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Abstract

We present in this article an epidemic model with saturated in metapopula-
tion setting. We develop the mathematical modelling of HIV transmission
among adults in Metapopulation setting. We discussed the positivity of the
system. We calculated the reproduction number, If R, ;<1 for j=12,3,4,

then each infectious individual in Sub-Population ; infects on average less
than one other person and the disease is likely to die out. Otherwise, if
Ry; >1 for j=1,234, then each infectious individual in Sub-Population ,
infects on average more than one other person; the infection could therefore
establish itself in the population and become endemic. An epidemic model,
where the presence or absence of an epidemic wave is characterized by the
value of R;; both ideas of the inner equilibrium point of stability properties

are discussed.

Keywords
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1. Introduction

Numerous mathematical models have been developed in order to understand
disease transmissions and behavior of epidemics. One of the earliest of these
models as discussed by Kermack [1], by considering the total population into
three classes, namely, susceptible (S) individuals, infected (I) individuals, and
recovered (R) individuals which is known to us as SIR epidemic model. This SIR
or SI epidemic model is very significant in todays analysis of diseases. SIR Model:
The SIR model labels these three compartments S = number susceptible, I =
number infectious, and R = number recovered. This is a good and simple model

for many infectious diseases. Birth—>S—I—>R—Death and The SI model labels
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these two compartments S = number susceptible and I = number infectious. This
is a good and simple model for many infectious diseases. Birth—>S—I—>Death.

In the mathematical epidemiology area an key concept is associated to the
basic reproduction number ( R, ). This is defined as the second expected number
produced from just a one individual in a susceptible population. For any
infectious disease, one of the most key concerns is its capacity to invade a
population, as studied by various authors [2]. This can be expressed by a
threshold parameter: if the disease free equilibrium is locally asymptotically
stable, then the disease cannot invade the population and R, <1, whereas if the
number of infected individuals grows, the disease can invade the population and

R, >1, as studied by various authors [3].

2. Compartmental Model and Differential Equations

In this section, we approached this study by using SI deterministic model.

In our model system the recruitment into the susceptible human population is
only by births (4 ). The size of the human population is decreased by natural
deaths ( x ), infected and awareness/education. Uneducated and educated
infected female youth move to the classes S, -, S, respectively at the rate
B, whereas uneducated and educated infected males youth move to the classes
lyum > lyem respectively at the rate S, resulting in an increase in the youth
infectious classes. The infectious classes are all decreased by natural deaths (x)
and disease induced deaths (&, ;). S, and |, is decreased further as a
result of the infected educated, II vertical transmission and tested youths going
through the Antiretroviral therapy thus moving to the treatment class T, at the
rate «. We assume that once a person becomes infected with HIV they do not
fully recover as there is no immunity to HIV and that only the educated and

tested persons qualify the antiretroviral therapy.
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Figure 1. Proposed schematics of the compartmental model.
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Figure 2. Schematics of the metapopulation model.

Differential Equation of the model

dSy | i lem i
;UF’ :(1_H)ﬂ’_luiﬂ:tji _NYUMY SYUF,i _ﬂll,_:i NYEMY SYUF,i _(p+/u)SYUF,i
YUM i YEM i
dSYEF,i —(1—1_[)/14- S —ﬂu IYUM,i S _ﬁE IYEM,i S ~uS
—dt = POy i L Nyuy | YEF i L Nygy VR, — HOveF i
dSYUM,i _ U IYUF,i E IYEF,i
d—_ (1_1_[)1_:323 —SYUM,i _ﬂz,i —SYUM,i _(p"‘,u)SYUM Ji
YUF,i YEFi
dSYEM,i —(1-TI) A S U IYUF,i S E IYEF,i S S
T—( - ) +p YUM,i_ﬂZ,i— YEM,i_ﬁZ,i— VEM i — HOvem i
YUF i YEF i
| : | i
dlyyy =TA+ 4, l\IYU&SYUF,i +4, %SYEFJ ~(p+p+8) o,
YUM i YUM i

dl Loy, ey,
%: A+ p, IYUM,i +ﬂll,_:i ﬂSYUF,i +ﬂll,_:i ﬂS’YEF,i _(a +y+5) IYEM,i
t YEM,i YEM i

