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Abstract 
A weighted graph is a graph that has a numeric label associated with each 
edge, called the weight of edge. In many applications, the edge weights are 
usually represented by nonnegative integers or square matrices. The weighted 
signless Laplacian matrix of a weighted graph is defined as the sum of adja-
cency matrix and degree matrix of same weighted graph. In this paper, a brief 
overview of the notation and concepts of weighted graphs that will be used 
throughout this study is given. In Section 2, the weighted signless Laplacian 
matrix of simple connected weighted graphs is considered, some upper bounds 
for the spectral radius of the weighted signless Laplacian matrix are obtained 
and some results on weighted and unweighted graphs are found. 
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1. Introduction 

A weighted graph is a graph that has a numeric label associated with each edge, 
called the weight of edge. In many applications, the edge weights are usually 
represented by nonnegative integers or square matrices. In this paper, we gener-
ally deal with simple connected weighted graphs where the edge weights are pos-
itive definite square matrices. Let ( ),G V E=  be a simple connected weighted 
graph with vertex set { }1,2, ,V n=  . Let ijw  be the positive definite weight 
matrix of order t of the edge ij and assume that ij jiw w= . The weight of a vertex 
i V∈  defined as 

: ~
i ij

j j i
w w= ∑ ; where ~i j  denotes the vertex j is adjacent to i. 

Unless otherwise specified, by a weighted graph we mean a graph with each 
edge weight is a positive definite square matrix. 

The weighted signless Laplacian matrix ( )Q G  of weighted graph G is a 
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block matrix and defined as ( ) ( )ij nt nt
Q G q

×
= , where 

; if ,
; if ~ ,

0; otherwise.

i

ij ij

w i j
q w i j

 =
= 



 

Clearly, ( )Q G  is a square matrix of order nt. The eigenvalues may be de-
noted by ( ) ( ) ( )1 2, , , ntq G q G q G , where ( ) ( ) ( )1 2 ntq G q G q G≥ ≥ ≥ . Also 
let ( )1q G , ( )1 iq w  and ( )1 ijq w  denote the spectral radius of G and the largest 
eigenvalues of iw  and ijw , respectively. If ( )A G  is the weighted adjacency 
matrix of G, then note that 

( ) ( ) ( )Q G W G A G= + , 

where ( ) ( )1 2, , , nW G diag w w w=  . 
In literature, there are a lot of studies deal with upper and lower bounds for 

the spectral radius of signless Laplacian matrix of unweighted graphs. For a sim-
ple connected and unweighted graph G, there are some known upper bounds on 
the spectral radius of signless Laplacian matrix as follows such that id  is degree 
of vertex i and 

: ~

1
i j

j j ii

m d
d

= ∑ . 

( ) { }1 max 2 ii V
q G d

∈
≤ ,                        (1) 

( ) { }1 max i ii V
q G d m

∈
≤ + ,                      (2) 

( )1

8
max

2
i i i i

i V

d d d m
q G

∈

 + + ≤  
  

,                 (3) 

( ) { }1 ~
max i ji j

q G d d≤ + ,                      (4) 

( )
( )2

1 ~

4
max

2
i j i j i j

i j

d d d d m m
q G

 + + − + ≤  
 
 

.            (5) 

In this paper, some upper bounds for the spectral radius of signless Laplacian 
matrix of weighted graphs are given. Also some results on weighted and un-
weighted graphs are obtained by using these bounds. The following lemmas are 
convenient for the graphs we consider. 

Lemma 1. [1]. 
If A is a real symmetric n n×  matrix with eigenvalues 1 2 nq q q≥ ≥ ≥ , then 

for any ( )0nx x∈ ≠ , 

T T T
1nq x x x Ax q x x≤ ≤ . 

The equality holds if and only if x  is an eigenvector of A corresponding to 
the least eigenvalue nq . 

Lemma 2. [2]. 
If A is a real symmetric n n×  matrix with eigenvalues 1 2 nq q q≥ ≥ ≥  then 

for any ( )0nx x∈ ≠ , ( )0ny y∈ ≠ , 
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T T T
1x Ay q x x y y≤ . 

The equality holds if and only if x  is an eigenvector of A corresponding to 
the largest eigenvalue 1q  and y xα=  for some α ∈ . 

