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Abstract 
Even after nine decades of successful run of the Quantum Mechanics (QM), 
different viewpoints on foundational problems of Quantum Physics are still 
being actively debated. That is because mathematical logic of QM often defies 
the physical intuition which constitutes the main spirit of Physics. De Brog-
lie’s hypothesis of matter waves implied that the dynamic characteristics of a 
micro particle in motion, can be ascribed to the wave characteristics of the 
wavelet accompanying the particle. The Schrödinger equation models the 
matter-wave interactions through wavefunction ψ and effectively serves as the 
foundation of QM. Even though mathematical structure of the Schrödinger 
equation is sound and elegant, here we show a conceptual mistake in the de-
velopment of this equation wherein the physical situation has not been cor-
rectly modeled in the equation. The Coulomb potential energy of the proton 
electron pair in Hydrogen atom is essentially the negative interaction energy 
between their superposed electrostatic fields which is inversely proportional to 
their instantaneous separation distance. Assuming the proton to be relatively 
fixed at the origin of an appropriate coordinate system, the potential energy of 
the orbiting electron will be a function of instantaneous position coordinates 
of the electron. This has not been properly modeled in the Schrödinger equa-
tion. The resulting errors in the solution have been quantitatively demon-
strated in this paper. We have stressed the necessity of incorporating a specific 
correction in the potential energy term of the Schrödinger equation, after 
which it may facilitate the adoption of Bohmian QM. 
 
Keywords 
Matter Waves, Potential Energy, Interaction Energy, Wavefunction, Electron 
Orbits 

 

1. Introduction 

As per De Broglie’s hypothesis, all microscopic particles in motion are ac-
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companied by a wave-like propagation associated with the particle. This 
wave-phenomenon associated with the moving particle is characterized as mat-
ter-waves which are expected to be localized in the vicinity of the particle. De 
Broglie relations show that the wavelength λ of the accompanying matter wave is 
inversely proportional to the momentum p of the moving particle (λ = h/p) and 
that the frequency f is directly proportional to the particle’s kinetic energy T. 
This implies that the dynamic characteristics of a micro particle in motion can 
be ascribed to the wave characteristics of the wavelet accompanying the particle. 
The intensity of the wavelet is expected to be large in the immediate vicinity of 
the particle and small elsewhere, implying thereby that the accompanying matter 
waves, even though extending into surrounding space, are nearly centered on the 
instantaneous location of the moving particle. 

Schrödinger generalized the wave aspect of matter-waves by defining the wa-
vefunction ψ through the famous Schrödinger equation, which is a pure mathe-
matical entity. The Schrödinger equation determines the evolution of wavefunc-
tion ψ over time, and it is mathematically a type of wave equation. However, the 
wavefunction in quantum mechanics describes a kind of physical phenomenon, 
which is still open to different interpretations [1]. This wavefunction ψ gives an 
appearance of wave behavior to matter, without demonstrating real physical 
waves propagating in the direction of motion of the particle [2]. However, in this 
wave picture of matter represented through the wavefunction ψ, the real physical 
particles got lost in the probabilities. This statistical picture of matter particles 
was never approved by de Broglie, who believed that the particle must move in 
the wave, in phase with it, and that it is wrong to consider a wave propagation 
without localization of the particle. Following the work of David Bohm, de Brog-
lie continued to strive for a direct and real physical interpretation of mat-
ter-waves. The de Broglie-Bohm theory is today the only interpretation [3] giv-
ing real status to matter-waves in quantum theory. 

The de Broglie-Bohm theory is characterized by the pilot-wave model and the 
causal interpretation of quantum mechanics. In Bohmian mechanics a matter 
particle in motion is described in part by its wave function, evolving according 
to Schrödinger’s equation. Second part of the description specifies the actual po-
sitions of the particles through “guiding equation”, which expresses the veloci-
ties of the particles in terms of the wavefunction. Thus, in Bohmian mechanics 
the configuration of a system of particles evolves via a deterministic motion 
choreographed by the wave function. However, the Bohmian mechanics has not 
been adopted in the mainstream and as per the Copenhagen interpretation of 
QM, the intensity of the wavelet is interpreted as the probability density for the 
location of the micro particle. That is, in QM, the location of the center of a mi-
cro particle in motion is assumed to be smeared across the whole region of the 
wavelet as position probability density. 

