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Abstract 
In this paper the laminar flow of Newtonian conducting fluid produced by a 
moving plate in presence of transverse magnetic field is investigated. The basic 
equation governing the motion of such flow is expressed in non-dimensional 
form. Analytic solution of the governing equation is obtained by Laplace 
transformation. Numerical solution of the dimensionless equation is also ob-
tained with the help of Crank-Nicholson implicit scheme. Velocity profiles of 
the corresponding problem are shown in the graphs. 
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1. Introduction 

If a magnetic field is placed before a moving conducting fluid then the motion of 
the fluid is changed by the influence of the magnetic field. The magnetic field is 
also perturbed by the motion of the fluid: one affects the other and vice versa. 
The motion of the conducting fluid across the magnetic field generates elec-
tric-currents, which changes the magnetic field and the action of magnetic field 
on these currents gives rise to mechanical forces which modify the flow of the 
fluid. The electromagnetic field is governed by Maxwell’s electromagnetic equa-
tions and the motion of the fluid is governed by the field equations of the fluid 
mechanics. In recent years, the study of MHD phenomena in liquid conductors 
has received considerable impetus on account of its theoretical experimental and 
practical applications. Schlichting [1] studied the problem of an incompressible 
viscous fluid flow problem produced by the oscillation of a plane solid wall. This 
problem is also known as stokes second problem. Von Keregek and Davis [2] 
performed the linear stability theory of oscillating Stokes layers. Pauton [3] ob-
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tained the transient solution for the flow due to the oscillation plane. Erdogan [4] 
derived the analytic solutions for the flow produced by the small oscillating wall 
for small and large time by Laplace transformation method. Recently Poria, 
Mamaloukas, layek & Magumdar [5] derived the solution of laminar flow of 
viscous conduction fluid produced by the oscillating plane wall. They solved the 
problem both analytically and numerically in presence of magnetic field. In this 
paper the main aim is to investigate the effects of a transverse magnetic field on 
the incompressible electrically conducting fluid flow produced by a moving plate. 
An attempt has been made to investigate the analytic solutions for the problem. 
The problem has been solved numerically using well known Crank-Nicholson 
Implicit scheme. 

2. Formulation of the Problem 

The equation of motion of the conducting fluid in presence of transverse mag-
netic field is 

2 2
0

d 1 1
d
V p V B V
t

ν σ
ρ ρ

= − ∇ + ∇ −                     (1) 

where V  is the fluid velocity, p the fluid pressure, ν the kinetic coefficient of 
viscosity, 0B  the uniform magnetic field, σ the electrical conductivity. 

Let us consider a flat plate extended to large distances in x′  and z′  direc-
tions. Again we consider an incompressible viscous fluid over a half plane solid 
wall 0y′ = . Suppose the fluid is at rest at time 0t′ < . At 0t′ =  the plane solid 
wall 0y′ =  is suddenly set in motion in x′  direction at constant velocity OU . 
As a result a two dimensional parallel flow will be produced near the plate. Since 
the fluid flows along x′  direction and there is no velocity component along the 
direction perpendicular to the direction of flow, so the equation of conservation 
of mass reduces to 

0u
x
′∂
=

′∂
.                            (2) 

As the flow is only kept in motion by the movement of the plate, one may set  

the pressure gradient 0p
x
′∂
=

′∂
. For unsteady case Equation (1) reduces 

22
0

2

Bu u u
t y

σ
ν

ρ
′ ′∂ ∂ ′= −
′ ′∂ ∂

.                         (3) 

Equation (2) indicates that u is a function of y′  and t′ . Boundary condi-
tions: 

0u′ =  when 0t′ ≤  for all y′ , 

Ou U′ =  at 0y′ =  when 0t′ ≥ ,                 (4) 

0u′ =  at y′ = ∞  when 0t′ ≥ . 
We introduce the following non-dimensional quantities 

, , ,
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L T
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= = =
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where L and T represent the characteristic length and characteristic time respec-
tively. Setting these non-dimensional quantities in Equation (3), we get 

2
2

2 ,u u M u
t y

∂ ∂
= −

∂ ∂
                       (5) 

where 

ρυ µ= , 

2
0M B L σ

µ
= . 