Lemma 3. [3]. 
Let G be a weighted graph and let ijw  be the positive definite weight matrix 

of order t of the edge ij. Also let x  be an eigenvector of ijw  corresponding to 
the largest eigenvalue ( )1 ijq w  for all i, j. Then 

( ) ( )1 1
: ~

i ij
j j i

q w q w= ∑ . 

Lemma 4. [4]. 
Let G be a weighted graph and let ijw  be the positive definite weight matrix 

of order t of the edge ij. If i ij ij jw w w w+  and ij jkw w  are not Hermitian matric-
es for all j, j∼i and for all k, k∼j, j∼i, then for any ( )0nx x∈ ≠ , 

( )0ny y∈ ≠ , 

( ) ( )

( )

T T T
1

: ~

T T T
1

1 , : ~
~

,

.

i ij ij j i ij ij j
j j i

ij jk ij jk
i k n k k i

k j

x w w w w y q w w w w x x y y

x w w y q w w x x y y
≤ ≤

+ ≤ +

≤

∑

∑ ∑

 2. Main Results 

In this section, some upper bounds for the spectral radius of weighted signless 
Laplacian matrix are found. 

Theorem 5. 
Let G  be a simple connected weighted graph. Then 

( ) ( ){ }1 1max 2 ii V
q G q w

∈
≤ .                      (6) 

Proof. 

Let ( )TT T T

1 2, , , nx x x x=   be an eigenvector corresponding to the eigenvalue  

( )1q G  and ix  be the vector component of x  such that 

{ }T T
maxi i j jj V

x x x x
∈

= .                        (7) 

Since x  is nonzero, so is ix . We have 

( ) ( ) ( ) ( )1q G x Q G x W G x A G x= = + .                 (8) 

From the i-th Equation of (8), we get 

( )1 i i i ij j
j: j~i

q G x w x w x= + ∑ , 

i.e., 

( )( )T T T

1i t t i i i ij j i ij j
j: j~i j: j~i

x q G Ι w x x w x x w x× − = ≤∑ ∑ . 

From (7) and using Lemma 2, we get 
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( )T

1i i ij
j: j~i

x x q w≤ ∑ . 

From Lemma 1 and Lemma 3, we have 

( ) ( )( ) ( )( ) ( )T T T

1 1 1 1i i i i t t i i i i iq G q w x x x q G Ι w x x x q w×− ≤ − ≤ . 

Thus 

( ) ( ){ }1 1max 2 ii V
q G q w

∈
≤ . 

Hence the theorem follows. 
Corollary 6. 
Let G be a simple connected weighted graph where each edge weight ijw  is a 

positive number. Then 

( ) { }1 max 2 ii V
q G w

∈
≤ . 

Proof. 
For weighted graphs where the edge weights ijw  are positive number, we 

have ( )1 ij ijq w w=  and ( )1 i iq w w= , for all ,i j . Using Theorem 5 we get the 
required result. 

Corollary 7. [5]. 
Let G be a simple connected unweighted graph. Then 

( ) { }1 max 2 ii V
q G d

∈
≤ , 

where id  is the degree of vertex i. 
Proof. 
For an unweighted graph, 1ijw =  and i iw d=  for all ,i j  and ~i j . Using 

Corollary 6 we get the required result. 
Theorem 8. 
Let G be a simple connected weighted graph. Then 

( ) ( ) ( )1 1 1~ : ~
max i jki j k k j

q G q w q w
 

≤ + 
 

∑ .                (9) 

Proof. 
Let us consider the matrix ( ) ( ) ( ) ( )( )1 1 1 2 1, , ,t t t t n t tM G diag q w I q w I q w I× × ×=  . 

The ( ),i j -th element of ( ) ( ) ( )1M G Q G M G−  is 

( )
( )

1

1

; if ,

; if ~ ,

0; otherwise.

i

j
ij

i

w i j

q w
w i j

q w

=







 

Let ( )TT T T

1 2, , , nx x x x=   be an eigenvector corresponding to the eigenvalue 

( )1q G  of ( ) ( ) ( )1M G Q G M G−  and ix  be the vector component of x  such 
that 
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{ }T T
maxi i j jj V

x x x x
∈

= .                    (10) 

Since x  is nonzero, so is ix . We have 

( ) ( ) ( ){ } ( )1
1M G Q G M G x q G x− = .             (11) 

From the i-th Equation of (11), we get 

( )
( )
( )

1
1

1

j
i i i ij j

j: j~i i

q w
q G x w x w x

q w
= + ∑ , 

i.e., 

( )( ) ( )
( )

T T1
1

1

j
i t t i i i ij j

j: j~i i

q w
x q G Ι w x x w x

q w× − ≤ ∑ . 

