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Abstract 

An analytical investigation is conducted to study the effect of magnetic field 
on convection heat transfer through packed porous beds which consists of a 
horizontal fluid layer (river bed) and a porous zone with anisotropic permea-
bility and underlined by a surface heated by a constant temperature T1. The 
free surface of the fluid layer overlying the horizontal porous layer receives 
solar rays to length of day and is then considered heated isothermally at tem-
perature T2 such as T1 < T2. Flow in porous medium is assumed to be go-
verned by the generalized Brinkman-extended Darcy law and in the fluid layer 
by the Navier-Stokes model. The Beavers-Joseph condition is applied at the 
interface between the two layers. The influence of Hartmann number and hy-
drodynamic anisotropy on the convective phenomenon is investigated analyt-
ically. It is found that the magnetic field, the anisotropic permeability and the 
thickness of the porous lining, ε, have a strong influence of the geothermal 
convective flow and the heat transfer rate. 
 

Keywords 

Hartmann Number, Hydrodynamic Anisotropy, Convection Heat Transfer 

 

1. Introduction 

The first study concerning the effect of a magnetic field on the natural convec-
tion heat transfer in a rectangular porous cavity seems to be due to [1]. The ver-
tical walls of the enclosure were maintained in isothermal and isoelectrical con-
ditions. It was demonstrated that, for large Hartmann numbers, the electromag-
netic magnetic force retards considerably the convective heat transfer. The in-
fluence of the Hartmann number on the Nusselt number was investigated nu-
merically. The stability of a conducting fluid saturating a porous layer, in the 

How to cite this paper: Yovogan, J., De-
gan, G. and Fagbemi, L. (2018) Effect of 
Constant Magnetic Field on Convective 
Heat Transfer through Anisotropic River 
Beds. Journal of Crystallization Process and 
Technology, 8, 57-71.  
https://doi.org/10.4236/jcpt.2018.82004  
 
Received: January 13, 2018 
Accepted: March 18, 2018 
Published: March 21, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jcpt
https://doi.org/10.4236/jcpt.2018.82004
http://www.scirp.org
https://doi.org/10.4236/jcpt.2018.82004
http://creativecommons.org/licenses/by/4.0/


J. Yovogan et al. 
 

 

DOI: 10.4236/jcpt.2018.82004 58 Journal of Crystallization Process and Technology 

 

presence of a uniform magnetic field, was investigated analytically by [2]. On the 
basis of the linear stability theory, the critical Rayleigh numbers for the onset of 
motion were obtained for various types of thermal and hydrodynamic boundary 
conditions. The case of a shallow cavity heated isothermally from the sides was 
considered by [3]. The effect of a magnetic field on the convective heat transfer 
was investigated analytically using matched asymptotic expansions. The results 
indicate that the retarding effect of the electromagnetic body Lorentz force de-
creases the strength of convection in the enclosure. 

Several studies have been made on the effect of the magnetic field on the 
thermal convection through porous cavity. Our present research concerns the 
study of the thermal convection in a horizontal fluid-superposed porous layer 
and few studies have been made in this sense (see our literature magazine [4]). 
Like that, we consider the convective heat transfer through a parallel-plate hori-
zontal system consisting of a homogeneous porous bed underlying a sin-
gle-component fluid layer whose upper surface is free and isothermally heated. 
A magnetic field, B , is applied perpendicularly to the long sides. The lower 
plate bounding the porous layer is impermeable and is maintained at a constant 
temperature. The porous medium is homogeneous and anisotropic in permea-
bility whose principal axes are arbitrary oriented, as it is seen in nature and for 
many realistic applications. Beavers and Joseph boundary condition model is 
applied at the permeable bounding interface between the two layers [5]. On the 
basis of the generalized Brinkman-extended Darcy model, of Navier-Stokes equ-
ations and of energy equation which takes into account the viscous dissipation, 
the effects of magnetic field, of anisotropic parameters of the porous matrix and 
of the influence of the depth ratio on velocity and temperature fields and heat 
transfer rate are investigated in detail. 

