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Abstract 
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1. Introduction 

At the present time, there is a noticeable increase in the attention of researchers 
to fractional calculus. The development of the theory of equations with deriva-
tives of fractional order is stimulated by the development of the theory of diffe-
rential equations of the whole order. The role of fractional calculus in the theory 
of equations of mixed type is well known, in the theory of problems with dis-
placement, in the theory of degenerate equations. In addition, equations of frac-
tional order, essentially supplementing the picture of the general theory of diffe-
rential equations, can reveal a connection between phenomena that, remaining 
within the framework of integer differentiation, appear to be independent. The 
dynamics of systems described by differential equations of fractional order is an 
object of study of specialists from about the middle of the 20th century [1]. In the 
middle 1970 years, F. Mainardi and M. Caputo have shown that the use of diffe-
rential equations of fractional order for constructing models in problems of the 
thermo baric elasticity is more adequate from physical considerations and allows 
more accurately reproducing experimentally observed data in calculations. The 
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study of dynamical systems of fractional order with control is actively develop-
ing in the last 10 years [2]. The growing interest in these areas is due to two main 
factors. First, by the middle of the last century, the mathematical foundations of 
fractional integro-differential calculus and the theory of differential equations of 
fractional order were developed [3]. Approximately at the same time, the me-
thodology of applying fractional calculus in applied problems began to evolve, 
and numerical methods for calculating integrals and fractional derivatives began 
to develop. Secondly, in fundamental and applied physics, by that time, a signif-
icant volume of results was accumulated that showed the necessity of using the 
apparatus of fractional calculus for an adequate description of a number of real 
systems and processes [4]. As examples of real systems, we mention electro-
chemical cells, capacitors with fractal electrodes, viscoelastic media. These sys-
tems have, as a rule, non-trivial physical properties, useful from a practical point 
of view. For example, the irregular structure of the electrodes in the capacitors 
allows them to reach a much higher capacitance, and the use of electrical circuits 
with elements having a fractional-power transfer type provides more flexible 
tuning of the fractional order controllers used in modern control systems [5] [6] 
[7]. 

At the present time, under the influence of rapid scientific and technical 
progress, fractional calculus has turned into a powerful scientific direction, in-
cluding both fundamental and applied research. This is due to the need to more 
accurately describe the physical systems and processes that have become objects 
of interest of modern researchers. The distinguishing features of such systems 
and processes are their non-local character and the phenomenon of memory. 
For example, this applies to micro and nanostructured media, deterministic and 
chaotic including “fractal-chaotic” processes in nature and engineering. 

In addition to research in the field of modeling fractional dynamical systems, 
research in management problems such as differential games has been actively 
developed in recent years. The present article is devoted to obtaining sufficient 
conditions for the completion of pursuit for differential games of fractional or-
der, described with divided dynamics [8]-[15]. 

2. Methods 

Let the movement of the first player, whom we call the pursuer, be described by 
equation 

1, mD x Ax u x Rα = + ∈                      (1) 

where Dα —operator of fractional differentiation of order α , 1 11n nα− < < , 

1n ∈ , [ ]0,t T∈ , A — 1 1m m× -constant matrix. The movement of the second 
player, which we will call escaping, is given by equation  

2, mD y By y Rβ υ= + ∈                      (2) 

where Dβ —operator of fractional differentiation of order β , 2 21n nβ− < < , 

2n ∈ , [ ]0,t T∈ , B — 2 2m m×  constant matrix, ,u υ —control parameters, 
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u —controlling parameter of the pursuer, 1mu P R∈ ⊂ , υ —the controlling pa-
rameter of the evading player, 2mQ Rυ ∈ ⊂ , P  and Q —compacts. The frac-
tional derivative will be understood in the sense of Caputo [16] [17] [18] [19] [20]. 

We recall that the fractional derivative of order ( ), 1 ,n n nγ γ− < < ∈Ν  from 
sometimes n continuously differentiable function ( ) , : mz t z R R+ →  in Capu-
to’s sense is defined by the expression 

( ) ( ) ( )

( ) ( )
( ) 1

0

1 d .
nt

n

z
D z D z t

n t
γγ

γ

τ
τ

γ τ − +≡ =
Γ − −

∫              (3) 

where ( )Γ ⋅ —gamma-function, which is defined as follows ( ) 1

0

e dtt tθθ
∞

− −Γ = ∫ . 