It is significant to note that the proponent of matter-waves himself could not 
get convinced with their generalization through the wavefunction ψ of 
Schrödinger equation. If the real moving particles get lost in the probability 
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waves produced by the Schrödinger equation, there must be something seriously 
wrong either in the adaptation of original matter-wave concept or in the detailed 
development of the Schrödinger equation. It may be pointed out that Sommer-
feld’s model [4] of elliptical electron orbits, with quantized angular momentum 
and energy transitions, was a significant step forward from the Bohr model. 
When an electron moves in an elliptical orbit around the nucleus, its kinetic 
energy and potential energy both keep varying from instant to instant along the 
trajectory. However, Sommerfeld’s model got scuttled with the development of 
Schrödinger equation. Here, we shall demonstrate a logical flaw in the develop-
ment and interpretation of the Schrödinger equation. The assumption of time 
invariant potential energy term in the development of Schrödinger equation for 
Hydrogen atom was the first blunder which permanently restricted the electron 
motion along circular orbits.  

2. Schrödinger Equation for Free Particle 

The Schrödinger’s wave equation may be considered as founded on L. de Brog-
lie’s suggestion of matter waves that accompany all micro particles in motion. 
These waves were assumed to represent the crucial dynamic characteristics of 
motion of the particle, namely the momentum p and total energy E, through 
following two relations adapted from the photon wave packet. 

h λ=p                             (1) 

E hν=                             (2) 

Here, h is the Planck’s constant, λ the wavelength and ν the frequency of the 
motion induced waves accompanying the particle. Of course, unlike the photon 
wave packet, the motion induced wave packet accompanying a material particle 
is a separate entity—an appendage to the particle. Let us consider the motion of 
a free particle, say an electron.  

Let point A be the instantaneous center of an electron moving in free space 
with velocity v. This electron will be accompanied by a matter-wave field, spread 
around in the spatial vicinity of point A as represented in Figure 1. Since the 
amplitude and intensity of the associated matter-waves are expected to be max-
imum at the particle location, we can expect the wave intensity to drop to zero at 
infinity or some large distance from the electron location A. For simplicity, we 
may demarcate the spatial boundary of the matter-wave field S by assuming that 
the wave intensity at the boundary drops down to 0.01 percent (say) of the 
maximum value near the instantaneous electron location A. Let Q be any space 
point (called field point) located within the boundary of matter-wave field re-
gion S such that its distance from point A may be represented by a vector AQ = 
d. 

Let this motion induced matter-wave packet S be characterized by the para-
meter ψ known as wave function. The ψ is finite at all points within the region S 
and effectively vanishes at the boundary of S. The whole region of space S where 
the wave function ψ is defined may be termed as the ψ wave field. Since the  
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Figure 1. Representation of ψ wave field S around an 
electron in motion. 

 
electron location A changes with time, the ψ wave field will also change from in-
stant to instant. As such the wave function ψ at any field point Q will depend on 
its distance vector d from the electron location A, as well as on time t. Hence the 
ψ wave function at point Q may be represented as ψ(d, t). Let us now refer this ψ 
wave field S to an appropriate coordinate system (X, Y, Z) centered at point O. 
Let OA = R be the position vector of the instantaneous electron location A and 
let OQ = r be the position vector of the field point Q. Therefore, the distance 
vector d can be expressed as, 

= −d r R                             (3) 

Accordingly, the ψ wave function at point Q may be represented as ψ(r, R, t). 
Here, it needs to be emphasized that the wave function ψ, characterizing the 
wave field S, cannot be defined at or represented by the position coordinates of 
the point A alone, without accounting for the position coordinates of the general 
field point Q. That is, the wave function ψ cannot be represented as ψ(R, t) or 
ψ(R) without taking into account the position vector r of the general field point 
Q. The position vector R of the electron location point A is governed by the 
electron trajectory equation, 

( )f t=R                             (4) 

Substituting for R from the trajectory equation into the wave function, the ψ 
wave function at point Q may get transformed to ψ(r, t). The ψ(r, t) in general 
will be a complex function of space and time coordinates. The intensity of the 
wave function will be given by |ψ|2 which is also known as the probability densi-
ty. This wave function ψ(r, t) is obtained as a solution of Schrödinger’s wave eq-
uation. The Schrödinger’s equation in turn is derived from the energy conserva-
tion principle as applied to the moving particle, by making use of the following 
two operators, which form the core of Quantum Mechanics. 

