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Abstract 

Loss data structures in non-life insurance businesses are increasingly complex, 
and the tendency of correlation and heterogeneity is gradually presented. 
Hierarchical model can breakthrough limitation that the traditional rate de-
termination method only analyzes the loss data of the same insurance policy; 
meanwhile, the accuracy of complex structure data prediction is improved. 
This paper, using a hierarchical generalized linear model, studies the non-life 
rate determination of multi-year loss data and takes auto insurance data for 
empirical analysis. The research results show that GLMM’s fitting degree is 
greatly improved compared with GLM, considering the random effects. It can 
more effectively reflect different risk individual differences and also reveal the 
heterogeneity and correlation of risk individual loss during multiple insurance 
periods. 
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1. Introduction 

In the 1990s, as a new statistical analysis technique, layered model is widely used 
in the world. The hierarchical model determines the model parameters to set its 
own probability submodel, extending the standard linear model (Linear Models, 
LM), generalized linear models (Generalized Linear Moeels, GLM) and the non-
linear model (Non-linear Models). In the process of using the above model for 
statistical analysis, data must be observed from independent (random) variables 
in general. At the same time in some actuarial and statistical problems [1], ver-
tical data, spatial clustering data, and general clustering data are also needed. 
These data do not have the independence assumption, but have a certain level of 
hierarchy. According to the hierarchical structure difference of data, the data can 
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be divided into different levels. Then the concept of hierarchical model is intro-
duced. 

Two of the core topics in non-life actuarial science are pricing and reserve as-
sessment. For a property insurance company, its competitiveness and the com-
pany’s profitability are closely related to the rationality of pricing. In the 1990s, 
British actuaries introduced GLM in non-life insurance pricing. Since then, 
GLM has been widely used in non-life insurance pricing practices in many 
countries and made great achievements. 

However, GLM still has inadequacies. For example, when some classification 
explanatory variables have less data at some level, the standard error of these ho-
rizontal parameter assessments will be enhanced. Moreover, the direct applica-
tion of GLM also faces too many estimated parameters. In order to solve these 
problems, the actuary incorporates reliability theory into the GLM framework, 
and some statistical models and methods appeared [2], including Hierarchical 
Generalized Linear Models (HGLM), Generalized Linear Mixed Models (GLMM) 
and so on. 

The liability of the largest share of the balance sheet of the property insurance 
company is the claim reserve. The accurate assessment of the claim reserve is 
conducive to the correct judgment of the operating performance and solvency of 
the property insurance company. Therefore, the reasonable assessment of this 
liability is of great significance to the development of the property insurance 
company. 

2. The Basic Theoretical Model of Non-Life Insurance Rate in 
the Framework of Layered Model 

2.1. A Theoretical Introduction of the Model Based on GLMM Rate 

Make the following assumptions: There are m risk individuals, using random 
variables ( ) ( )1,2, ,ijY Y i n= = 

 to represent the number of claims or amounts 
incurred by the i-th risk individual in the year of the i-th policy. Use the GLMM 
framework to set the following three parts: 

1) The setting of the random part: Under the premise of specifying the ran-
dom effect ( )T

1 2, , , nb b b b= 
, the observed variables of ijY  are independent of 

each other, and it is also consistent with the distribution of the exponential pop-
ulation (EDF). Then the probability density function can be recorded as: 

( ) ( ) ( ), , exp , , 1,2, ,ij ij ij
ij i ij

y
F y b c y j n

θ ψ θ
β ϕ ϕ

ϕ

 −
 = + =
 
 

        (1) 

θ  is a natural parameter. ( )ψ •  and ( )c •  signify a known function. Scale 
parameter is ϕ . 

2) System section Settings: The relationship between the mean of the response 
variable and the explanatory variable can be represented by a linear predictor. 
Let’s say the prediction is X Zbη β= + . Its design matrix of fixed effect is ex-
pressed as X. The design matrix of random effects is represented by Z. The esti-
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mated parameters of model fixed benefit are β . 
3) Setting of the join function: ( )g X Zbµ β= + . This function is a monotone 

differentiable function. There’s a logarithmic bond, identity connecting and logit 
connections. Given ( ) ( )1g h− • = • , then ( ) ( )|E Y b h X Zbµ β= = +  can be 
used to represent mean conditions. 