The main property of the gamma function is expressed by the reduction formula 
( ) ( )1θ θ θΓ + = Γ . If θ —positive integer, than ( ) ( )1 !θ θΓ = − ;  

( )1 3 2 11 π
2 2θ

θ
θ

⋅ − Γ + = 
 



. When 0 1θ< <  we have formula  

( ) ( ) ( )
π1

sin π
θ θ

θ
Γ Γ − = . 

To define a terminal set, we introduce the notation ( )( )1 2min ,s s m m≤ , 
1 1

0 1M M M= + , 11
0

sM R⊂ , 11
1 0

sL M R× =  and 2 2
0 1M M M= + , 22

0
sM R⊂ , 

22
2 0

sL M R× = . Across 1Π , 2Π , denote operators orthogonal to the projections 
respectively from 1mR  on 1L  and from 2mR  on 2L  and пусть 

( ){ }1 2
1 2 1; , , :m mM x y x R y R x y M= ∈ ∈ Π −Π ∈ . The game is considered to be 

over, if the conditions are fulfilled. The aim of the pursuing player is to withdraw 
( );x y  on the set M, the escaping player tries to prevent it. 

Definition. We say that a differential game (1)-(3) can be completed from the 
initial position ( )1

0 0 0 0 0 0
0 1 2 3 1, , , , , nx x x x x x −=  , ( )2

0 0 0 0 0
0 1 2 1, , , , ny y y y y −=   during 

( )0 0,T T x y= , if there exists a measurable function ( ) ( )( )0 ,u t u z t Pυ= ∈ , 

[ ]0,t T∈ , that the solutions of equations  

( ) ( )1 0
1 1, , 1 , 0 ,mD x Ax u t x R n n x xα α= + ∈ − < < =          (4) 

( ) ( )2 0
2 2, , 1 , 0 ,mD y By t y R n n y yβ υ β= + ∈ − < < =         (5) 

satisfies the condition ( );x y M∈ , those 1 2x yΠ −Π  belongs to the set 1M  in 
the moment t T=  for any measurable functions ( ) ( ),t t Qυ υ ∈ , 0 t T≤ ≤ . 

3. Formulation of Main Results 

We now turn to the formulation of the main results. Let ( ) ( )1
0

;
k

k

GE G
kη µ
η µ

∞

−
=

=
Γ +

∑
 

-generalized Mittag-Lefler matrix function [1], where 0η > , µ ∈  (—set 
of complex numbers) and G —an arbitrary square matrix of order m. We con-
sider the dynamical system (1)-(3) with the initial conditions 

( ) ( ) ( ) ( )0 0
1 20 , 0,1, , 1, 0 , 0,1, , 1.k l

k lx x k n y y l n= = − = = −        (6) 

Then the solution of Equations ((4), (5)) with initial conditions (6) has the 
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form 

( ) ( ) ( ) ( )( ) ( )
1 1

10
1 1

0 0

; 1 ; d .
tn

k
k

k
x t t E At k x t E A t uα αα

α α

τ τ α τ τ
−

−

=

= + + − −∑ ∫    (7) 

( ) ( ) ( ) ( )( ) ( )
2 1

10
1 1

0 0

; 1 ; d .
tn

l
l

l
y t t E Bt l y t E B tβ ββ

β β

τ τ β υ τ τ
−

−

=

= + + − −∑ ∫    (8) 

For 0r ≥ , define ( ) ( )1
1 1ˆ ;u r t E At Pα α

α

α−= Π , ( ) ( )1
2 1ˆ ;r t E Bt Qβ β

β

υ β−= Π , 

( ) ( ) ( )* ˆˆ ˆw r u r rυ= ; 

( ) ( ) ( ) ( )1 1
0

ˆ d , 0, .W w r r W M W
τ

τ τ τ τ= > = − +∫             (9) 

For convenience, we introduce the notation ( ) ( )
1 1

0 0
1

0
, ; 1

n
k

x k
k

h x t t E At k xα

α

−

=

= +∑ , 

( ) ( )
2 1

0 0
1

0
, ; 1

n
l

y l
l

h y t t E Bt l yβ

β

−

=

= +∑ . 

