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Abstract 
Last time symmetry methods have been recognized to be of great importance 
for the study of the differential equations arising in mathematics and physics. 
The purpose of this paper is to provide some application of Lie groups to heat 
equation. In this example, we determine Lie algebra of infinitesimal genera-
tors of symmetry group of heat equation and construct group-invariant solu-
tions of this equation. The some computational methods are presented so that 
researchers in other fields can readily learn to use them. 
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1. Introduction 

Suppose we are given differential equation of order m 
( )( ), 0mx u∆ =                          (1) 

from n independent of ( )1 2, , , nx x x x= �  and q dependent variables  

( )1 2, , , q
qu u u u R= ∈�  

Definition. A group G of transformation acting on an open subset M of the 
space of independent and dependent variables qX R× , is called the symmetry 
group of Equation (1) if for each solution ( )u f x=  of Equation (1) and for 
g G∈  such that g f�  is defined, then the  function u g f=� �  is also a solu-
tion of the equation. 

Remark. The transformation g takes the graph of a function ( )u f x=  to 
some set, which is the graph of some function. We denote this function by 
g f� . 

One of the advantages of knowing the symmetry group of differential equa-
tions is that if we know the solution ( )u f x=  then, in accordance with the de-
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finition, the function u g f=� �  is also a solution for of any element g of the 
group G, so that we have opportunity to construct a whole family of solutions, 
exposing a known solution to the action of all possible elements of the group. To 
find the symmetry group, we “continue” the basic space representing indepen-
dent and dependent variables to a space that also represents all the various par-
tial derivatives that occur in the equation. For a given smooth function 

( )u f x= , there is an induced function ( )m mu pr f x= , called the m-extension 
of ( )f x , equation of the form ( )j ju f xα α= ∂ , where ( )j f xα∂  is the deriva-
tive of order α  of the function ( )u f x= . Now we can replace the differential 
equation ( )( ), 0mx u∆ =  by an algebraic equation that is defined by the vanish-
ing of the function, which is the right-hand side of the equation ( )( ), 0mx u∆ =  
defined on mX U× . A smooth solution of the differential equation  

( )( ), 0mx u∆ =  is a smooth function ( )u f x=  and its derivatives j ju fα α= ∂  
must satisfy the algebraic equation 

( ) ( )( ), , 0mF x t pr u x =                      (2) 

The procedure for finding the infinitesimal generators of the symmetry group 
of differential equations is described in the paper [1]. This procedure uses the 
prolongation of the action of the symmetry group on the extended space. Infini-
tesimal generators of the prolongation of the action of the symmetry group are 
extensions of the infinitesimal generators of the symmetry group of the basic 
space. We use this scheme to find the symmetry group of the one-dimensional 
heat equation. 

We recall the notion of the algebra of infinitesimal generators of symmetry 
group. Let M be a smooth manifold of dimension n, ( )V M -the set of all 
smooth vector fields on the manifold M. For a vector field X, let ( )tt X x→  
denote the integral curve of a vector field X, passing through a point x M∈  at 

0t = . The map ( )tt X x→  is defined in some domain ( )I x , which in the 
general case does not depend only from the field X, but also from the starting 
point x. Further everywhere in formulas of the form ( )tX x  we assume that 

( )t I x∈ . Family ( ){ }:tG X t I x= ∈  forms a one-parameter group of transfor-
mations of the manifold .M  Vector field X is called the infinitesimal genera-
tors of the transformations group G. If the transformation group is k-parametric, 
then is has k infinitesimal generators. 

The set ( )V M  of all smooth vector fields on a manifold is linear space over 
the field of real numbers and is a Lie algebra with respect to the Lie bracket of 
vector fields. In general, this algebra is infinite-dimensional Lie algebra. 

In this paper we find the Lie algebra of infinitesimal generators of the symme-
try group of heat equation. This algebra is a three-dimensional sub algebra of the 
algebra ( )V M , where M-the space of independent variables. This will allow us 
to find the complete symmetry group of the heat equation with any heat con-
duction function ( )k u  and with the help of these groups, to reduce that heat 
equation to an ordinary differential equation of the second order. For some heat 
conduction functions, these equation are studied numerically. 
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2. Main Part 

Let us consider the quasi linear heat equation with coefficient of nonlinearity 
( )k u , which describes the process transfer of heat under the assumption that the 

medium is stationary and additional sources or sinks of energy in the medium 
are absent. We consider the following one-dimensional heat equation 