2. Mathematical Formulation and Resolution 

The physical model illustrating the problem under different considerations is 
shown in Figure 1. The system of height, h, consists of a horizontal paral-
lel-plate porous channel of thickness, hm, underlying a fluid layer whose upper 
plate (free surface) is permeable and exposed to a constant temperature T2. The 
lower impermeable plate lining the non-erodible porous layer is maintained at a 
constant temperature T1 < T2. 

The axial and transverse coordinates are respectively x' and y', the latter being 
measured vertically upwards from the lower impermeable wall. The porous me-
dium is anisotropic in flow permeability, the permeabilities along the two prin-
cipal axes of the porous matrix are denoted by K1 and K2. The anisotropy of the 
porous layer is characterized by the permeability ratio *

1 2K K K=  and the 
orientation angle φ, defined as the angle between the horizontal direction and 
the principal axis with the permeability K2. 

Thus, the flow regime is divided into two zones: 
Zone 1 (fluid layer) from the free surface of the fluid to the surface of the  
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Figure 1. Physical model and coordinate system. 
 
porous layer (called the nominal surface) and 

Zone 2 (porous layer) from the nominal surface to the impermeable lower 
plate. 

The porous bed is saturated with an incompressible viscous fluid that is in lo-
cal thermodynamic equilibrium with the solid matrix. 

The equations governing the conservation of mass, momentum, energy and 
electric charge transfer [4] [6] [7] can be written in each Zone as follows 

Zone 1 (fluid layer): 
Equation governing the conservation of mass 

0,f′⋅ =V∇                          (1) 

Equation governing the conservation of momentum (Navier-Stokes model 
with the presence of magnetic and gravitational fields). 

( ) ( )2
0 ,f

f f f f eff f ft
ρ ρ µ

′∂ 
′ ′ ′+ = − + + + ′∂ 
⋅ ∧

V
V V p g V j B∇ ∇ ∇   (2) 

Equation governing the conservation of energy 

( ) ( ) ( )
2 ,f

f f f f f
p f

T
T T

t C
µ

α
ρ

′∂
′ ′ ′+ = +

′∂
⋅ ΦV ∇ ∇            (3) 

Equation governing the conservation of electric 

( )0, .f f f fσ ′⋅ = = − ∅ ∧+j j V B∇ ∇               (4) 

Zone 2 (porous layer): 
Equation governing the conservation of mass 

0,m′⋅ =V∇                                (5) 

Equation governing the conservation of momentum (Brinkman-extended 
Darcy law with the presence of magnetic and gravitational fields). 

( )( )2 ,m m m eff m m
K p ρ µ
µ

′ ′ ′= − + + ∧+V g V j B∇ ∇            (6) 
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Equation governing the conservation of energy 

( ) ( ) ( ) ( )2 ,m
p p m m m mm f

TC C T k T
t

ρ ρ µ
′∂ ′ ′ ′⋅+ = + Φ
′∂

V∇ ∇    (7) 

Equation governing the conservation of electric 

( )0, .m m m mσ ′⋅ = = − ∅ ∧+j j V B∇ ∇              (8) 

In these equations, V , denotes the velocity vector, p' the pressure and T' the 
temperature of the fluid, g  the gravitational acceleration, t' the time, and  

( )p f
Cρ , ( )p m

Cρ  the heat capacity of the fluid and the saturated porous  

medium, respectively. The subscript “f” denotes the fluid layer, “m” the porous 
medium. Moreover, μ the dynamic viscosity, ( )0 01 T Tρ ρ β′ ′ = − −   the den-
sity, β the thermal-expansion coefficient, 0T  the constant reference Kelvin 
temperature, 0ρ  the density of the fluid at 0T , pC  the specific heat of the  
fluid, k the thermal conductivity and ( )p f

k Cα ρ=  the thermal diffusivity. In  

Equation (3), j  is the electric current density, σ the electrical conductivity of 
the fluid, ∅ the electric potential and − ∅∇  the associated electric field. As dis-
cussed by [8], for a two dimensional situation Equation (4) and (8) for the elec-
tric potential reduces to 2 0∅ =∇ . The unique solution is ∅ = 0∇ . It follows 
that the electric field vanishes everywhere. The energy Equations (3) and (7) take 
into account the viscous dissipations fΦ  and mΦ  for the fluid layer and the 
porous medium respectively. It is important to mention here that the viscous 
dissipation mΦ  for the porous layer is the sum of viscous dissipation of the sa-
turated fluid and the Darcy dissipation through the term 2

m K′V . In Equation 
(6), effµ  denotes the apparent dynamic viscosity for Brinkman model and the 
symmetrical second-order permeability tensor K  is defined as 