Theorem 1. If in the game (1)-(3) for some 1τ τ= , the inclusion  

( ) ( ) ( )0 0
1 2 1, ,x yh x h y Wτ τ τ−Π +Π ∈                (10) 

then from the initial position 0 0,x y  you can complete the pursuit of time 1T τ= .  
Now suppose that ω —an arbitrary partition of the interval [ ]0,τ , 

{ }0 10 pt t tω τ= = < < < = , 1,2, ,i p=  , and 0 1A M= − , 

( ) ( ) ( )

( )

( ) ( )

1

1

1
1 1 1 1 1

1*
2 1

2 1

, , ; d

; d , 1,2, , ,

, .

i

i

i

i

t

i i
t

t

t

i

A M A M r E Ar P r

r E Br Q r i p

W A M

α α

α

β β

β

ω

τ τ α

β

τ τ

−

−

−
−

−

 
= + Π  
 

Π =

=

∫

∫ 



        (11) 

Theorem 2. If in the game (1)-(3) for some 2τ τ= , the inclusion,  

( ) ( ) ( )0 0
1 2 2, ,x yh x h y Wτ τ τ−Π +Π ∈

              
 (12) 

then from the initial position 0 0,x y  you can complete the pursuit of time 

2T τ= .  

We denote by ( )ˆ ,w r τ  a bunch of ( ) ( )*
1

1 ˆˆM u r rυ
τ

 − +  
 defined for all 

0r ≥ , 0τ > . Consider the integral 

( ) ( )3
0

ˆ , d .W w r r
τ

τ τ= ∫                      (13) 

Theorem 3. If in the game (1)-(3) for some 3τ τ= , the inclusion 

( ) ( ) ( )0 0
1 2 3, ,x yh x h y Wτ τ τ−Π +Π ∈                (14) 

then from the initial position 0 0,x y  you can complete the pursuit of time 

3T τ= .  
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4. Proof of Theorems 

Proof of Theorem 1. There are two possible cases:1) 1 0τ = ; 2) 1 0τ > . Case 1) is 
trivial, since when 1 0τ =  from (9) and inclusion (10) we have ( )0

1 ,0xh x−Π

( )0
2 1,0yh y M+Π ∈−  and 0 0

1 0 2 0 1x y MΠ −Π ∈ , which is equivalent to including 

( )0 0;x y M∈ . Now let the case 2) 1 0τ > . By the conditions of the theorem (10)  

( ) ( ) ( )0 0
1 1 2 1 1 1, ,x yh x h y Wτ τ τ−Π +Π ∈ , then there are vectors 1d M∈  и 

( )
1

0

ˆ dw w r r
τ

∈ ∫  such that (show (9), (10)) ( ) ( )0 0
1 1 2 1, ,x yd w h x h yτ τ+ = −Π +Π . 

Further, in accordance with the definition of the integral ( )
1

0

ˆ dw r r
τ

∫  there exists 

a summable function ( ) 1,0w r r τ≤ ≤ , ( ) ( )ˆw r w r∈ , when ( )
1

0

dw w r r
τ

= ∫ . 

Taking this equality into account, we consider the equation 

( ) ( )( ) ( ) ( )( )
( )

1 1
1 1 1 1 2 1 1 1

1

; ;t E A t u t E B t

w t

α α β β

α α

τ τ α τ τ β υ

τ

− −Π − − −Π − −

= −
   (15) 

Relatively u P∈  for fixed [ ]10,t τ∈  and Qυ ∈ . As ( ) ( )ˆw r w r∈ , then 
Equation (15) has a solution. From all solutions of (15) we choose the smallest in the 
lexicographic sense and denote it by ( ),u t υ . Function ( ) 1, ,0 ,u t t Qυ τ υ≤ ≤ ∈ , It 
is Lebesgue measurable with respect to and Borel measurable in υ  [8]. Therefore, 
for any measurable function ( ) ( ),0 ,t t t Qυ υ υ= ≤ < ∞ ∈ , function ( )( ), ,u t tυ  

10 t τ≤ ≤ , is a Lebesgue measurable function [7]. We set ( ) ( )( ), ,u t u t tυ=

10 t τ≤ ≤  and show that with this method of controlling the parameter, u the 
trajectory ( ) ( )( )0, ,z u zυ⋅ ⋅  falls on the set M for a time not exceeding 1T τ= . 