Here the number M is a non-dimensional number and is called Hartmann 
number. 

In this case the boundary conditions may be written as 

( )
( ) ( )

0 : ,0 0, for all

0 : 0, 1, , 0

t u y y

t u t u t

≤ =

≥ = ∞ =
                  (6) 

2.1. Analytic Solution 

We introduce the Laplace transformation and inverse Laplace transformation as 

( ){ } ( ), ,L u y t y s=                             (7) 

and 

( ){ } ( )1 , ,L y s u y t− = .                        (8) 

We have 

{ } ( ),UL sL u u y o s
t

∂  = − = 
∂ 

                    (9) 

and 

{ }
2 2 2

2 2 2

d d .
d d

uL L u
y y y

 ∂
= =    ∂ 

                    (10) 

From Equation (5), we have 

( )
2

2
2

d 0
d

s M
y

− + =


 .                     (11) 

With the help of boundary condition (6), we get 

( ) ( ){ } 1, 0,o s L u t
s

= = .                  (12) 

The Solution of Equation (11) is 

( ) 2 2

1 2, e ey S M y s My s c c+ − += + .                 (13) 

Since u is finite for y →∞ , we must have 1 0c = . 
Equation (13) reduces to 

( ) 2

2, e y s My s c − +=                        (14) 
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( ) 2 2
10, .s c c
s

∴ = ⇒ =  

Thus the Equation (13) reduces to 

( ) 21, e y s My s
s

− += .                   (15) 

Taking inverse Laplace transformation of Equation (12), we have 

( )
( )

( )
2

2
2

1 e, sin d
π

u M t

M

u y t y u u
u M

− +∞

−

= −
+∫ .            (16) 

2.2. Numerical Solution 

The Equation (5) with initial and boundary conditions (6) is solved by finite dif-
ference technique. The crank-Nicholson implicit scheme is used to solve the pa-
rabolic type of equation. In this scheme, the time derivative term is represented 
by forward difference formula while the space derivative term is represented by 
the average central difference formula. To do this the temporal first derivative 
can be approximated by 

1l l
i iu uu

t τ

+ −∂
≈

∂ ∆
.                          (17) 

The second derivative in space can be determined at the midpoint by the av-
eraging the difference approximations at the beginning ( lt ) and at the end ( 1lt + ) 
of the time increment as 

( ) ( )

1 1 12
1 1 1 1

2 2 2

2 21
2

l l l l l l
i i i i i iu u u u u uu

y η η

+ + +
+ − + −

 − + − +∂
≅ + 

∂ ∆ ∆  
            (18) 

Substituting Equation (17) and Equation (18) into Equation (5), we get 

( ) ( )
( )

1 1 1 1 2
11 1 1 1

2 2

2 21
2 2

l l l l l l l l
l li i i i i i i i
i i
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or 

( ) ( ) ( )1 1 1
1 1 1 12 1 2 1l l l l l l

i i i i i iru r s u ru r s u r u u+ + +
− − − +− + + + = − + − +       (20) 

where 

( )

2

2 ,
22
Mr sτ τ

η
∆ ∆

= =
∆

. 

The Equation (20) may be written as 

( )1 1 1
1 1 1 1 1 2

l l l l l l
i i i i i iru k u ru r u u k u+ + +
− − − +− + − = + +              (21) 

where 1 1 2k r s= + +  and 2 1 2k r s= − − . 
The system of algebraic equations in tri-diagonal form is solved by Thomas 

algorithm for each time level. In this problem some grid points have been con-
sider for numerical computation. u is obtained at each grid point at each time 
interval. The Figure 1 below is drawn for various values of y when t = 0.4. 
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Figure 1. Velocity profile for different values of Hartmann number M. 

3. Results and Discussion 

Numerical results are displayed by the above figure. This figure shows that the 
velocity of the fluid decreases as the magnetic field increases. The velocity de-
creases gradually and attains almost zero velocity at a sufficient large distance 
from the plate. 
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