( )
( )

2 2
1 2 2 1

2 2
2 1 2 1

sin cos sin cos
sin cos sin cos

K K K K
K

K K K K
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
 + −

=  
− +  

 
 

      (9) 

Assuming that when the flow is fully developed in the system, the axial 
(x'-direction) velocity depends on the transverse coordinate y' (i.e., ( )f fu u y′ ′ ′=  
for the fluid layer and ( )m mu u y′ ′ ′=  for the porous layer), and then from the 
continuity equation, the transverse velocity component must be zero (i.e., 

0fv′ =  and 0mv′ = ). The temperature is assumed to be a function of y'. No as-
sumptions are made with regard to the pressure variation (which, in fact, is 
found to be a function of x' and y' in Zone 2 [9]). So, governing Equations 
(1)-(8) may be reduced as 

Zone 1 (fluid layer): 
d

0
d

fu
x
′
=

′
                           (10) 

2 2

2
0 0

d1 0,
d

f f fp u B u
x y

σ
ν

ρ ρ

′ ′ ′∂
− + − =

′ ′∂
                  (11) 

0

1 0,fp
yρ

′∂
− =

′∂
                           (12) 
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( )
22

2

d d
0.

dd
f f

f
p f

T u
yy C

µ
α

ρ

′ ′ 
+ = ′′  

                    (13) 

Zone 2 (porous layer): 

d
0

d
mu

x
′
=

′
                               (14) 

2 2
11

1 2

d
,

d
m m m

m
p u K B uKbu K
x y

σ
λ

µ µ
′ ′ ′∂′ = − + −
′ ′∂

              (15) 

1 ,m
m

pKcu
yµ
′∂′ =
′∂

                             (16) 

( )2 22

2
1

d d
.

dd
mm m b uT uk

y Ky
µ
 ′′ ′ 
 = − + ′′    

                       (17) 

where 

( )
2 * 2

*

sin cos ,

1 sin cos .

b K

c K

ϕ ϕ

ϕ ϕ

 = +


= −
                         (18) 

And effλ µ µ=  the relative viscosity for which the value in the present study 
is taken, as a first approximation, equal to unity (i.e., effµ µ≈ ). 

The appropriate boundary conditions prevailing on the lower impermeable 
boundary and the upper free surface and at the interface of the two layers (y = 
hm) of the channel are [4] 

10 : 0, ,m my u T T′ ′ ′= = =                         (19) 

2

d
: 0, ,

d
f

f

u
y h T T

y
′

′ ′= = =
′

                      (20) 

( )1

1

1

d
: ,

d m

f
m f m B B m y h K

u
y h u u u u u

y K
β

= −

′
′ ′ ′ ′= = = = −

′
        (21) 

( )1

2

1

d
: .

d m

f
m f m B B m y h K

T
y h T T T T T

y K
β

= −

′
′ ′ ′ ′= = = = −

′
       (22) 

where Bu  is the slip velocity at the nominal surface (interface) which changes 
to the constant Darcy velocity through the porous, the existence of the tempera-
ture slip layer whose thickness given by Beavers and Joseph is of order 1K . 
Indeed, this thickness subsequently has been shown to be equal to 1K  [10] 
[11]. According to these authors, the parameter 1β  (and 2β ) denotes a con-
stant depending on the material property of the porous medium, which have can 
be determined only experimentally. The slip temperature BT  at the nominal 
surface changes to the constant ambient temperature 0T  through the porous 
layer whose thickness considered to be the same as that of the velocity slip layer 
namely 1K . So, the existence of the temperature slip layer depends on that of 
the velocity slip layer and in view of this, 0T  is identified with mT ′  at a distance 

1K  below the nominal. 
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When the following variables are introduced 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )
1

2
2 1

, ,

, , , , , ,

, , , .