Indeed, according to (15), for the solution of ( ) ( ), ,0x t y t t≤ < ∞ , equations  

( ) ( ) ( ) 0
1, 0 , 0,1, , 1k

kD x Ax u t x x k nα = + = = −            (16) 
( ) ( ) ( ) 0

2, 0 , 0,1, , 1l
lD y By t y y l nβ υ= + = = −            (17) 

in view of (7), (8), (16), (17) we have [1] 

( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1

1 1 1

1

1 1 2 1

10 0
1 1 2 1 1 1 1 1

0

1
2 1 1 1

0 0
1 1 2 1 1 1

0 0
0

1
0 0 0

, , ;

; d

, , d d

d d d d

x y

x y

x y

h x h y t E A t u t

t E B t t t

h x h y w t t d w w t t

d w r r w r r d w r r w r r d M

τ
α α

α

β β

α
τ τ

τ τ τ

τ

τ τ

τ τ τ τ α

τ τ β υ

τ τ τ τ

−

−

−Π +Π


= −Π +Π − Π − −



−Π − − 



= −Π +Π − − = − + − −

= − + − = − − + = − = −

∫

∫ ∫

∫ ∫ ∫ ∫
 ( ) ( ) ( ) ( )1 1 2 1 1 1 1 2 1 1, ,x y d M x y Mτ τ τ τΠ −Π = ∈ Π −Π ∈         (18)

 

As ( ) ( )0 0
1 1 2 1, ,x yd w h x h yτ τ− − = Π −Π . Further we have ( ) ( )1 1 2 1x yτ τΠ −Π

1M∈ . From this [18], we get that ( ) ( )( )1 1;x y Mτ τ ∈ . The theorem is com-
pletely proved. 
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Proof of Theorem 2. In view of the triviality of the case 2 0τ =  we start with 
the case 2 0τ > . We have (show (11), (12)) ( ) ( )0 0

1 2 2 2, ,x yh x h yτ τ−Π +Π

( )2 2W τ∈ . ( )2 2W τ  is an alternating integral with initial set 0 1A M= −  [8] [9] 
[10]. Therefore, it satisfies the semigroup property [9] 

( ) ( ) ( )

( )

2

2

2

2

1
2 2 2 2 1 1

1*
2 1

; d

; d ,

W W r E Ar P r

r E Br Q r

τ
α α

τ ε α
τ

β β

τ ε β

τ τ ε α

β

−

−

−

−

 
⊂ − + Π  
 

Π

∫

∫
         (19)

 

where, ε —arbitrary positive fixed number 20 ε τ< ≤ ; ( )0 rυ , 2 2rτ ε τ− ≤ ≤ — 
an arbitrary measurable function with values in Q. 

Let ( ) ,0t tυ υ= ≤ < ∞—arbitrary measurable function ( )t Qυ ∈ . In accor-
dance with the conditions of the theorem at time 0t =  the narrowing becomes 
known ( ) ,0t tυ ε≤ ≤ , function ( ) ,0t tυ ≤ < ∞ , on the line [ ]0,ε . It follows 
from the inclusion (19) that for an arbitrary function ( )2 2 2,r rυ τ τ ε τ− − ≤ ≤ , 
( )2 r Qυ τ − ∈ , we have 

( ) ( ) ( )

( ) ( ) ( )
2 2

2 2

0 0
1 2 2 2 2 2

1 1*
1 1 2 1 2

, ,

; d ; d ,

x yh x h y W

r E Ar P r r E Br r r
τ τ

α α β β

τ ε τ εα β

τ τ τ ε

α β υ τ− −

− −

−Π +Π ∈ −

+ Π Π −∫ ∫ 

   

 (20) 

Thus, for an arbitrary function ( ) ,0s sυ ε≤ ≤ , there is an inclusion (20). 
Consequently, when ( ) ( ) ,0s s sυ υ ε≡ ≤ ≤ , the inclusion (17). This implies the 
existence of a measurable function ( ) ,0u s s ε≤ ≤ , such that ( )u s P∈  and 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2

2

2

2

0 0
1 2 2 2 2 2

1
1 2 1 2

1
2 2 1 2 2

, ,

; d

; d ,

x yh x h y W

s E A s u s s

s E B s s s

τ
α α

τ ε α

τ
β β

τ ε β

τ τ τ ε

τ τ α

τ τ β υ τ

−

−

−

−

−Π +Π ∈ −

+ Π − −

− Π − − −

∫

∫ 

         (21) 

than 

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

2

2

2

2

0 0
1 2 2 2

1
1 2 1 2

1
2 2 1 2 2 2 2

, ,

; d

; d .