_dl Iy Iver
deF =TIA+p Iy, + BE —TE S+ BE LS o — (@ 1+ 6) Ly
YEF,i YEF i

dl [ e
%:Hﬂ_pﬂzu’i s SYUM,i +ﬁ§,i L SYEM,i _(/7+/U+5)IYUFJ
t YUF i YUF i

dTy,
dt

=alyey + ol _(/1 +0y; )Tv,i

From the proposed schematics of the compartment model shown (see Figure
1), we extracted a metapopulation model for HIV dynamics among the youth
coupled with awareness/education ie, we extended the single patch disease
model to include multiple patches. A schematic of the Metapopulation Model (see
Figure 2) for HIV transmission in the youths coupled with awareness/education

in each patch 7, 1=12,---,n.
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3. Positivity and Boundedness

The theory of ordinary differential equations requires that, for every set of initial

conditions

T

y

(SYUF,iO ' SYEF,iO ' SYUM Jdg? SYEM Jdg? IYUM Jdg? IYEM Jdg? IYEF,iO 1 IYUF,iO !
the state variables
(SYUF‘i (t)’SYEF,i (t)’SYUM,i (t)'SYEM i (t), lyom (t)’ lem i (t): lver (t), (W (t)’Ti (t))

of the solution must remain non-negative.

Proposition 3.1. Let
(SYUF‘i (t)’SYEF,i (t)’ SYUM,i (t)'SYEM i (t)’ IYUM,i (t)’ IYEM i (t)’ IYEF‘i (t)’ IYUF,i (t)’Tl (t))

be the solution of the system (2.0).

1) Given the initial condition
(Svumo Syer io+ Svumig» Svem g+ vonn i+ vewn i Wer i+ vur g T ) cQ
then there exist a unique positive solution
((Svur. (1) Sver (1) Svunas (), Suenas (6): Fvonng () s () e s (), e (1), (1))

for every t>0 such that the solution will remain in Q with probability of
one.
2) The solution

T

((SYUF,i ' SYEF,i ' SYUM i SYEM i IYUM i IYEM i IYEF,i ' IYUF,i i ))

is defined in the interval [0, OO) and lim_,, supN(t) Sﬂ where
y

N (t) =Syue (t)+ Syer (1) +Seum (t) +Syem (1) + Lo (t)
+ e (1) + Wee (1) + Lyue () +T (1)
Proof: In (1) we let
(SYUF,iO ' SYEF,iO ' SYUM,iO ' SYEM Jo? IYUM Jo? IYEM Jdg? IYEF,iO’ IYUF,iO ’Tio ) € Q

Evidently, the coefficients of system (2.0) are locally Lipschitz continuous.

Hence, for any given initial condition
(Svur i+ Sver io Svumtip Sveios oo Iemtio 2 verso oo T ) €92
there exist a unique local solution
((SYUF,i (), Sver (1) Syomi (1) Sven s (1) lvone s (8 lvewe s (£) e (), Lvor s (1), T, (t)))
for every t€[0,T), where T'is the final time. Here, it can be deduced that

SYUF,i (t) + SYEF,i (t)+ SYUM,i (t)+ SYEM i (t) + IYUM i (t)

+ Ly (t)+ Lge i (8) + Dy s (t)+Ti (t) < %

for every te[O,T). Summing the total population of system (2.0) gives
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dN (t) < (4/1— uN )dt . Suppose x(9) is the solution of the differential equation
dN (t)=(42—dx(t))dt, x(0)=N(0) where

N; (O) =Syurj (0) + Syer (0) +Syuwm (O) +Svem i (0) + lvuwm (O)
+yewi (0)+ Lyer (0)+ Iyye  (0) +T;(0)

Hence, by comparison theorem; N (t)<x(t)< R for te[0,T) as required.

y7,
Again, we can verify in (2) that
dN,
T <Ak - SYUF,i - tUSYEF,i = M Syuw i T H SYME,i = tilyyu

— i lyey i T H IYEF,i —H; IYUF,i -l - 51,iTi

d(>N,
%:M:Ziﬂl(‘uﬁ — N, _51,iTi)S4/l| —H

|N'
dt dt

Integrating inequality (3.0) gives N(t)sﬂ(l—e*”‘) for every te[0,T]
u

81
which implies N(t)<——. It can therefore be verified that the solution
u

((SYUF,i'SYEF,i +Syum.iv Svem i lvow i vew i lver i bvoe o T )) is bounded within the

interval te[0,T]. This implies N(t)Sﬂ(l—e’“> for every te[0,:).
7,

. 41
Hence lim_, supN(t)<—. Hence, employing the same intuition used in

t—0

proving proposition 3.1, we see that system (2.0) with non-negative initial
conditions  Syye . >0 5 Sy 205 Syuu 205 Sy, 20 5 Ly, 20,