f m f m f m f m

f m f m

x x hRe y y h

u u u u u T T T T T T

T T T P P p p uρ

′ ′= =

 ′ ′ ′ ′= = − ∆  


′ ′∆ = − = 

           (23) 

the governing Equations (10)-(13) corresponding to the fluid layer may be writ-
ten in non-dimensional form as 

2
2

2

d d
,

dd
f f

f

u P
Ha u

xy
− =                        (24) 

22

2

d d
.

d
f fT u

PrEc
dyy

 
= −  

 
                      (25) 

and the governing Equations (14)-(17) corresponding to the anisotropic porous 
layer may be written in non-dimensional form as 

2 2

2

d
,

d
m m m

m
u b Ha Pu

Da xy
+ ∂

− =
∂

                     (26) 

,m
m

P c u
y ReDa

∂
=

∂
                           (27) 

( )
22

22
2

d d
.

dd
m m

m
T uPrEc u

yy
γ

  
 = − + 
   

                 (28) 

where 

2 .b
Da

γ =                                (29) 

In the above equations, pPr C kµ=  is the Prandtl number, ( )2
pEc u C T= ∆  

the Eckert number, Re uh ν=  the Reynolds number, 2
1Da K h=  the Darcy 

number, Ha B h σ µ= ⋅  the Hartmann number for the fluid layer and 

1mHa B K σ µ=  the Hartmann number for the anisotropic porous layer. 
The boundary conditions associated with the non-dimensional Equations 

(19)-(22) are [4] 

0 : 0, 0,m my u T= = =                      (30) 

d
1: 0, 1,

d
f

f

u
y T

y
= = =                     (31) 

( )1d
: ,

d
f

f m B B m y Da

u
y u u u u u

y Da ε

β
ε

= −
= = = = −        (32) 

( )2

1

d
: .

d
f

f m B B m y Da

T
y T T T T T

y K ε

β
ε

= −
= = = = −        (33) 

where mh hε =  is the thickness ratio defining as the ratio of saturated porous 
layer thickness to packed porous beds thickness (which consists of a horizontal 
fluid layer (river bed) and a porous zone). 
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Using the hydrodynamic conditions (30) and (32), the resolution of Equation 
(24) yields the velocity distribution in Zone 1 (for the fluid layer) expressed as 

( ) 1 2 2e eHa y Ha y
f

Qu y A A
Ha

⋅ − ⋅= + −                 (34) 

where d dfQ P x= . 
Taking into account Equation (34) and considering the boundary conditions 

for fT , Equation (25) can be integrated to give the following fully developed 
temperature profile in fluid Zone: 

( ) 2 2 2
1

2

2

2

3 4
1 2e e
4 4

,Ha y Ha y
f

A AT y PrEc A A Ha y A y A⋅ ⋅ − ⋅ ⋅ 
= − + −


⋅+ + 


 (35) 

where 

( )

( )
( )( ) ( )

( ) ( )( ) ( )( )

2

1 2

2
2 1

2 22 2 2 2 2
3

2
1

1

2 22 2 2
4

,
e e

e ,
1 e e 2 2 1 1 e ,
1 4 1

2 e 1 2 1 e e .
1 4 1

B
HaHa

Ha

HaHa HaB

HaHa HaB

U Q HaA

A A
T PrEcA Ha A

T PrEcA Ha A

εε

εε

εε

ε
ε ε
ε

ε ε
ε ε

−⋅

⋅

⋅ −⋅ ⋅ ⋅

⋅ −⋅ ⋅ ⋅

+
=  +  


= 

−   = + + + − −   − − 
−   = + ⋅ ⋅ − − − + − −   

(36) 

where Bu  is the velocity profile at the interface that must be determined by 
making use of the condition (32) in which we have to know first the velocity mu  
for the porous layer. It is seen that fT  depends on BT  that has to be calculated 
from the boundary condition (33) for which the temperature profile mT  (in 
Zone 2) should be expressed. 

Now, the velocity and temperature profiles mu  and mT  for the porous layer 
will be determined. 