x yh x h y

s E A s u s s

s E B s s s W

τ
α α

τ ε α

τ
β β

τ ε β

τ τ

τ τ α

τ τ β υ τ τ ε

−

−

−

−

−Π +Π

− Π − −

+ Π − − − ∈ −

∫

∫ 

    (22) 

We argue further in the same way as (21), (22). As 

( ) ( ) ( )

( ) ( )

2

2

2

2

1
2 2 2 2 1 1

2

1*
2 1 2

2

2 ; d

; d

W W r E Ar P r

r E Br r r

τ ε
α α

τ ε α
τ ε

β β

τ ε β

τ ε τ ε α

β υ τ

−
−

−
−

−

−

 
− ⊂ − + Π  

 

Π −

∫

∫ 

      (23) 

https://doi.org/10.4236/jamp.2018.63044


M. Mamatov, K. Alimov 
 

 

DOI: 10.4236/jamp.2018.63044 481 Journal of Applied Mathematics and Physics 
 

we get 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )
2 2

2 2

10 0
1 2 2 2 1 2 1 2

0

1
2 2 1 2 2 2

0

1 1*
1 1 2 1 2

2 2

, , ; d

; d 2

; d ; d

x yh x h y s E A s u s s

s E B s s s W

r E Ar P r r E Br r r

ε
α α

α
ε

β β

β

τ ε τ ε
α α β β

τ ε τ εα β

τ τ τ τ α

τ τ β υ τ ε

α β υ τ

−

−

− −
− −

− −

−Π +Π − Π − −

+ Π − − ∈ −

+ Π Π −

∫

∫

∫ ∫







 (24) 

for an (23), (24) arbitrary measurable function ( )2 2 2, 2r rυ τ τ ε τ ε− − ≤ ≤ −

 , 
( )2 r Qυ τ − ∈

 . Consequently, there exists a measurable function ( ) , 2u s sε ε≤ ≤ , 
such that ( )u s P∈  and n 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

10 0
1 2 2 2 1 2 1 2

0

1
2 2 1 2 2 2

0

2 2
1 1

1 1 2 1 2

, , ; d

; d 2

; d ; d

x yh x h y s E A s u s s

s E B s s s W

r E Ar u r r r E Br r r

ε
α α

α
ε

β β

β

ε ε
α α β β

ε εα β

τ τ τ τ α

τ τ β υ τ ε

α β υ τ

−

−

− −

−Π +Π − Π − −

+ Π − − ∈ −

+ Π − Π −

∫

∫

∫ ∫







 (25) 

It follows from (25) that 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

2
10 0

1 2 2 2 1 2 1 2
0

2
1

2 2 1 2 2 2
0

, , ; d

; d 2 ,

x yh x h y s E A s u s s

s E B s s s W

ε
α α

α
ε

β β

β

τ τ τ τ α

τ τ β υ τ ε

−

−

−Π +Π − Π − −

+ Π − − ∈ −

∫

∫ 

 (26) 

etc. It is clear that there exists a natural number j such that: 1) ( ) 21j jε τ ε− < ≤ ; 
2) by a known function ( ) 2,0s sυ τ≤ ≤ , where ( ) 2,0s sυ τ≤ ≤  narrowing of 
the function ( ) ,0s sυ ≤ < ∞ , on the line [ ]20,τ , there exists a measurable func-
tion ( )u s , ( ) ( )2 21 ,j u s Pε τ τ− < ≤ ∈ , satisfying the condition 

( )( ) ( )( ) ( )
( )

( )

( )
( )

( )

2

2

2

2

1
1

2 2 2 2 1 1
2

1
1*

2 1
2

2 1 ; d

; d ,

j

j

j

j

W j W j r E Ar P r

r E Br Q r

τ ε
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τ ε α

τ ε
β β

τ ε β

τ ε τ ε α

β

− −
−

− −

− −
−

− −

 
 − − ⊂ − − + Π
 
 

Π

∫

∫

 (27) 

and 

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( )( ) ( )
( )

( )( )

( ) ( )
( )

( ) ( )
( )