( )( )t x x
u k u u=                           (3) 

Finding of infinitesimal generators of the prolongation of the action of the 
symmetry group is very complicated technically. By this reason first of all we 
consider a particular case of Equation (3) for ( )k u u= : 

( )t x x
u uu=                             (4) 

The vector field X, which is an infinitesimal generator for the symmetry group 
of Equation (4) we will seek in the form 

X
t x u

τ ξ ϕ
∂ ∂ ∂

= + +
∂ ∂ ∂

                        (5) 

The second prolongation X�  of the vector field X to the extended space of the 
variables ( ), , , , ,t x xxt x u u u u  will have the form: 

t x xx

t x xx

X X
u u u

ϕ ϕ ϕ
∂ ∂ ∂

= + + +
∂ ∂ ∂

�                     (6) 

Let G a group of transformations acting on a manifold M. A function 
:F M N→  where N is a some manifold, is called a G-invariant function if for 

all x M∈  and all ,g G x M∈ ∈  such that ( )g x  is defined ( ) ( )( )F x F g x= . 
A real-valued G-invariant function :F M R→  is simply called a invariant of G. 
Note that : mF M R→  is G-invariant if and only if each component IF  of 

[ ]1, , mF F F= �  is an invariant of G. If : mF M R→  is a G-invariant function, 
then clearly every level set of F is a G-invariant subset of M. However, it is not 
true that if the set of zeros of a smooth function, ( ): 0x F x = , is an invariant 
subset of M then the function itself is invariant. However, if every level set of F is 
invariant function then F is an invariant function. If G acts on M and 

: mF M R→  is smooth function, then F is a G-invariant function if and only if 
every level set ( ) , mF x c c R= ∈ , is a G-invariant subset of M. It holds the fol-
lowing theorem [1]: 

Theorem 1. A real-valued smooth function F is a G-invariant function if and 
only if ( ) 0X F =�  for every infinitesimal generator X�  of group G. 

We will use this theorem-1 for finding of symmetry group of Equation (3). In 
the space ( ), , , , ,t x xxt x u u u u , Equation (4) has the form: 

( ), , , , , 0t x xxF t x u u u u = ,                      (7) 

where 2
t x xxF u u uu= − − . Taking into account that ( ) 0X F =�  we get 

2 0t x xx
xx xu u uϕ ϕ ϕ ϕ− + − − =                     (8) 

For the components of the second prolongation X�  of a vector field X, we 
use their expressions found in [5]: 
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( ) 2x
x u x x x t u x u x tu u u u uϕ ϕ ϕ ξ τ ξ τ= + − − − − , 

( ) 2t
t t x u t t u x t u tu u u u uϕ ϕ ξ ϕ τ ξ τ= − + − − − , 

( ) ( )
( )

2 3

2

2 3 2

2 2 3 2

xx
xx xu xx x xx t uu xu x xu x t uu x

uu x t u x xx x xt u u xx u x xx u x xt

u u u u u u

u u u u u u u u u u

ϕ ϕ ϕ ξ τ ϕ ξ τ ξ

τ φ ξ τ ξ τ τ

= + − − + − − −

− + − − − − −
 

Substituting these expressions into (8) and taking into account 
2

t xxx xu uu u= +                            (9) 

We obtain a polynomial on the left-hand side of Equation (8) with respect to 
the variables , , ,x xx xtu u u u : 

( )( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 2 2

2 2 2

2 2 2

3 2 2

2

2 2 2 4

2 2 3 2

xx t t x u t x xx u x x xx u t

x x u x x x x xx u x u x x xx

xx xu xx x xx x xx uu xx x xu x x xx

u x uu x x xx u x xx x xt u x xx

u u u uu u u uu u

u u u uu u u u uu

u u u uu u u u u

u u u uu u u u u

ϕ ϕ ξ ϕ τ ξ τ

ϕ ϕ ξ τ ξ τ

φ φ ξ τ ϕ ξ τ

ξ τ ϕ ξ τ ξ

− + − + − + − + −

 − + − − + − − + 
− + − − + + − − +

− − + + − − − − 0u x xtu uτ  =

 

Equating the coefficients for different monomials to zero, we obtain the fol-
lowing defining equations for the symmetry group of the heat equation. 