As 2 2
mHa Da Ha= ⋅ , Equation(26) may be written as 

2
2

2

d
,

d
m m

m
u Pu

xy
ξ

∂
− =

∂
                         (37) 

where 2 2 2Haξ γ= + . 
Eliminating the pressure from Equation (27) and (37) in the usual way, one 

may have 
3

2
3

d d
0.

d
m mu u

dyy
ξ− =                        (38) 

It is clear that the bulk mean velocity u′  (in Zone 2) defined as  

( )( ) 0
1 1 dmh

m mu h u yρ ρ′ ′ ′ ′ ′ = ×  ∫  is calculated in dimensionless terms by 

0
dmu u y

ε
= ∫                         (39) 

which equals to ε. 
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Making use of Equation (39) and the hydrodynamic conditions (31) and (32), 
the resolution of Equation (38) yields the velocity distribution (for the porous 
layer) expressed as 

( ) ( )1 2 3
1 e ey y

mu y B B Bξ ξ

ξ
−= − +                     (40) 

where 

( ) ( )
( ) ( )

( )

2

1

1
2

2 1
3

1 e e 1

4 cosh 2 sinh 4

1 e

1 e

B

B

u
B

B u
B

B BB

ξε ξε

ξε

ξε

ξ ε ξε ξ

ξε ξ ε ξε

ξ

ξ

− −

−

− − + −
=

⋅ − ⋅ ⋅ ⋅ − 

− + = −


− = 

              (41) 

By substituting Equation (40) into Equation (28) and using the thermal 
boundary conditions (32) and (33), the temperature profile for the porous me-
dium is obtained as 

( ) ( )

( )

2
2 2 2

22 2

2
1

1 2

2

3

2 2
2 2

1 2 3 4 5

1

2

1 1 e e
4

2
e e

2 1 .
2

y y
m

y y

T y PrEc B B

B B B

yB B B B y B

ξ ξ

ξ ξ

γ
ξ ξ

γ
ξ

γ γ
ξ

−

−

  
= − + +  

⋅  

+ −

  
+ − + + +      

⋅


     (42) 

where 

( )

( )

( ) ( )

2
2 2 2 25

4 1 22 2

2 2 2
2 23

1 2 1 2 33 2

22
2 2 3

5 1 2 1 22 2 3

1 1 e e
4

2
e e 2 1 ,

2

21 1
4

BT B PrEcB B B

B
B B B B B

B
B PrEc B B B B

ξε ξε

ξε ξε

γ
ε ε ξ ξ

γ γ εγ
ξ ξ

γγ
ξ ξ ξ

−

−

  −
= + + +  ⋅  

  
+ − + − +        

  
= + + + −  

⋅   

   (43) 

It is noticed that both the velocity profiles fu  and mu  depend on Bu . the 
same holds good for both the temperature profiles fT  and mT  which depend 
on BT . The profiles Bu  and BT  at the interface are determined by using 
boundary conditions (32) and (33) respectively. After manipulations, one can 
obtain 

( )( )
5 1 7

7 1 61
B

a Ha Q a Dau
Ha Ha a Da a

β

β

⋅ ⋅ − ⋅ ⋅
=

⋅ − +
                  (44) 

where 
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( ) ( )

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

5 1 3

6 2 4

2

7 2

2

1
0

0

2
0

1
3

2
4

1 e 1 e

1 e 1 e

e e
e e

1 e

4 cosh 2 sinh 4

1 e

1 e

1 e
1 e

1 e

Da Da

Da Da

HaHa

HaHa

a a a

a a a

a

a
a

a

a
a

a
a

a
a

ξ ε ξ ε

ξ ε ξ ε

εε

εε

ξε

ξε

ξε

ξε

ξε

ξε

ε ε

ε ε

ξ ε

ξε ξ ε ξε

ξε

ξ

− − −

− − −

−⋅

−⋅

−

−

−

−

− − = −



− − = − 


− 
= + 

−
= 



= ⋅ − ⋅ ⋅ ⋅ − 
− − =



− 
= − 

+ −
=
− 

             (45) 

Similarly, after development and reduction of algebraic terms, the characteris-
tic temperature distribution BT  at the interface is calculated by 

( ) ( )
( ) ( ) ( )

0 1 2 2

2 2

1

1 1
B

b Da b b
T

Da Da

β ε ε

β ε ε ε β ε

 + + − =
− + − − +⋅

         (46) 

where 

( ) ( )( ) ( )( ) ( )

( ) ( )

( )