From (10) and using Lemma 1 and Lemma 2, we get 

( ) ( )( )

( )( ) ( )
( ) ( )

( ) ( ){ } ( )

T
1 1

T T 1
1 1

1

T
1 1

1

1 max .

i i i

j
i t t i i i i ij

j: j~i i

i i j ijj: j~i j: j~ii

q G q w x x

q w
x q G Ι w x x x q w

q w

x x q w q w
q w

×

−

≤ − ≤

≤

∑

∑

         (12) 

Thus 

( ) ( ) ( )1 1 1~ : ~
max i jki j k k j

q G q w q w
 

≤ + 
 

∑ . 

Hence the theorem follows. 
Corollary 9. 
Let G be a simple connected weighted graph where each edge weight ijw  is a 

positive number. Then 

( ) { }1 ~
max i ji j

q G w w≤ + . 

Proof. 
For weighted graphs where the edge weights ijw  are positive number, we 

have ( )1 ij ijq w w=  and ( )1 i iq w w= , for all ,i j . Using Theorem 8 we get the 
required result. 

Corollary 10. [6]. 
Let G be a simple connected unweighted graph. Then 

( ) { }1 ~
max i ji j

q G d d≤ + , 

where id  is the degree of vertex i. 
Proof. 
For an unweighted graph, 1ijw =  and i iw d=  for all ,i j  and ~i j . Using 

Corollary 9 we get the required result. 
Theorem 11. 
Let G be a simple connected weighted graph. Then, 
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( ) ( ){ }1 1~
max i ii j

q G q w γ≤ + ,                    (13) 

where 
( ) ( )
( )

1 1
: ~

1

.
ij j

j j i
i

i

q w q w

q w
γ =

∑

 
Proof. 
From (12), we get 

( ) ( ) ( )
( ) ( )

( ){ }

1
1 1 1

: ~ 1

1max .

j
i ij

j j i i

i ii V

q w
q G q w q w

q w

q w γ
∈

≤ +

≤ +

∑

 

The proof is complete. 
Corollary 12. 
Let G be a simple connected weighted graph where each edge weight ijw  is a 

positive number. Then 

( ) { }1 max i ii V
q G w w

∈
′≤ + , 

where : ~
ij j

j j i
i

i

w w
w

w
′ =
∑

. 

Proof. 
For weighted graphs where the edge weights ijw  are positive number, we 

have ( )1 ij ijq w w=  and ( )1 i iq w w= , for all ,i j . Using Theorem 11 we get the 
required result. 

Corollary 13. [6]. 
Let G be a simple connected unweighted graph. Then 

( ) { }1 max i ii V
q G d m

∈
≤ + , 

where id  is the degree of vertex i and im  is the average of the degrees of the 
vertices adjacent to vertex i. 

Proof. 
For an unweighted graph, 1ijw =  and i iw d=  for all ,i j  and ~i j . Using 

Corollary 12 we get the required result. 
Theorem 14. 
Let G be a simple connected weighted graph. Then 

( )
( ) ( ) ( )1 1 1

1

8
max

2
i i i i

i V

q w q w q w
q G

γ
∈

 + + ≤  
  

,         (14) 

where 
( ) ( )
( )

1 1
: ~

1

.
ij j

j j i
i

i

q w q w

q w
γ =

∑
 

Proof. 

Let ( )TT T T

1 2, , , nx x x x=   be an eigenvector corresponding to the eigenvalue 

( )1q G . We assume that ix  be the vector component of x  such that 
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{ }T T
maxi i k kk V

x x x x
∈

= .                   (15) 

Since x  is nonzero, so is ix . We have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 .q G x Q G x W G x W G A G x A G W G x A G x= = + + +  

In order to prove the Inequality (14), we consider a simple quadratic function 
of 1q : 

( ) ( )( ) ( )2 2 2
1 1 .q G bq G x W x WAx AWx A x b Wx Ax+ = + + + + +     (16) 