>0, | >0, lye;, 20, T, >0 has a non-negative solution defined

Ivem Jio YEF i =

in R and the set

Q:{(SYUFJ' SYEF,i’ SYUM,i’ SYEM,i' IYUM,i' IYEM,i’ IYEF,i’ IYUF,i’Ti)/ Sc,i > O’

SYUF,i > 0’ SYEF,i > O’ SYUM Ji > 0’ SYEM Ji > O' IYUM,i > 0’ IYEM,i > 0’

IYEF,i > 07 IYUF,i > 07T| >0 and SYUF + SYEF + SYUM + SYEM

44
+ IYUM +lvem + ler + IYUF +T :7

is invariant by system (2.0).

4. Calculation of the Basic Reproduction Number

The basic reproduction number (R, ) is defined as an infections originating from
an infected individual that invades a population originally of susceptible
individuals. R, is used to predict whether the epidemic will spread or die out.
In the next part, we will analyze the dynamics of Iy, lgy;> lge; and
lyue;i SO as to be able to obtain R;. Here, the functions (F) and (V) denote the
matrix of the infection rates and the matrix of the transition rates respectively.

Let us thus look at the following system of differential equations (The reduce
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model from 2.0).

dlyyy lyum
% = Hﬂ,-ﬁ-ﬂﬂ M(NYUF,i - IYUF,i)
YUM i
lo
+ By |\|YUMYI (IYEF,i - IYEFJ)_('Di 4 +6) N

YUM ,i
dIYEM,i —TIA | E IYEM'i N |
5 +pilvomi + B ( YUFi YUF,i)

NYEM i

| :
+131|,Ei NYEM - (NYEF,i - IYEF,i)_(ai + 4 +5.) IYEM,i
YEM i

dlyer hee.
o= A A+ A= (N = o)

YEF i

| )
+ By NYEF’I (NYEM,i — lyem ,i)_(ai + 44 +6) Lyer

YEFi
dlyye A+ B lvur i N |
a +ﬂ2,i—( YUM,i ~ YUM,i)
YUF i
| )
+ﬂ;i NYUFYI (NYEM,i - IYEM,i)_(pi + 44 +5i)|YUF,i
YUF
dTy

e ey i + e _<,Ui +6y; )TY,i

The above system can be represented in matrix form as 1= fl +vl where £
is the matrix of the infection rates and vis the matrix of the transition rates.

The spectral radius of the Metzler Matrix, p(—FV 71) , is defined as the largest
eigenvalue of the Metzler Matrix [4]. Thus:

p(-Fv)=|(-Fv)-a1|=
::B;J,i(NYEM,i + NYUM,i)
(Pi + 4 +5i)NYUF,i
_ ﬂlli (NYEF,i + NYUF,i)
(ai + 4 +5i)NYEM,i
R — ﬂzE,i (NYEM i Ny ,i)
? (O‘i + 4 +5i)NYEF,i

R _ ﬂlu. (NYEF,i + NYUF,i)
(Pi + 4 +5i)NYUM,i

R,

If ROI— <1 for j=1,2,3,4, then each infectious individual in Sub-Population
jinfects on average less than one other person and the disease is likely to die out
Otherwise, If R, i >1 for j=1,2,34, then each infectious individual in
Sub-Population ; infects on average more than one other person; the infection
could therefore establish itself in the population and become endemic. An SIR
epidemic model, where the presence or absence of an epidemic wave is
characterized by the value of R;.
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5. Stability of the Disease Free Equilibrium Stability

Consider the differential equation X=f (t; X), XeR" then a point x is
Liaponouv stable if and only if for all €>0 there exists 0 >0 such that if
|x—y|<5 then if |f(X,t)— f (y,t)|<e for all t>0 . A point x is
quasi-asymptotically stable if there exists ¢ >0 such that if |X - y| <J then if
|¢)(X,t)—(o(y,t)| —0 as t—>o. A point x is asymptotically stable if it is both
liaponouv stable and quasi-asymptotically stable [5].

Local Asymptotic Stability

A point X is an equilibrium point of the system if f (X*) =0. X" islocally
stable if all solutions which start near X~ (meaning that the initial conditions
are in a neighborhood of X') remain near X* for all time. The equilibrium
point X" is said to be locally asymptotically stable if X is locally stable and,
furthermore, all solutions starting near X' tend towards X' as t—> [5].