2

2

2 2

2 2

1
10 0

1 2 2 2 1 2 1 2
0

1
1

2 2 1 2 2 2
0

1 1
1 1 2 1 2

1 1

, , ; d

; d 1

; d ; d .

j

x y

j

j j

h x h y s E A s u s s

s E B s s s W j

r E Ar u r r r E Br r r

τ ε
α α

α

τ ε
β β

β

τ τ
α α β β

τ ε τ εα β

τ τ τ τ α

τ τ β υ τ ε

α β υ τ

− −
−

− −
−

− −

− − − −

−Π +Π − Π − −

+ Π − − ∈ − −

+ Π − Π −

∫

∫

∫ ∫







(28) 

therefore (26)-(28).  
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( ) ( )
2

2

1 3 2 3 1

0 0 1
1 2 2 2 1 2 1 2

0

1
2 2 1 2 2 2

0

( , ) ( , ) ( ) ( ( ) ; ) ( )

( ) ( ( ) ; ) ( ) ( ( 1) ).

x y

x y M

h x h y s E A s u s ds

s E B s s ds W j

τ
α α

α
τ

β β

β

τ τ

τ τ τ τ α

τ τ β υ τ ε

−

−

Π −Π ∈

−Π +Π − Π − −

+ Π − − ∈ − −

∫

∫ 

 (29) 

Similarly, by formulas (27)-(29) we eventually obtain 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

1 2 2 2 2 2 2 1

1 2 2 2 1 1 2 2 2 1

1 0 ,

, .

x y W j W M

x y M x y M

τ τ τ ε

τ τ τ τ

−Π +Π ∈ − − ⊂ = −

−Π +Π ∈− Π −Π ∈       
 (30) 

Thus (30), for a point 0 0,x y  we have ( ) ( )( )2 2;x y Mτ τ ∈ , those. Trajectory 
0 0,x y , at the time 2t τ=  is on the set M. The theorem is completely proved. 
Proof of Theorem 3. By the hypothesis of Theorem (14), we have 

( ) ( ) ( )0 0
1 3 2 3 3 3, ,x yh x h y Wτ τ τ−Π +Π ∈ . Hence (13), there exists a measurable 

function ( ) 3,0w r r τ≤ ≤ , ( ) ( )ˆw r w r∈ , when 

( ) ( ) ( ) ( ) ( )
3

0 0
1 2 3

0

ˆ, , d , , .x yh x h y w r r w r w r
τ

τ τ τ−Π +Π = ∈∫
      

 (31) 

Let ( ) ( )3,0 ,t t t Qυ υ τ υ= ≤ ≤ ∈  an arbitrary measurable function (31), by 
the definition of the subtraction operation *  and ( )ˆ ,w r τ  from (7)-(9) we get 

( ) ( ) ( )( ) ( )

( )

1
2 3 1 3

1 3 3
3

;

1 ˆ , 0 .

w r r E B r r

M u r r

β β

β

τ τ β υ

τ τ
τ

−+Π − −

∈− + − ≤ ≤
            (32) 

From this (32), in view of the measurability condition, there follows the exis-
tence of measurable functions ( ) ( ),d r u r , defined on a line 30 r τ≤ ≤  and  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1
1 1 3 1 3 3

3

1
2 3 1 3

1
1 3 1 3 3

1 ˆ, ; ,

;

; , 0 .

d r M r E A r u r u r

w r r E B r r

d r r E A r u r r

α α

α

β β

β

α α

α

τ τ α τ
τ

τ τ β υ

τ τ α τ

−

−

−

∈− Π − − ∈ −

+Π − −

= +Π − − ≤ ≤
  

 (33) 

A measurable function ( )u r  we define it as a solution of equation (33). Then 
for the solutions ( ) ( ) 3, ,0x t y t t τ≤ ≤ , relevant functions ( ) ( ),u t tυ , we have 

( ) ( )
( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

( )

3

3

3

1 3 2 3

0 0
1 3 2 3

1
1 3 1 3

0

1
2 3 1 3

0

1
0

, ,

; d

; d

d .