From the i-th Equation of (16), we get 

( ) ( )( )2
1 1

2

: ~ : ~ : ~ : ~ : ~
,

i

i i i ij j ij j j ij jk k i i ij j
j j i j j i j j i k k j j j i

q G bq G x

w x w w x w w x w w x b w x w x

+

 
= + + + + + 

 
∑ ∑ ∑ ∑ ∑

 

i.e., 

( ) ( )( )
( )

( )

T2
1 1

T T T2

: ~ : ~ : ~

T T

: ~

T T T2

: ~ : ~ : ~

T T

: ~

i i

i i i i i ij ij j j i ij jk k
j j i j j i k k j

i i i i ij j
j j i

i i i i i ij ij j j i ij jk k
j j i j j i k k j

i i i i ij j
j j i

q G bq G x x

x w x x w w w w x x w w x

b x w x x w x

x w x x w w w w x x w w x

b x w x x w x

+

= + + +

 
+ + 

 

≤ + + +

 
+ + 

 

∑ ∑ ∑

∑

∑ ∑ ∑

∑

 

Since ijw  is the positive definite matrix of edge ij, 2
ijw  matrix is also positive 

definite. From Lemma 1, we have 

( ) ( )

( ) ( )

T T T2
1

: ~ : ~ : ~

T T T
1 1

: ~
.

i i i i i ij ij j j i ij jk k
j j i j j i k k j

i i i ij i i j j
j j i

q w x x x w w w w x x w w x

b q w x x q w x x x x

≤ + + +

 
+ + 

 

∑ ∑ ∑

∑
   (17) 

Four cases arise; 
1) ( )i ij ij jw w w w+  and ij jkw w  are real symmetric matrices for all j, j∼i and 

for all k, k∼j, j∼i. 
2) ( )i ij ij jw w w w+  is a real symmetric matrix for all j, j∼i and ij jkw w  is not a 

real symmetric matrix for all k, k∼j, j∼i. 
3) ( )i ij ij jw w w w+  is not a real symmetric matrix for all j, j∼i and ij jkw w  is a 

real symmetric matrix for all k, k∼j, j∼i. 
4) ( )i ij ij jw w w w+  and ij jkw w  are not real symmetric matrices for all j, j∼i 

and for all k, k∼j, j∼i. 
From (15), (17) and using Lemma 2 and Lemma 4, we get 

( ) ( ) ( )

( ) ( )

T T T2
1 1 1

: ~ : ~ : ~

T
1 1

: ~
,

i i i i ij ij j i i ij jk i i
j j i j j i k k j

i ij i i
j j i

q w x x q w w w w x x q w w x x

b q w q w x x

≤ + + +

 
+ + 

 

∑ ∑ ∑

∑
  (18) 
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for Case (1), Case (2), Case (3) and Case (4). Hence, 

( ) ( )
( ) ( ) ( )

( ) ( )

2
1 1

2
1 1 1

: ~ : ~ : ~

1 1
: ~

.

i i ij ij j ij jk
j j i j j i k k j

i ij
j j i

q G bq G

q w q w w w w q w w

b q w q w

+

≤ + + +

 
+ + 

 

∑ ∑ ∑

∑

 

From Lemma 3, we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

2
1 1 1 1 1

1 1 1

1 1

2

2 ,

i i ij ij j
j: j~i j: j~i

ij jk i
j: j~i k:k~ j

i i i

q w q w q w q w q w

q w q w bq w

q w q w bγ

≤ + +

+ +

= + +

∑ ∑

∑ ∑  

i.e., 

( ) ( ) ( ) ( )( )2
1 1 1 12 0.i i iq G bq G q w q w bγ+ − + + ≤  

Thus 

( )
( ) ( )( )2

1 1
1

8
.

2
i i ib b q w q w b

q G
γ− + + + +

≤  

From the inequality above, for every different value to b, we can get several 
distinct upper bounds. In particular, if ( )1 ib q w= − , we get 

( )
( ) ( ) ( )1 1 1

1

8
max

2
i i i i

i V

q w q w q w
q G

γ
∈

 + + ≤  
  

. 

This completes the proof. 
Corollary 15. 
Let G be a simple connected weighted graph where each edge weight ijw  is a 

positive number. Then 

( )1

8
max

2
i i i i

i V

w w w w
q G

∈

 ′+ + ≤  
  

, 

where : ~
ij j

j j i
i

i

w w
w

w
′ =
∑

. 