From the defining Equation (5) of the Table 1, we obtain that the equality 
0ϕ =  holds. From Equations (11) and (12) we obtain that 0xτ = , 0uτ = ; the 

function τ  depends only on t , ( )tτ τ= . From Equation (10) we obtain that 
0uξ = . From the Equations (9) we obtain that 2t xτ ξ= . From Equation (3) we 

get that the function ξ  does not depend on the variable t , that is 0tξ = . 
Therefore, ( )xξ ξ= . Equation (6) shows that 0xxξ =  i.e. ξ  is a linear func-
tion of :x ax bξ = + . Since 2t xτ ξ=  takes place, we obtain that 2t aτ =  i.e. 

( ) 2t at dτ τ= = + . 
Thus we have 

( ) ( )2X ax b at d
x t
∂ ∂

= + + +
∂ ∂

, 

where , ,a b d -are arbitrary constants. Thus, the Lie algebra of infinitesimal ge-
nerators of the group of symmetries of the equations is generated by the follow-
ing vector fields 

1X
t
∂

=
∂

, 2X
x
∂

=
∂

, 3 2X t x
t x
∂ ∂

= +
∂ ∂

. 

It can be verified that for the Lie brackets of these vector fields it holds equali-
ties 

[ ]1 2, 0X X = , [ ]1 2, 2X X
t
∂

=
∂

, [ ]2 3,X X
x
∂

=
∂

. 

Now we can prove that in fact Lie algebra of infinitesimal generators of the 
group of symmetries of the Equations (4) is Lie algebra of infinitesimal genera-
tors of the group of symmetries of the Equation (3). 
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Table 1. Table of defining equations. 

No. Monomial Defining equation 

1 1 0tϕ =  

2 u  0xxϕ =  

3 xu  2 0t xξ ϕ− − =  

4 2
xu  2 2 0u t u xϕ τ ϕ ξ− − + =  

5 xxu  0ϕ− =  

6 xuu  2 0xx xuξ ϕ− =  

7 x xxu u  2 0u x u tϕ ξ ϕ τ− + + − =  

8 2
xxu  0u uτ τ− + =  

9 xxuu  2 0u x u tϕ ξ ϕ τ− + + − =  

10 x xxuu u  3 2 0u uξ τ+ =  

11 xtuu  2 0xτ =  

12 x xtuu u  2 0uτ− =  

13 2
xx xu u  0uuτ− =  

 
Taking into account that ax bξ = + , ( ) 2t at dτ τ= = + , 0ϕ =  for the 

components of the second prolongation X�  of a vector field X, we have got fol-
lowing expressions: 

x
xauϕ = − , 2t tauϕ = − , 2xx

xxauϕ = − . 

Consequently, for the second prolongation X�  of the vector field X to the ex-
tended space of the variables ( ), , , , ,t x xxt x u u u u  we obtain the following expres-
sion 

( ) ( )2 2 2t x xx
x x xx

X ax b at d au au au
x t u u u
∂ ∂ ∂ ∂ ∂

= + + + − − −
∂ ∂ ∂ ∂ ∂

�      (10) 

Now we rewrite Equation (3) in following form 

( ) 2 0t xx xu k u u k u′− − =  

and let us consider the function :F M R→ , where M-space of variables 
( ), , , , ,t x xxt x u u u u , ( ) ( ) 2, , , , ,t x xx t xx xF t x u u u u u k u u k u′= − − . 

Now we can check that 

( ) ( )( )22 0t xx xX F a u k u u k u′= − − =� . 

By the theorem-1 above we can state that for every function ( )k u  following 
theorem 

Theorem 2. Lie algebra of infinitesimal generators of the symmetry group of 
Equation (3) is a three-dimensional Lie algebra, generated by vector fields 

1X
t
∂

=
∂

, 2X
x
∂

=
∂

, 3 2X t x
t x
∂ ∂

= +
∂ ∂

. 

For the Equation (3) of greatest interest is the case when the coefficient of the 
thermal conductivity ( )k u  is a nonlinear function of temperature u. As studies 
show, the coefficient of thermal conductivity in a sufficiently wide range of pa-
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rameters can be described by a power-law function of temperature ([1]-[6]), that 
is, it has the form k uα= , where 0σ > . 

We consider case k uα= , where 0σ > . 