2 22 2
0 3 1

2
2 22 2

1 1 2 32 2

2
2 2 2 2

2 1 2 5 52 2

2
3

11 2 1 e 1 2 1 e
4 1 1

1 1 e e
4

1 1 e e
4

8

HaHa

Da Da

PrEcb Ha Ha b A

b PrEc B B b

Dab PrEc B B b B

b Ha

εε

ξ ε ξ ε

ξε ξε

ε ε
ε ε

γ
ξ ξ

ε γ
ε ξ ξ

ε

⋅ −⋅ ⋅

− − −

−

 = − ⋅ − + + ⋅ − + + − −

   = − + + +    ⋅   
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(47) 

The heat transfer rates through the upper free surface and the lower wall 
bounding the porous layer underlining the fluid zone are expressed by the Nus-
selt numbers given in dimensionless terms respectively by 

2 2 2
1 3
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2 e
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⋅
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= = ⋅ ⋅ +               (48) 
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

    (49) 

Consequently, one can deduce that the mean heat transfer rate moyNu  
through the superposed layers is calculated by the following expression 

3. Results and Discussion 

3.1. Horizontal Velocity Distribution and Temperature  
Distribution for the Entire System Width 

Figure 2 illustrates the analytical results obtained for the Horizontal velocity 
distribution for the entire system width when Da = 0.05, Q = −2, β1 = 0.1, ε = 
0.2, K* = 0.1, φ = 0˚ and various values of Ha. From this figure it is clearly seen 
that the velocity distribution decreases as the Hartmann number increases. For 
K* = 0.1 (When the permeability in the horizontal direction, K2, is higher than 
the permeability in the vertical direction, K1.) the convective flow is high when 
Ha = 0.8 (and for the lowest values of Ha) and is reduced when Ha = 5 (and for 
the highest values of Ha). It is noticed that the velocity fields have the same be-
havior as described previously [4]. 

Figure 3 illustrates the analytical results obtained for Temperature distribu-
tion for the entire system width when K* = 0.1, β1 = β2 = 0.1, Da = 005, Q = −2, ε 
= 0.4, Pr = 7, Ec = 0.05, φ = 0˚. It is noticed that the temperature fields have the 
same behavior as described previously for the velocity distribution, revealing 
that the effect of varying convection in the two superposed layers depends 
strongly on the magnetic field, i.e., Ha. 
 

 
Figure 2. Horizontal velocity distribution for the entire system width. 
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Figure 3. Horizontal temperature distribution for the entire system width. 

3.2. Velocity Profile, uB, at the Interface 

Figure 4 show the effects of various values of the Hartmann number, Ha, of va-
rying the anisotropic ratio, K*, and the thickness ratio, ε, on the velocity profile 
uB at the interface when φ = 10˚, β1 = β2 = 0.1, Pr = 7, Q = −3, Ec = 5 × 10−3, Da = 
10−3. Because of the fact that Bu  is not physically defined at ε = 0 (correspond-
ing to the situation when the two layers are assimilated into a pure fluid layer) 
and at ε = 1 (case for which the system would become a pure porous layer), all 
curves observed tend asymptotically to the pure fluid case when 0ε → . As ex-
pected, in this limit, the effects of the anisotropic properties of the almost neg-
ligible porous layer are irrelevant. For intermediate values of the thickness ratio, 
it is seen that, as the porous layer becomes more and more important, the aniso-
tropic effects of the porous medium become more significant (please refer [4]). 
It is also noticed that each curve for a given value of K* is distinguishable from 
others at a special point cε  that depend on the Hartmann number and below 
which the effects of anisotropy and magnetic field is irrelevant. For example, 

0.0744cε =  when Ha = 1, 0.0731cε =  when Ha = 0.5 and 0.0722cε =  when 
Ha = 0.005. For each value of K*, Figure 4 indicates that the velocity profile uB at 
the interface decreases as the Hartmann number increases. 

