5 MeVV =  and 1 10 MeVV = , the energy expression in Ta-
ble 5 shows that both diatomic molecules possesses similar behaviour. 

6. Conclusion 

The analytical solutions of both Schrodinger for the more general exponential 
screened coulomb plus Yukawa (MGESCY) potential have been presented via 
the NU method. The Nikiforov-Uvarov (NU) method employed in the solutions 
enables us to explore an effective way of obtaining the energy eigenvalues and 
their corresponding eigenfunctions of the Schrödinger equations for any l-state. 
Finally, we calculate the energies and also obtained graphs of the MGESC poten-
tial, Yukawa potential and the mixed potential for diatomic molecules by means 
of Equations (60) and (83), for the l-states at different values of the screened pa-
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rameters (Supporting information). The explicit values of the energy at different 
values of the screened parameter are shown in Tables 1-6. 
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