ι→ − ∇p                             (5) 

.E tι→ ∂ ∂                           (6) 
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where iota ι = square root of (−1) and π2h= . Expressing kinetic energy T in 
terms of momentum p and mass m of the electron in motion, we have, 

2 2E T p m= =                          (7) 

Multiplying Equation (7) with ψ(r, t) and applying the operators (5) and (6), 
we get, 

( ) ( )
2

2,
,

2
r t

r t
t m

ψ
ι ψ
∂  

= − ⋅∇ ∂  



                  (8) 

This is the well-known Schrödinger’s wave equation for a free particle [5]. 

3. Notions of Kinetic, Potential and Total Energy  
3.1. Kinetic Energy and the ψ Wave Field 

If the kinetic energy of a free particle is reduced to zero, we can see from Equa-
tions (5) to (8) that ψ∇  and ∂ψ/∂t will reduce to zero. That is, in the absence 
of kinetic energy, the ψ wave field of the particle will collapse to zero. This shows 
a direct correlation between the kinetic energy of a particle in motion and the 
existence of the ψ wave field. Since the energy density in electrostatic and mag-
netic fields is proportional to the squares of electric and magnetic field strengths, 
it is quite possible that the kinetic energy of the moving particle may be existing 
as field energy of the associated ψ wave field. According to one estimate [6] 
about 35 percent of the rest mass of the electron is contained in its electrostatic 
field energy. In contrast to the current interpretation, the intensity of the wave 
function or |ψ|2, may actually represent the kinetic energy density of the particle. 
As such, difference in dynamic or relativistic [7] mass and the rest mass of an 
electron in motion may be contained in the field energy of its ψ wave field. We 
can generally say that any change in the motion of a particle will induce a cor-
responding change in the kinetic energy as well as the overall ψ wave field of that 
particle and vice versa.  

3.2. Potential Energy as Interaction Energy 

Let us consider the case of an isolated electron. The electrostatic field of an elec-
tron, with radially decaying electric field strength, can be identified with its field 
energy density proportional to the square of the electric field strength. A signifi-
cant portion of the mass energy of the electron is actually stored or contained in 
this electrostatic field. The field energy component of the electron mass is an 
integral part of the electron and is not dependent on the existence of any other 
charge or field in its vicinity. Now, let us consider a proton and electron pair se-
parated by distance R. Their respective electrostatic fields will get superposed 
almost throughout their spatial extension. Consequently, the combined field 
energy of the proton-electron system, being proportional to the square of the 
resultant field strength, will be slightly less than the total sum of the individual 
field energies of the isolated charges. This reduction in the combined field ener-
gy of the proton-electron system is precisely the negative interaction energy due 
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to the Coulomb interaction and is known as the negative potential energy of the 
proton electron pair. Therefore, 

Potential energy of proton-electron pair = 2
04πV e Rε= −              (9) 

Or, interaction energy released by the system = 2
04πV e Rε=         (10) 

The energy released from the proton-electron field interaction, as given by 
Equation (10), is converted into the kinetic energy of the electron, assuming the 
proton to be relatively at rest. As the kinetic energy of a particle is contained in 
its ψ wave field, potential energy of the proton-electron pair may signify the 
transfer of interaction energy released from the combined electrostatic field of 
the system to the ψ wave field of the electron. Thus, a +ve potential energy of a 
particle signifies the transfer of ψ wave field energy (i.e. K.E.) to the field energy 
(i.e. mass energy) of the interacting particles. Similarly, a −ve potential energy 
signifies the transfer of a part of the combined field energy to the ψ wave field 
energy of the interacting particles. The Schrödinger’s wave equation is intended 
to describe the variations in ψ wave field of a moving particle as a result of such 
energy transfers. 

It is therefore obvious that the potential energy of an electron with respect to a 
proton at distance R, represented as V(R), cannot be regarded as a field parame-
ter in the sense that it does not represent any entity distributed in space. For 
example, the electrostatic field or field energy density can be regarded as field 
parameters because they represent the entities which are existing or defined at all 
space points of the associated field at any instant of time. On the other hand, 
potential energy is the interaction energy depending entirely on relative location 
of the electron with respect to the proton at any particular instant and is not de-
fined or existing at any other space point at that instant. 

If an electron is totally isolated or infinitely separated from all other charged 
particles, then it will experience no electrostatic interaction with any other par-
ticle and will be effectively at zero potential. Therefore, the term “potential 
energy” is not applicable for a single isolated particle due to absence of any inte-
raction. It has a meaning only for two or more interacting particles or fields, 
wherein transfer of energy could take place between the combined electrostatic 
field energy and the ψ wave field energies of the interacting particles. If at any 
instant t, the proton (considered almost stationary) is located at point O, the 
origin of coordinate system (Figure 1) and the moving electron is located at 
point A with position vector R, then the potential energy of the electron will de-
pend on the magnitude of R and represented by V(R). It will not be a function of 
the coordinates of field point Q(r) that defines the ψ wave field. That is, when 
the wave function is represented as ψ(r, t) to characterize the matter-wave field 
of the electron with instantaneous position vector R, the potential energy term 
cannot be represented as V(r) in place of correct representation V(R). 