The group of transformations generated by the vector field 1X
t
∂

=
∂

, consists 

of time translations ( ) ( ), , , ,t x u t s x u→ + . The group of transformations gener-

ated by the vector field 2X
x
∂

=
∂

, consists of parallel translations of x: 

( ) ( ), , , ,t x u t x s u→ +  

The group of transformations generated by the vector field 3 2X t x
t x
∂ ∂

= +
∂ ∂

, 

consists of transformations of the form: 

( ) ( )2, , , ,S St x u e t e x u→  

Therefore, if ( ),u u t x=  is a solution of the equation, then the functions 

( ),v u t s x= − , ( ),v u t x s= − , ( )2 ,S Sv u e t e x− −=  

are also solutions of Equation (4). 
Consider the vector field (the case 0a = ) 

X d b
t x
∂ ∂

= +
∂ ∂

 

This vector field generates a transformation of the form 

( ) ( ), , , ,t x u t ds x bs u→ + +  

The function ( ),F t x bt dx= −  is an invariant of these transformations, since 
( ) 0X F = . Therefore, if bt dxξ = − , 2b d= , ( ) ( ),u t x v ξ= , then function 
( ) ( ),u t x v ξ=  is a solution of Equation (3), where the function ( )v ξ  is a solu-

tion of the following ordinary differential equation 
1 2 0v v v v vσ σσ −′′ ′ ′+ − =                      (11) 

In this equation, introducing a new function ( )z v v′= , we obtain the follow-
ing first-order equation for the function z 

1 2 0v zz v z zσ σσ −′ + − =                      (12) 

If 0z ≠ , we obtain the following equation 
1 1 0v z v zσ σσ −′ + − =                        (13) 

From this equation we find z cv σ−= , and ( )constvσ σ ξ= + . 
In the case 1σ =  we have constv ξ= + . The function constv ξ= +  only 

one of solutions of the following ordinary differential equation 
2 0vv v v′′ ′ ′+ − =                          (14) 

which corresponds to the case 1σ = . Equation (14) have solutions which are 
not included into solutions (12). Now we find this solutions. 

In this equation, introducing a new function ( )z v v′= , we obtain the follow-
ing first-order equation for the function z 
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2 0vzz z z′ + − =                         (15) 

If 0z ≠ , we obtain the following equation 

1 0vz z′ + − =                          (16) 

The constant function 1z =  is a solution of this equation. In this case 
( )constv σ ξ= + , which is included into solutions of (12). If 1z ≠ , then equa-

tion (16) is an equation in complete differentials. The general integral of this 
equation is the function 

( ),F z v vz v= −  

If ( ),F z v vz v с= − = , then 1cz
v

= + . 

As a result, for the function v we obtain the following first-order differential 
equation 

c vv
v
+′ = . 

As a result of integration, we get that 

( ) 1lnv c v c cξ− + = +  

where 1,c c  are arbitrary constants. 
Let us consider case the case 2σ = . In the case from (12) we obtain 

2 2v cξ= + , where c-integration constant. This function gives all solutions of 
following ordinary differential equation 

2 22 0v v vv v′′ ′ ′+ − =                     (17) 

Consider infinitesimal generator (the case 0a ≠ ) 

2X at ax
t x
∂ ∂

= +
∂ ∂

. 

In this case, the function 
x
t

ξ =  is an invariant of the group of transformations  

generated by the this vector field since ( ) 0X ξ = . In this case, the we will seek 
solution of (3) in the form: 

( ) ( ),u t x v ξ=  

where the function ( )v ξ  is a solution of equation 

1 2 0
2

v v v v vσ σ ξ
σ −′′ ′ ′+ + = .                   (18) 

In the case 1σ =  the Equation (18) has the following form 

2 0
2

vv v vξ′′ ′ ′+ + =                        (19) 

By using the Maple-13 software package, its commands “dsolve”, “DEplot”, 
“with (DEtools)” we numerically studied the solution of the Equation (19). 

Numerical analyst shows that solution of this equation limited for ξ →∞  
(Figure 1). This means that the temperature is limited. 
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Figure 1. The initial conditions ( )0 0.1v = , ( )0 1v′ = . 

 

 

Figure 2. With the initial conditions 0.5v , ( )0 0.1v′ = . 

 
In the case 2σ =  the Equation (18) has the following form 

2 22 0
2

v v vv vξ′′ ′ ′+ + =                      (20) 

for the function ( )v ξ . 
From this equation we can proceed to the system of differential equations of 

first order 

v ω′ = , 
2

22
2v v

ω ξω
ω′ = − −                      (21) 
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As the case 1σ =  again in the case 2σ =  by investigation of system (21) 
with numerical methods using the Maple-13 software package, we obtain that 
the solution of the equation (20) is limited for ξ →∞  (Figure 2). This means 
that in this case also the temperature is limited. 
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