Proof. 
For weighted graphs where the edge weights ijw  are positive number, we 

have ( )1 ij ijq w w=  and ( )1 i iq w w= , for all ,i j . Using Theorem 14 we get the 
required result. 

Corollary 16. [5]. 
Let G be a simple connected unweighted graph. Then 

( )1

8
max

2
i i i i

i V

d d d m
q G

∈

 + + ≤  
  

, 

where id  is the degree of vertex i and im  is the average of the degrees of the 
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vertices adjacent to vertex i. 
Proof. 
For an unweighted graph, 1ijw =  and i iw d=  for all ,i j  and ~i j . Using 

Corollary 15 we get the required result. 
Theorem 17. 
Let G be a simple connected weighted graph. Then, 

( )
( ) ( ) ( ) ( )( )2

1 1 1 1

1 ~

4
max

2
i j i j i j

i j

q w q w q w q w
q G

γ γ 
+ + − + 

≤  
 
 

,    (19) 

where 
( ) ( )
( )

1 1
: ~

1

.
ij j

j j i
i

i

q w q w

q w
γ =

∑
 

Proof. 
( ) ( ) ( ) ( )( )1 1 1 2 1, , ,t t t t n t tM G diag q w Ι q w Ι q w Ι× × ×=  . The ( ),i j -th element of 

( ) ( ) ( )1M G Q G M G−  is 

( )
( )

1

1

; if ,

; if ~ ,

0; otherwise.

i

j
ij

i

w i j

q w
w i j

q w

=







 

Let ( )TT T T

1 2, , , nx x x x=   be an eigenvector corresponding to the eigenvalue 

( )1q G  of ( ) ( ) ( )1M G Q G M G− , ix  and jx  are the vector components of x  
such that 

{ }T T
maxi i k kk V

x x x x
∈

= ,                     (20) 

{ }T T

: ~
maxj j k kk k i

x x x x= .                     (21) 

Since x  is nonzero, so is ix . We have 

( ) ( ) ( ){ } ( )1
1M G Q G M G x q G x− = .                (22) 

From the i-th Equation of (22), we get 

( )( ) ( )
( )

T T1
1

1

k
i t t i i i ik k

k:k ~i i

q w
x q G Ι w x x w x

q w× − ≤ ∑ . 

From Lemma 2, we get 

( )
( ) ( ) T T1

1
1

k
ik i i k k

k:k ~i i

q w
q w x x x x

q w
≤ ∑ .                (23) 

From (21), (23) and using Lemma 1, we get 

( ) ( )( ) ( )( )T T T T

1 1 1i i i i t t i i i i i j jq G q w x x x q G Ι w x x x x x .γ×− ≤ − ≤     (24) 

Similarly, from the j-th Equation of (22), we have 
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( ) ( )( ) ( )( )T T T T

1 1 1j j j j t t j j j i i j jq G q w x x x q G Ι w x x x x x .γ×− ≤ − ≤    (25) 

From (24) and (25), we get 

( ) ( )( ) ( ) ( )( )1 1 1 1 .i j i jq G q w q G q w γ γ− − ≤  

Thus 

( )
( ) ( ) ( ) ( )( )2

1 1 1 1

1 ~

4
max

2
i j i j i j

i j

q w q w q w q w
q G

γ γ 
+ + − + 

≤  
 
 

. 

Hence the theorem is proved. 
Corollary 18. 
Let G be a simple connected weighted graph where each edge weight ijw  is a 

positive number. Then 

( )
( )2

1 ~

4
max

2
i j i j i j

i j

w w w w w w
q G

 ′ ′+ + − + ≤  
 
 

, 

where : ~
ij j

j j i
i

i

w w
w

w
′ =
∑

. 

Proof. 
For weighted graphs where the edge weights ijw  are positive number, we 

have ( )1 ij ijq w w=  and ( )1 i iq w w= , for all ,i j . Using Theorem 17 we get the 
required result. 

Corollary 19. [7]. 
Let G be a simple connected unweighted graph. Then 

( )
( )2

1 ~

4
max

2
i j i j i j

i j

d d d d m m
q G

 + + − + ≤  
 
 

, 

where id  is the degree of vertex i and im  is the average of the degrees of the 
vertices adjacent to vertex i. 

Proof. 
For an unweighted graph, 1ijw =  and i iw d=  for all ,i j  and ~i j . Using 

Corollary 18 we get the required result. 
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