3.3. Total Energy as Externally Supplied or Removed Energy 

The total energy E of a system of two interacting particles (the proton-electron 
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pair in the present case) is intended to represent the sum total of mass energies, 
including electrostatic field energies, plus any external energy added or sub-
tracted from the system. In actual practice however, the mass energies of the in-
teracting particles are regarded as invariable constant and removed from con-
sideration. Therefore, the total energy E of a system is assumed to be zero when 
the particles are infinitely separated. When the particles approach one another to 
a separation distance R and their fields get superposed, their potential energy 
and kinetic energy still sum up to zero if no external energy is supplied or re-
moved from the interacting system. In all other cases, when some finite energy 
content is either added to or removed from the system, sum total of the potential 
and kinetic energies is a finite number which is called the total energy of the in-
teracting system. 

( ). . . .E K E P E T V R= + = +                   (11) 

Total energy E is +ve when this amount of energy is externally added or sup-
plied to the system of interacting particles and is −ve when it is extracted, or 
taken out of the system. The externally supplied energy may either get added to 
the kinetic energy of the system or to their electrostatic field energies through 
the potential energy term and vice versa. Generally, a negative E will represent a 
bound state of the system of interacting particles and therefore the total energy E 
is also called binding energy of the system. When this binding energy or the so 
called total energy E gets removed or emitted out of the system, this energy is ul-
timately extracted from the mass energies of the interacting particles. Even 
though a constant total energy E or a stationary energy state implies the con-
stancy of sum of K.E. and potential energy of the system, there could still be 
tremendous energy exchange oscillations between the kinetic and potential 
energies of the interacting particles. 

4. Schrödinger’s Equation with Wrong Potential Energy  
Term 

With the inclusion of potential energy term in Equation (7), the total energy E is 
given by Equation (11) which may be written in terms of momentum p as, 

( )
2 2 2

02 2 4π
p p eE V R
m m R

= + = +


                   (12) 

Accordingly, Equation (8) gets modified to, 

( ) ( ) ( ) ( )
2

2,
, ,

2
r t

r t V R r t
t m

ψ
ι ψ ψ
∂  

= − ⋅∇ + ∂  



             (13) 

The complex relationship between the variations of total, kinetic and potential 
energy, and the corresponding space-time variations of the ψ wave field 
representing the kinetic energy, is reflected through the Schrödinger’s wave Eq-
uation (13) involving the potential energy term V(R). However, the standard 
Schrödinger’s wave equation is normally written in the form, 
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( ) ( ) ( ) ( )
2

2,
, ,

2
r t

r t V r r t
t m

ψ
ι ψ ψ
∂  

= − ⋅∇ + ∂  



             (14) 

Equations (13) and (14) differ in the P.E. terms V(R) and V(r). 
In the Schrödinger’s original wave Equation (14), the potential energy is ex-

pressed as a function of the coordinates of general field point Q(r), instead of the 
coordinates of instantaneous location A(R) of the particle (Figure 1). That 
means the Schrödinger’s wave Equation (14) is founded on the total energy rela-
tion, 

( )
2 2

02 4π
p eE T V r
m r

= + = +


                     (15) 

instead of Equation (12). As already discussed above, the potential energy of an 
electron-proton pair is strictly a function of their instantaneous relative distance 
R and is not defined at any other space point Q(r). This discrepancy is not a 
simple or inadvertent mistake in the Schrödinger’s wave Equation (14) but ra-
ther a serious conceptual mistake with far reaching consequences. This mistake 
is continued with throughout Quantum Mechanics, where the potential energy 
term V(r) is often replaced by e.ϕ(r); with scalar potential ϕ(r) treated as a func-
tion of coordinates of general field point Q(r) rather than a function of coordi-
nates of instantaneous location A(R) of the particle. The greatest temptation for 
permitting this mistake might have been the consequent ease of solving the 
Schrödinger’s Equation (14) by treating the potential energy term V(r) as spher-
ically symmetric and independent of time. Even though most weaknesses of 
Quantum Mechanics could be attributed to this conceptual mistake, yet for want 
of timely rectification, the mistake had to be “swept under the probability car-
pet”. 