τ
α α

α
τ

β β

β

τ

τ τ

τ τ

τ τ α

τ τ β υ

−

−

−Π +Π

= −Π +Π

− Π − −

+ Π − −

= ∈−

∫

∫

∫



x y

x y

h x h y

s E A s u s s

s E B s s s

d s s M

        (34) 

From (34) here ( ) ( )1 3 2 3 1x y Mτ τΠ −Π ∈ , ( ) ( )( )3 3,x y Mτ τ ∈ , those. Trajec-
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tory 0 0,x y , at the time 3t τ=  is on the set M. The theorem is completely 
proved. 

5. Applying the Results to Specific Prosecution Processes 

Example 1. Let the pursuer’s motion be described by equation 

, , 0,D x u uπ ρ ρ= ≤ >                     (35)
 

where 3.14159π = —ratio of the length of the circle to its diameter. Move-
ment of the evader is determined by the equation 

, , 0,eD y υ υ σ σ= ≤ >                    (36)
 

where 2.71828e = —limit value 1lim 1 ,
n

n n
ρ σ

→∞

 + > 
 

. The fractional deriva-

tive will be understood in the sense of Caputo. Phase vectors x and y determine  
the current position in mR  pursuer and escaping respectively. It is assumed 
that ( )x x t=  is four times, and ( )y y t= —thrice continuously differentiable 
on R+  function of time t, those ( ) ( )4Cx t R+∈ , ( ) ( )3Cy t R+∈ . Control vec-
tors ( ) ,u u t u ρ= ≤ , ( ) ,tυ υ υ σ= ≤  are measurable functions of time t. 
Terminal set M has the form 0 1M M M= + , where 0M —linear subspace of the 
space mR , 1M —subset 0L , 0L —orthogonal complement to the subspace 0M  
в mR . Let 1 , 0M Sδ δ= > , S —single ball of 0L . In our example 

1 2Π = Π = Π —orthogonal projection operator from mR  on 0L . The game is 
considered to be over if conditions ( ),x y M∈ , those , 0x y δ δΠ −Π ≤ > .  

Because the A and B represent m m×  zero matrix, then  

( ) ( )1
1;E Atπ

π

π
π

= Ι
Γ

 and ( ) ( )1
1;e

e

E Bt e
e

= Ι
Γ

. The initial conditions for (35), 

(36) can be written in the form 

( ) ( ) ( ) ( )0 0 0 0
0 1 2 30 , 0 , 0 , 0x x x x x x x x= = = =               (37) 

and 

( ) ( ) ( )0 0 0
0 1 20 , 0 , 0y y y y y y= = =                  (38) 

Respectively (37), (38). We denote by 

( ) ( )0 0 0 0 0 0 0 0 0
0 1 2 3 0 1 2, , , , , , ,x x x x x y y y y= =  

( )

( )

2 3
0 0 0 0 0

0 1 2 3

2
0 0 0 0

0 1 2

, ,
2 6

, .
2

x

y

t th x x tx x x

th y y ty y

τ

τ

= + + +

= + +                
 (39) 

Now calculate the set ( ) ( )1
1 1ˆ ;u r t E At Pα α

α

α−= Π ,  

( ) ( )1
2 1ˆ ;r t E Bt Qβ β

β

υ β−= Π , ( ) ( ) ( )* ˆˆ ˆw r u r rυ= . By the conditions (39) of the 

problems, we have 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1
1 0

1 1 1
1 0

1 1ˆ ; ,

1 1ˆ ; ,e e e e

e

u r t E At P t M S t S

r t E Bt e Q t M S t S
e e

π π π π

π

π ρ ρ
π π

υ σ σ

− − −

− − −

= Π = Π Ι + = Ι
Γ Γ

= Π = Π Ι + = Ι
Γ Γ

  (40) 

Thus (40), the set ( )û r  there is a ball of radius 
( )

1 1tπ ρ
π

−

Γ
, but many 

( )ˆ rυ  there is a ball of radius 
( )

1 1et
e
σ−

Γ
, and the geometric difference of these 

sets ( ) ( ) ( )* ˆˆ ˆw r u r rυ=  there is a ball of radius 

( ) ( ) ( )
1 11 1 .er t t

e
πω ρ σ

π
− −= −
Γ Γ

                (41) 

The set defined by formula (9), (41) ( )W τ  there is a ball of radius 

( ) ( ) ( )
1 1

0

1 1 d .
r

er t t t
e

πγ ρ σ
π

− − 
= −  Γ Γ 
∫

             
 (42) 

It is (42) easy to prove that in order for the quantities ( )rω , ( )rγ  were 
positive for all 0r > , it suffices that the following inequalities hold 

( ) ( )
.