2.2. Theoretical Framework Based on HGLM Rate Setting Model 

The four basic assumptions in this structure: 
1) Independence: That is, under the conditions of the risk parameters, the fol-

lowing assumption is made. The claims (or amounts) of the number (or 
amounts) of individual risk individuals is non-interference. 

2) Distribution: |ij ijY u  is in consistent with the exponential distribution. 
Then the probability density function is: 

( ) ( )( ) ( )| ; , exp ,
ij i

ij
Y u ij ij ijf y y b c y

ω
ϑ ϕ ϑ ϑ ϕ

ϕ
 = − 
 

             (2) 

One of the known weights (constants) is 0ijω > , the natural and discrete pa-
rameters are respectively ijϑ  and ϕ , the given function is ( )b •  and ( )c • . 

3) Structuredness: There is a kind of change relation between µ  and 
X Zbβ + , and this relation can be connected by the join function. That is 

( )h X Zvµ β= + , or ( )g X Zvµ β= + . The new variable produced by u through 
the strict monotonic function is the cumulative effect v, which could be written 
as = ( )1g u . 

4) Distribution of risk parameters: In HGLM, iu  is a random risk parameter, 
which can depict heterogeneity risk characteristics of different risk individual i. 
This assumption iv  is subject to the distribution of EDF and can be written as: 

( ) ( )( ) ( )1sxp ,
iv i i i

i

f b dω ψ ω ω ψ λ
λ

 = − 
 

                 (3) 

Above, the super parameter is ψ , and discrete parameter is ϕ  and λ . 

2.3. Compare GLM, GLMM and HGLM 

We can see through the above that the connections and differences between 
models can be summarized as follows: 

1) Structure of the model: GLM can get GLMM by extension and expansion. 
HGLM is a relatively general framework. The linear prediction of GLM intro-
duces a stochastic effect based on the assumption of normal distribution [3] [4], 
and gets GLMM. After removing the random effect, it can be reduced to GLM. 
However, HGLM assumes that the effect of stacking benefit is beyond the nor-
mal distribution. It can also show the inverse Gaussian distribution and Beta 
distribution, which can analyze non-life loss data accurately, especially is true in 
the non-life loss data for longitudinal data. 

2) Theoretical Calculation: Compared to the other two models, GLM is rela-
tively simple. In general, GLM use the construction of maximum natural func-
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tions to calculate the estimator parameters of MLE. The general calculation me-
thod is Fisher algorithm, Newton Raphson iterative algorithm and so on. 

3. Empirical Analysis—Number of Claims Based on Auto 
Insurance Business 

The data of this paper is from Sun Weiwei’s paper [5], and has been sorted out 
in order to be compared easily. There are 40,000 policies (insured) in the data. 
The observation data of the number of claims for three consecutive policies years 
is used as the longitudinal data. And there are 120,000 records. The original 
sample data set variables respectively are: numclaims represent the number of 
claims; policyID represents the code for the policy; agecat represents the driver’s 
age classification variable: 1, 2, 4, 5, 6, 10 (Age is in an increasing order); valu-
ecat represents the vehicle value classification variables: 2, 3, 4, 5, 6, 9; period 
represents the year of observation policy: 1, 2, 3. 

3.1. Construct Model: The Fixed Effects Are Agecat and Valuecat. 
The Model Is Built According to the Distribution 
Characteristics of the Number of Claims 

1) Model 1 
Proposed a hypothesis: The number of claims is consistent with the Poisson 

distribution of the parameter ijµ . Ignoring the correlation between the hetero-
geneity of the number of claims made by the random benefit and the claim for 
three years, the model can be built as: 

( ) ( )0log agecat valuecat numclaimsij ij ij ij ij ijEµ β β µ= + × × =  

( )numclaims ~ij ijP µ                                       (4) 

2) Model 2 
It’s in the same form as model 1. But at the same time, the zero value problem 

of the number of claims is taken into account. Assume the number of claims is 
consistent with the zero expansion Poisson distribution (ZIP), then the model 
can be built as: 

( ) ( )0 1 2log agecat valuecat numclaimsij j ij j ij ij iju Eβ β β µ= + × + × =  

( )numclaims ~ ZIPij ijµ                                       (5) 