Global Asymptotic Stability

The system X =f (t; X) is globally asymptotically stable if for every
trajectory X(t) , we have X(t) —X" as t—>o (implies X  is the unique
equilibrium point) [5].

Liapunov stability

An important technique in stability theory for differential equations is one
known as the direct method of Liapunov. A Liapunov function is constructed to
prove stability or asymptotic stability of an equilibrium in a given region.

Definition 5.1. A positive-definite function Vin an open neighborhood of
the origin is said to be a Liapunov function for the autonomous differential
system, X=f (X, y), y= g(X, y), if V(x,y)<0 for all (X, y)eU (0,0) L If
V(x,y)<0 for all (x,y)€U(0,0), the function Vis called a strict Liapunov
function.

Theorem 5.1. (Liapunovs Stability Theorem [6].) Let (0,0) be an
equilibrium of the autonomous system X=f (X, y) and let V be a positive
definite C' function in a neighborhood Uof the origin.

If V(xy)<0 forall (x,y)eU(0,0),then (0,0) isstable.

2) If V(x,y)<0 for all (x,y)eU(0,0), then (0,0) is asymptotically
stable.

3)If V(x,y)<0 forsome (x,y)eU(0,0),then (0,0) isunstable.

We note that in case 1 the function Vis a Liapunov function and in case (2) V'
is a strict Liapunov function.

Here, we investigate the local stability of the disease free equilibrium point
E,, by employing the method described in [7] [8] to linearize the model system
(2.0) by computing its Jacobian matrix. The Jacobian matrix is computed at
disease free equilibrium point by differentiating each equation in the system
with respect to the state variables Sy, Syer, Syum s Svem s Ivum s lvem s Iver» yue  @nd
T (ART) .

The Jacobian corresponding to 3.0 is given by

Let
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o, e,
A:_ﬁu I_ﬂll I ( +/,I)
N‘XJI NY’\éI
B=-— YU| _ YEi ,
ﬁll Nyy\c“ ﬁll Nyl\é,
IF
C__ﬂz YU| _ﬁz, YE,i (,0+,U),
TN NG,
D=-— YU| _ YE,i ,
ﬂZI NYFU| ﬂZI N‘::EI
SF
YU YE
E:ﬁ1u| NMI :BllNMI (p+;u+5))
YU i YU i
SF F
Yu YE
F:ﬁlﬁNM' ﬂlINM' —(a+u+6),
YE,i YE,i
SM M
G:ﬂ;i NYgI :le YE' (a+y+5),
YE,i YE|
SM M
YU YE
H:ﬂ;inl 132|N|:I (p+,u+5),
YU, i YU i
|=_(ﬂ+51,i)’
s
K:_ﬂgi o >
’ NYFU,i
SN
L:_ﬂ;i =
Ny
S SF
A 0 0 0 - NY;' -5 NY;” 0 0 0
YU i YE,i
SFI SFI
P B 0 0 _ﬂll NY; _ﬂll NY|5| 0 0 0
YU,i YE,i
SM
YU i
0 0 C 0 0 0 fig KO
YE,i
SM
YE i
0 0 P D 0 0 —ﬂfiN—F' )
YE,i
J:ﬂ by, Yix I 0 0 E 0 0 00
. NY’\GI H NY’\CJI
Ve, lv“é.
ﬁl,l M ﬂh O 0 ,0 F 0 0 0
NYE,i YE|
IYFE IYFE
0 0 BEEL pE _E 0 0 G o 0
’ NYFEi ’ NYFEi
I I
0 0 By —2 g L 0 0 0 H 0
? NYFU| ? NYFU|
0 0 0 0 0 o a 0 1
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Therefore the Jacobian J, at the disease free equilibrium