1 1

et t
e

π

ρ σ
π

>
Γ + Γ +                    

 (43) 

It is (43) clear that under these conditions all the conditions of the theorem 
are satisfied for this example 1. Thus, the quantity ( )0 0

1,T x y τ=  is the smallest 
positive root of the following equation 

( ) ( ) ( ) ( )
0 0, , .

1 1

e

x y
t th x t h y t

e

πρ σ δ
π

Π −Π = − +
Γ + Γ +

         (44)
 

Example 2. Let in the Euclidean space mR  dimension 2m ≥  there are two 
points: x —pursuing the motion, which is described by equation  

5
2 , , 0,D x u u ρ ρ= ≤ >                     (45)

 
and y —the motion is given by the equation 

3
2 , , 0,D y υ υ σ σ= ≤ >                    (46)

 
where ρ σ≥ . The fractional derivative will be understood in the sense of Ca-
puto. Phase vectors x and y determine the current position in mR  pursuer and 
escaping respectively. It is assumed that ( )x x t=  is three times, and ( )y y t= — 
twice continuously differentiable on R+  function of time t, those. ( ) ( )3Cx t R+∈ ,  
( ) ( )2Cy t R+∈ . Control vectors ( ) ,u u t u ρ= ≤ , ( ) ,tυ υ υ σ= ≤  are mea-

surable functions of time t. A and B represent m m×  zero matrix, then 
5
2

1
5
2

5 1 1 4;
5 12 3 π2
2 2

E At
 

= Ι = Ι = Ι        Γ Γ +   
   

 and  
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3
2

1
3
2

3 1 1 2;
3 12 π1
2 2

E At
 

= Ι = Ι = Ι        Γ Γ +   
   

. The initial conditions for (44)-(46) 

can be written in the form 

( ) ( ) ( )0 0 0
0 1 20 , 0 , 0 ,x x x x x x= = =                  (47) 

and ( ) ( )0 0
0 10 , 0y y y y= =  respectively. We (47) denote by  

( ) ( )0 0 0 0 0 0 0
0 1 2 0 1, , , , ,x x x x y y y= =  

( )
( )

2
0 0 0 0

0 1 2

0 0 0
0 1

, ,
2

, .

x

y

th x x tx x

h y y ty

τ

τ

= + +

= +
                 (48) 

The game is (48) considered to be over if conditions , 0x y δ δΠ −Π ≤ > . 
Reasoning exactly the same in Example 1, we see that for this example all the 
conditions of Theorem 2 are satisfied. Then the equation for finding the end 
time of the game has the form 

5 3
2 2

0 0 3( , t) (y , t) .
4 2x y

t th x h ρ π σ π δΠ −Π = − +        (9) 

6. Conclusions 

Summarizing the results obtained, we come to the conclusion that the differen-
tial game of pursuit of fractional order (1)-(3) starting at the moment t = 0 from 
the initial position ( )1

0 0 0 0 0 0
0 1 2 3 1, , , , , nx x x x x x −=  , ( )2

0 0 0 0 0
0 1 2 1, , , , ny y y y y −=   can 

be completed in a time not exceeding ( )0 0,T x y . Thus, sufficient conditions for 
solving similar problems are obtained in Theorems 1-3. The results obtained are 
applied to specific prosecution processes (49). 

The research carried out to solve fractional differential games clearly demon-
strates that fractional calculus is, in general, a more general and complex field of 
research than the classical differential games. Similarly, the theory of fractional 
dynamical systems and fractional calculus of variations include systems of in-
teger order as special cases. The development of fractional differential games is 
just beginning, and therefore in this area there remains an extensive field for re-
search. In particular, there is still no single clear interpretation of the geometric 
and physical meaning of fractional operators. There is also no single definition 
of the fractional derivative: in more abstract mathematical studies, as a rule, the 
Riemann-Lowville definition is used, and in more applied studies related to 
physics or control theory, in most cases the definition of Caputo is used or the 
definition of Grunwald-Letnikova. At the same time, the question of construct-
ing standardizing functions for initial, boundary and initial boundary value 
problems that allow one to change the form of the in homogeneity in equations 
and thereby reduce the corresponding problems to problems with zero boundary 
or initial conditions becomes urgent. 
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