5. Consequential Wrong Solutions of Schrödinger’s Equation 

Let us now examine a few consequential wrong solutions of Schrödinger’s wave 
Equation (14), arising out of the above-mentioned mistake in the potential 
energy term V(r). For this, let us consider the ground state 1s orbital solution of 
Hydrogen atom, the normalized wave function ( )100 ,nlm r tψ ψ=  of which is, 

( ) 0 1
100 3

0

1, e .e
π

r a iE tr t
a

ψ − − 
= ⋅ 

 
                    (16) 

where, 18
1 2.18 10 J 13.6 eVE −= × = −  is the total energy of the 1s orbital and a0 = 

0.053 nm is the Bohr radius. 

5.1. Spherically Symmetric and Oscillating ψ Wave Field 

In accordance with the original suggestion of L. de Broglie, the solution for 
ground state 1s orbital of Hydrogen was expected to yield some sort of waves or 
wave packet, accompanying the orbiting electron. But Equation (16) represents 
spherically symmetric standing wave oscillations of the ψ wave field, which does 
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not correspond to the physical situation. Equation (16) cannot represent any 
traveling wave or a wave group which could describe the orbiting motion of the 
electron. Hence, fundamentally this solution is unsuitable to represent the phys-
ical situation and should have been rejected. This error could be attributed to the 
wrong potential energy term V(r) used in the Schrödinger’s Equation (14), as 
discussed above. 

At any instant the intensity of ψ wave function is expected to be maximum in 
the vicinity of location of the electron at that instant. But from Equation (16) we 
get, 

( ) 02 2
100 3

0

1 e
π

r aP r
a

ψ − 
= =  

 
                   (17) 

Equation (17) shows that the intensity of the ψ wave function is spherically 
symmetric with its maximum value at the center where the proton is located. 
The obvious conclusion from this result could be that the electron and proton 
are both located at the center, which of course is physically impossible. The 
physical situation demanded that the ψ wave packet should not only have ac-
companied the orbiting electron but also should have been centered at and 
spread around the instantaneous location of the electron. 

Therefore, it could be concluded that solution (16) does not represent the 
physical situation and should have been rejected as invalid. This error too could 
be attributed to the wrong potential energy term V(r) used in the Schrödinger’s 
Equation (14). Therefore, the Schrödinger’s Equation (14) needs to be corrected 
with the potential energy term V(R) and should be solved in accordance with 
Bohmian mechanics [8], with pre-set initial and boundary conditions to yield a 
complete solution consisting of, 

1) The electron trajectory R = f(t); 
2) The wave function ψ(r, R, t) or ψ(r, t). 

5.2. Implied Negative Kinetic Energy of the Electron 

As per the usual terminology in QM, Equation (16) represents the ψ wave func-
tion for the lowest stationary state of electron in Hydrogen atom. For this sta-
tionary state, the probability density P(r) is given by Equation (17). The integral 
of this probability density over the entire ψ field (i.e. for r varying from zero to 
infinity) works out to unity, as expected, since ψ is normalized. This result is in-
terpreted as the overall probability of finding the electron within the entire ψ 
field is 100%. Let us now work out the overall probability of finding the electron 
within a spherical shell of inner radius R1 = 0.5a0 and outer radius R2 = 1.5a0

 where a0 is the Bohr radius. 

( )2

1

2
12 4π 496d 0. 5

R

R
P P r r r= =∫  by using P(r) from Equation (17) 

That means the overall probability of finding the electron within a spherical 
shell of radii 0.5a0 and 1.5a0 is 49.65%. Apparently, this is quite a reasonable re-
sult. Now let us carry out one more computation. This time let us work out the 
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overall probability of finding the electron outside a sphere of radius R3 = 2a0. 
Proceeding on the same lines as above, we get this probability as, 

( ) 0

3 0

22 2
3 3 2

0

44π d e d 0.2381r a
R a

P P r r r r r
a

∞ ∞ − == ⋅=∫ ∫  

That means the overall probability of finding the electron outside a sphere of 
radius 2a0 is about 23.81 percent. A closer look will show that this result is totally 
wrong. Since the result (16) is valid in the region outside a sphere of radius 2a0, 
the Equations (14) and (15) must also be valid. Therefore, for constant total 
energy 18

1 13.6 eV 2.176 10 JE −= − = − × , from Equation (15) we get,  
2 2

18
1

0 0

2.176 10 Joules
4π 4π

e eT E
r r

− 
= − − = − × 

  
          (18) 