EO = (SYUFO'SYEFO'SYUMO’ SYEMOl IYUMO’ IYEMO’ I‘(EFO’ IYUFO'TEO)

when
EO:( p) 7/1+pNYUF, 2 ,ﬂ+pNYUM,O’0’O’O’OJ
p+u u p+u u
Let
NE N
S:ﬁlL,Ji Yr\;J’IJrﬂll,Ji IAEJ ~(p+u+s),
NYU,i NYU,i
NF NE
P=g;—t+pL—t—(a+u+d),
NYE,i NYE,i
NM N
R=p5 NYF“” + Py —et—(a+u+5),
YE,i YE,i
NMi NMi
Q=B —+P—r——(p+u+5),
NYU,i NYU,i
U:_(/l+51,i)
NFi NFi
~(p+u) 0 0 0 A A 0 0 0
YU.,i YE,i
NFi NFi
p a0 0 figr Ao 0 0 0
YU YE,i
NM NM -
0 0 —(p+u) O 0 0 B Pagr ©
YE,i YU,i
N NM
0 0 p U 0 0 —Bs; NYE* B, NYFE' 0
YE,i YU,i
0 0 0 0 S 0 0 0 0
0 0 0 0 p P 0 0 0
0 0 0 0 0 0 R P 0
0 0 0 0 0 0 0 Q 0
0 0 0 0 0 a a 0 U

The characteristics equation corresponding to the above matrix

(~(p+ 1) =2) (== 2)(~(p+ 1) = 2) (=1~ 24)

Sy Sy
YU i YE,i
|| Biwt B~ (p+u+ ) [~
NYU,i NYU,i
S Sy
x (,Bfi L pL —(a+y+5)J—/16
NYE,i NYE,i
gM- S
{ s (e avo)-, |
NYE,i YE.i
X ﬁgl Y;J’I +ﬁ;i YFEYI _(p+ﬂ+5)_ﬂaj(_(ﬂ+51,i)_ﬂg):O
NYU,i NYU,i
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For E, to be asymptotically stable, all eigenvalues i<0, (i=1,2,3,4,5,6,
7, 8, 9) of J, must be negative. From (5.0.), it is clear that 4 =—(p+u),

A=-p, i=—(p+u), A4=-p and /19=—(,u+§l’i) is negative and
therefore if

SFI FI

J = B —+ B — = (p+ 1+ ) <0,
NYU| N‘(Ul
SF F

%:ﬁfi Y;I IBlI M (a+,u+5)<0,
NYE| NYE|
SM M
YU i YE|

%:ﬂzE,in ﬂz. (a+,u+5)<0
YE,i YE|

and

SM M
YU i YE|

ﬂazﬂ;iNF ﬂZINF (p+/.l+5)<0
YU, YU,

then both eigenvalues are negative. The condition A, <0, 4;<0, 4, <0 and
Ay <0 implies that

SF
B ﬂl. L<ptu+s,
YU, YU,i
SF F
ﬂll,zi L1 ﬂll <a+1u+5
NY'\Illzl NYE|
SM M
,BZE YU ﬁz YEI<(Z+/1+5
INYFEl INYFEl
M M
Boi e S, + o S <pru+o
NY':U| NY':U|

respectively. Hence the disease-free equilibrium is locally asymptotically stable if
the basic reproduction number,

ﬂll(s\;:U|+S\;E|)
YU|(p+/J+§)
ﬁll(SY':lJ|+SYFE|)
YE,(oz+y+5)

01 =

ROZ

03 =

Ba(Sia+si)
YE.(a+ﬂ+5)
and

(S +Sii) _
NYU,(p+,u+§)

04 =

so that the infection does not persist in the metapopulation and under this

condition the endemic equilibrium point does not exist. The DFE is unstable for
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Roj» 1=12,34, and then the endemic equilibrium point exists and the infection
persists in the mepopulation.

Theorem 5.2. (see Van den Driessche and Watmough [9]). The disease free
equilibrium of system (2.0), E,, is locally asymptotically stable if R, <1

6. Global Stability of the Disease-Free Equilibrium

In this section, we prove that E, is actually globally asymptotically stable when
Ry; <1. Therefore, the model (2.0) demonstrates global threshold dynamics. We
shall achieve our goal by constructing an appropriate Lyapunov functional.

Theorem 6.1. The disease-free equilibrium
( A A+pNyey A A+pN

E - ) ] ’
" \p+u  n pru u

et ,0,0,0,0,0)

is globally asymptotically stable in R} whenever R, <1.
Proof: We consider the Lyapunov function
L(t) = WiSyur +WySyer + WSy + W, Sy +Wslyuy