3) Model 3 
Based on model 1, the problems that are ignored have been taken into ac-

count. Make assumptions under the GLMM framework: Random effects do not 
interfere with each other, and it is consistent with the normal distribution [6] 
[7]. The variance parameter in normal distribution is 2σ . Then the model can 
be built as: 

( ) ( )0 1 2log agecat valuecat numclaims |ij j ij j ij i ij i iju b E bβ β β µ= + × + × + =  

( )numclaims | ~ij i ijb P µ  
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( )2~ 0,ib N σ                           (6) 

4) Model 4 
Make a further hypothesis: In the HGLM framework, the random effects iu  

of individual claim differences can be reflected. It also corresponds to the gam-
ma distribution. Its obey parameters are 4mα  and 4mβ . Then the model can be 
built as: 

( ) ( )0 1 2log agecat valuecat numclaims | ~ij j ij j ij i ij i iju u u Pβ β β µ= + × + × +  

( )4 4~ Gamma ,i m mu α β                                           (7) 

3.2. Parameter Estimation 

In this study, the program package gamlss, lme44, glmmML, and hglm in R 
software is adopted. And model 1 uses maximum likelihood estimation. The 
calculation method is Fisher’s score iteration. The discrete parameter in the cal-
culation is 1. In model 2, the estimation parameter method is the RS algorithm 
under the GAMLSS framework and calculates 12 iterations. Model 3 adopts 
Gauss-Hermitian integral method [8] [9], and calculate the fixed effect parame-
ter estimation. Model 4 adopts the method of the maximum h likelihood func-
tion. The estimated results are shown in Table 1. 

3.3. Result Analysis 

From the above empirical analysis, the parameters under different models differ 
greatly. Fundamentally, if random effects of three consecutive policy years are 
excluded, the GLM model should be built. The statistical quantity of AIC is  
 
Table 1. Parameter estimation results of the model 1 - 3. 

rate factor parameters of model 1 parameters of model 2 parameters of model 3 

intercept term −1.0225*** 0.4382*** −2.2621*** 

agecat2 −0.1793*** −0.1117*** −0.2231*** 

agecat4 −0.2636*** −0.2008*** −0.2649*** 

agecat5 −0.4320*** −0.3333*** −0.4520*** 

agecat6 −0.3520*** −0.2472*** −0.4037*** 

agecat10 −0.2294*** −0.1774*** −0.2186*** 

valuecat3 −0.1310 0.0382 −0.1221 

valuecat4 −0.8596*** −0.7892** −0.8213* 

valuecat5 −0.3604 −0.2237 −0.6511 

valuecat6 −1.6236** −1.5906** −1.4762* 

valuecat9 −0.1855*** −0.1418*** −0.1990*** 

AIC statistic 169100 145475.0 81169 

Note: Data is from calculation of R software. *, ** and *** represent a significant level of confidence of 5%, 
1%, 0.1%. 
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169,100. But the AIC statistic under the ZIP distribution is 14,575.0. And the 
AIC statistic under GLMM integral method is 81,169. Therefore, the AIC statis-
tic of this method is the lowest, which improved the goodness of fit of the model. 
If the AIC statistic is used as the standard to measure the model, then the 
GLMM model will be greatly improved. 

In the use of R software, model 4 cannot converge after 10 iterations. Thus it 
is eliminated. The valuecat and agecat rate factors in the sample data are mul-
ti-level classification variables. Not including the base level, each observation 
unit must estimate 10 fixed effects in a given period of time [10]. At this point, 
the dimension of the estimated parameter will increase with the increase of sam-
ple size n. When solving the problem, the estimated parameters of exponential 
growth and a series of problems will generate. 

4. Conclusion 

Through this study we can see that the layered framework has a great advantage 
in the processing of non-life insurance rate. It can deal with the relevant data of 
the policy year in different risk individuals in the claims data of non-life insur-
ance companies, analyze the relationship between individual loss data in the 
same risk, and be applied in practice to help actuaries handle complex insurance 
data. At the same time HGLM can process the data and longitudinal data of the 
layered structure, and provide enlightenment to actuaries and related personnel 
on non-life insurance data structure so that they can make scientific analysis and 
reasonable interpretation of the results. By analyzing a hierarchical generalized 
linear model, this paper studies the non-life rate determination of multi-year 
loss data and takes auto insurance data for empirical analysis. 
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