3.3. The Mean Heat Transfer Rate, Numoy 

The variations of Nusselt number with the Hartmann number and the aniso-
tropic ratio is shown in Figure 5 as a function of the thickness ratio, ε, when Da 
= 75 × 10−3, φ = 0˚, Pr = 7.0, Ec = 0.05, β1 = β2 = 0.001, and Q = 50. When the 
porous lining is negligible with respect to the fluid layer (i.e., when the thickness 
ratio is small), the heat transfer given by Equation (50), does not vary with the 
anisotropic ratio, K*. Then the Nusselt number decreases with the increase of the 
thickness ratio and the effect of anisotropy is predominant. Figure 5 indicates  

https://doi.org/10.4236/jcpt.2018.82004


J. Yovogan et al. 
 

 

DOI: 10.4236/jcpt.2018.82004 68 Journal of Crystallization Process and Technology 

 

 
Figure 4. Velocity profile, uB, at the interface. 
 

 
Figure 5. Effect of the Hartmann number on Nusselt number, Numoy. 
 
that the heat transfer through the entire system is enhanced when K* = 2.5 with 
respect to the isotropic case for which K* = 1.0. That is damaging to the aquatic 
species life. We also note that the increase of the Hartmann number corresponds 
to the decrease of the heat transfer when the porous layer becomes more and 
more important. What encourages the aquatic species life. 

In Figure 6, we have plotted the average Nusselt number as a function of the 
thickness ratio, ε, with the variations of Hartmann number and the anisotropic 
orientation φ for Da = 75 × 10−3, K* = 0.1, Pr = 7.0, Ec = 0.05, β1 = β2 = 0.001, 
and Q = 50. It is noticed that the Nusselt number have the same behavior as de-
scribed previously, revealing that the heat transfer through the entire system for  
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Figure 6. Effect of the Hartmann number and φ on Nusselt number, Numoy. 
 
a given value of Hartmann number is found to be maximum when φ = 90˚ and 
minimum when φ = 0˚. 

The average Nusselt number is presented in Figure 7 as a function of the 
Darcy number, of the Hartmann number and of varying the anisotropic ratio 
when φ = 0˚, Pr = 7, Ec = 0.05, β1 = β2 = 10−6, ε = 0.25 and Q = 5. From this fig-
ure it is clearly seen that the average Nusselt number decreases as the Hartmann 
number and the Darcy number increase, the highest decrease of the average 
Nusselt number occurs for the region of the low values of the Darcy number 
(i.e., in the porous zone where the effect of anisotropy is predominant). For high 
values of the Darcy number (case for which the system would become a pure 
fluid layer), no significant decrease occurs on the average Nusselt number which 
is not affected by the anisotropy ratio. 

In Figure 8, the average Nusselt number is plotted as a function of the Darcy 
number for K* = 0.5, Pr = 7, Ec = 0.05, β1 = β2 = 10−6, ε = 0.25 and Q = 5 and 
various values of the Hartmann number and of φ. It is noticed that the average 
Nusselt number have the same behavior as described previously in Figure 7 and 
is found to be maximum when φ = 90˚ and minimum when φ = 0˚. 

4. Conclusion 

In this paper we have examined the effect of magnetic field on convection heat 
transfer through packed porous beds which consists of a horizontal fluid layer 
(river bed) and a porous zone with anisotropic permeability. The results ob-
tained show that, the application of a magnetic field on the natural convection in 
the y-direction has some important changes on the structure of the convective 
flow and on convection heat transfer. It generates a reduction in the heat trans-
fer and reduces considerably the velocity and temperature distribution. We have 
also examined the effect of anisotropic permeability ratio and anisotropic angle 
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Figure 7. Effect of the Hartmann number and Da on Nusselt number, Numoy. 
 

 
Figure 8. Effect of the Hartmann number and φ on Nusselt number, Numoy. 
 
on the velocity profile, uB, at the interface and on the average Nusselt number. 
The heat transfer, for a given value of the Hartmann number and for φ = 0˚, is 
found to be maximum (minimum) when the permeability in the y-direction 
(x-direction) is bigger than the permeability in the x-direction (y-direction) and 
for a given value of the anisotropic permeability ratio (K* = 0.5), the average 

https://doi.org/10.4236/jcpt.2018.82004


J. Yovogan et al. 
 

 

DOI: 10.4236/jcpt.2018.82004 71 Journal of Crystallization Process and Technology 

 

Nusselt number is found to be maximum when φ = 90˚ and minimum when φ = 
0˚. 
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