+W6|YEM +W7IYEF +W8|YUF +W9TE

where Ww,,i=12,---,9 are constants that would be chosen in the course of the
proof. Hence, calculating the rate of change of Zalong the solution of (2.0) gives,
d_L: oL dSy N oL dSy, N oL dSyy N oL dSyy
dt oS, dt 3OS, dt  0S,, dt  0S,, dt
. oL dlyy . oL dlyg, . oL dly, . oL .dlvup oL dT
Oy dt Ol dt Ol dt Ol dt E)T dt

dL lyom j
T Wl((l_n)ﬂ' _ﬂlul NYUM YUF i ﬂll NYEM YUF i _(pi +/ui)SYUF,i]

dt YUM i YEM i

o e
+W, (1_H)/I+pis\::u,i _ﬂlL,Ji NYU¢SYEFJ _ﬁll,_:i %SYEF,i _/uiSYEF,iJ

YUM. i YEM i

lvor i lyer |
+ Wy (1_H)ﬂ_ﬁ;i&SYUM,i _ﬁZE,iiSYUM,i_(pi+/ui)SYUM,iJ

YUF i YEF i

g ler
+W4 (1_H)l+pSYUM‘i _ﬁZU,i _— SYEM Ji _ﬂZE,iﬂSYEM,i _IuiSYEM ,iJ

NYUF,i NYEF,i

+ Wy Hﬂ"‘ﬁlu NYUMI YUF i ﬂll NYUMI YEF,i_(pi+lui+5i)|YUMvi]

YUM i YUM,i

| ) | )
W, | TIA + o1 lyy +ﬁ1§i%SYUF,i +ﬂlﬁ%SYEF| (a + 4 +5) YEM |]

YEM, i YEM.i

Ji I i
AW, | TIA + oy lyye +132| NYEF Syum i +ﬂzE,i NYiSYEM,i _(ai + 44 +5i)IYEF,i]

YEF i YEF i

+Wg | TTA + ﬂz. o Syum i ﬁz. o YEM,i_(pi+:ui+5i)|YUF,iJ

YUF,i YUF,i

W, (aiIYEM,i + il _(ﬂi +0y )TY,i)
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dL lou i
a:(ws —W, ) IT;4, +(W7 _W3)Hi/7"| +(Ws _W4)Hi/1| +(W5 _Wl)ﬂlL,Ji %SYUFJ
YUM i

| )
+ (We - Wl)ﬂll,_:i % SYUF,i + (Wz - W1) Pi SYUF,i - /uiwleUF,i
YEM i

| . [
U "YUM,i E "YEM,i
+ (Ws —W, )ﬂl,i Sver, + (We - W, ) B Sveri — MiWoSyge

YUM Nyew i
[ e
V) YUF,i E 'YEF,
+(W8 _WIS)ﬂZ,i Syum i +(W7 _Wa)ﬂz,i Syum i
YUF i YEF,i

yue
(W, =Wy ) PSyum i — 44 WsSyou i +(Ws =W, ) Sy ,\FJ—ESYEM i
YUF i

IYEF,i

+(W7 _W4)ﬂ2E,i SYEM Ji _/uiW4SYEM Ji +(W6 _WS)pIYUM,i

YEF i
— (14 )Welyyu i + (Wo —Wg ) lygyy ; + (W —Wg ) o1 Lyue
(W, =W ) ey s = (2t + 5 ) Welygr s = (2t + 5 ) We by = (24 + 8, )W, Ty
Choosing W, =W, =W, =W, =W, =W, =W, =W, =W, gives the following
— WSy — HW,Syer — 1W;Sy i — W, Syey — (10 + S ) Wyl — (1 + ) Welyeyy

_(/” + 5)W7|YEF —(,u + 5)W8|YUF —(,u +0;; )W9Tv,i

dL
It follows that Lis positive definite and m is negative definite. It can

therefore be ascertained that the function is a Lyapunov function for system
(2.0). Hence by Lyapunov asymptotic stability theorem [10], the equilibrium E,
is globally asymptotically stable.

7. Conclusion

In this study, we approached using deterministic model. We developed a
mathematical model of HIV transmission among adults in Meta-population
setting in Ethiopia. Our model captures the disease induced deaths in
transmission as HIV is known to cause deaths in transmission. Mathematical
analysis was done and it was established that in the absence of the disease a
disease free equilibrium will always exist if R,; <1 for j=1,2,3,4. We also
established that the endemic equilibrium exists in the presence of the disease
that is when R, i>1 for j=1,2,3,4, with the infectious population greater
than zero. Reducing the infection in the vector population reduces R;; for
j=1,2,3,4, greatly. Thus the best methods of controlling HIV transmission is
to target the Infected uneducated female youth, Infected educated female
youth, Infected uneducated male youth, Infected educated male youth. R;; is
a threshold that completely determines the global dynamics of disease

transmission.
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