This shows that kinetic energy T of the electron keeps reducing with increas-
ing r. Equation (18) shows that T reduces to zero at r = 2a0. That means when 
the electron is located outside a sphere of radius 2a0, its kinetic energy will be-
come negative. But we have seen above that probability of finding the electron 
outside a sphere of radius 2a0 is 23.81 percent. Hence, we draw the conclusion 
that as per original Schrödinger’s Equation (14), there is 23.81% probability that 
the electron, in ground state of Hydrogen atom, will exist in a negative kinetic 
energy state with imaginary velocity components. Since this is patently an ab-
surd conclusion, we must review the situation. Therefore, we come back to our 
previous observation that the potential energy term V in the original Schrödin-
ger’s Equation (14) has been wrongly taken as a function of coordinates of gen-
eral field point Q(r), instead of taking it as a function of coordinates of point 
A(R), the instantaneous location of the electron. 

6. Sommerfeld Model Type Elliptical Electron Orbit for 1 s  
Hydrogen Atom 

We have seen in the previous section that a typical solution (Equation (16)) for 
the ground state 1s of Hydrogen atom, obtained from the original Schrödinger’s 
Equation (14), is physically untenable and wrong. In comparison, let us glance 
through a corresponding solution for an elliptical electron orbit for 1 s Hydro-
gen atom obtained with Sommerfeld model [9] approach. A computed elliptical 
orbit for the 1 s electron is shown in Figure 2. Radial distance of the electron 
from the nucleus varies from about 0.13a0 to 1.87a0 over the complete orbit. 

Two main inputs for this electron trajectory model are the discrete total ener-
gy E levels and the quantized angular momentum L of the orbiting electron. 
Since the total energy is just the energy removed or emitted out of the system 
and it is known from the Planck relation that the energy of the emitted photons 
is quantized in terms of hν or ω, the discrete total energy E can thus be corre-
lated with principal quantum number n. Further, since the emission of a photon 
of energy ω corresponds to a change in electron angular momentum ΔL by one 
, quantization of electron angular momentum as k can thus be understood.  
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Figure 2. Computed elliptical orbit for 1s electron in Hydrogen atom. 
 
However, in our model [10] to ensure ΔL = , we have correlated the parameter 
k with the usual quantum number l as 1 2k l= +  instead of ( )1l l + . 

As shown in Figure 3, the linear acceleration of the orbiting electron can be of 
the order of 1024 m/s2. When orbiting electron experiences such high accelera-
tions, its accompanying de Broglie waves are expected to get compressed to form 
a sort of transient shock front. 

Since for a hydrogen atom, an ionization energy of 13.6 eV (2.18 × 10−18 J) is 
required to force the electron from its lowest energy level entirely out of the 
atom [11], the 1 s electron in Hydrogen atom is identified with −13.6 eV total 
energy. However, Figure 4 shows that the kinetic energy of the orbiting electron 
varies from a minimum of about one eV to a maximum of about 190 eV. This 
fluctuation in kinetic energy is also accompanied by a corresponding fluctuation 
in potential energy V(R) of the orbiting electron. This much fluctuation in the 
potential energy V(R) occurs in just about 1.5 × 10−16 seconds time period. That 
is why the assumption of time invariant potential energy term in original 
Schrödinger’s Equation (14) is wrong.  

7. Concluding Remarks 

In spite of the error in potential energy term V, as brought out above, the QM 
has been quite useful in the study of high energy micro particle interactions. For 
those applications where either the effect of potential energy term is negligible or 
the potential energy function V is made more dependent on particle locations, 
the QM has been of immense value. However, the solutions of Schrödinger’s  
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Figure 3. Linear acceleration profile for 1 s electron in hydrogen atom. 
 

 
Figure 4. Electron kinetic energy profile for 1 s electron in hydrogen atom. 
 
equation for different energy states of electron in Hydrogen atom appear to de-
scribe only the time averaged charge density distributions around nucleus and 
not the trajectories of electrons. That is because the potential energy term V in 
the equation has been assumed as time invariant and not dependent on the in-
stantaneous position coordinates of the electron. Since the position coordinates 
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of the electron have been inadvertently omitted in the input to the equation, na-
turally the exact position of the electron is lost in the final solution. It is hoped 
that through rectification of the error in potential energy term V in the 
Schrödinger’s wave equation, we may be in a better position to further enhance 
the efficacy and utility of QM, possibly by adopting the methodology and the 
spirit of Bohmian Mechanics. 
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