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Abstract 

Transthyretin (TTR), a carrier protein present in the liver and choroid plexus 
of the brain, has been shown to be responsible for binding thyroid hormone 
thyroxin (T4) and retinol in plasma and cerebrospinal fluid (CSF). TTR aids 
in sequestering of beta-amyloid peptides Aβ deposition, and protects the brain 
from trauma, ischemic stroke and Alzheimer disease (AD). Accordingly, hip-
pocampal gene expression of TTR plays a significant role in learning and 
memory as well as in simulation of spatial memory tasks. TTR via interacting 
with transcription factor CREB regulates this process and decreased expres-
sion leads to memory deficits. By different signaling pathways, like MAPK, 
AKT, and ERK via Src, TTR provides tropical support through megalin re-
ceptor by promoting neurite outgrowth and protecting the neurons from 
traumatic brain injury. TTR is also responsible for the transient rise in intra-
cellular Ca2+ via NMDA receptor, playing a dominant role under excitotoxic 
conditions. In this review, we tried to shed light on how TTR is involved in 
maintaining normal cognitive processes, its role in learning and memory, un-
der memory deficit conditions; by which mechanisms it promotes neurite 
outgrowth; and how it protects the brain from Alzheimer disease (AD). 
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1. Introduction 

Transthyretin (TTR), a carrier protein for thyroxine and retinol present in the 
plasma and cerebrospinal fluid (CSF), has been shown to sequester the amyloid 
beta-peptide deposition in the brain [1] [2]. The transthyretin gene is mainly 
expressed in the liver and choroid plexus of the brain. Transthyretin plays a very 
important role in binding and distribution of thyroid hormones in the body and 
brain to protect it during neurological strokes [3] [4]. The choroid plexus of the 
brain secretes TTR at a rate 13 times greater than liver [5]. The total TTR pro-
teins contents account for at least 20% of all synthesized by the choroid plexus in 
the rat brain. It has been suggested that uni-directional secretion of TTR pro-
teins to the CSF plays a key role in the transfer of thyroxine (T4) from the blood 
to the CSF, as TTR may drive thyroxin hormones (TH) across the blood-CSF 
barrier [6]. TTR is a major distributor of T4 in the CSF and its distribution from 
CSF to the brain is dependent on TTR based receptor-mediated endocytosis 
process [7] [8] [9]. Although, TTR possesses the higher affinity for thyroxine 
binding proteins (TGB) than T4, it may only involve in the peripheral circula-
tion. TTR-T4 binding can be seen in the CSF promoting T4 transport from 
blood to brain [10]. TTR is also indirectly implicated in the transport of vitamin 
A through interaction with retinol-binding protein (RBP) [11]. 

Besides its role as a carrier protein, TTR has been involved in the sequestering 
of β-amyloid peptide (Aβ) in the brain, protecting the brain from neurotoxic 
accumulations called amyloid plaques. However, it is unclear whether TTR af-
fects the clearance of β-amyloid from the CSF [10]. In vitro studies showed that 
TTR via its TGB interacts with Aβ residues, preventing its toxicity in the brain 
cells [12] [13] [14] [15]. TTR is suggested to be a protease molecule with apoli-
poprotein structure A-I (apoA-I) and Aβ as substrates. TTR cleaves Aβ at mul-
tiple positions to degrade aggregated forms of Aβ. In vivo studies suggested that 
TTR can transport Aβ from the brain to blood but not into the brain [16]. TTR 
crosses the monolayer of cells only in the brain-to-blood direction. TTR-mediated 
Aβ clearance is through LRP1, as lower receptor expression was found in brains 
and livers of TTR knockdown mice and in cells incubated without TTR [16] 
[17]. The activated TTR may contribute not only to the upholding of Aβ levels 
within a normal range but also to the degradation of deposited Aβ in the case of 
imbalance and diseases condition [18]. 

This review addresses some of the key questions like 
1) TTR-A neuroprotective and neurite growth protein. 
2) TTR-important contributor in learning and memory. 
3) Special role with respect to Alzheimer Disease (AD). 

2. Transthyretin Promotes Neurite Outgrowth in  
Hippocampal Neurons and Provides Neuroprotection 

TTR protein has the ability to enhance neurite outgrowth in vitro, plays apivotal 
role in nerve regeneration process and provides neuroprotection in the peri-
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pheral and central nervous system [19] [20] [21]. In vivo and in-vitro studies 
showed that, in the absence of TTR, both hippocampal neurite outgrowth and 
nerve regeneration were impaired [20] [22]. TTR significantly boosted neurite 
outgrowth via megalin receptor in hippocampal neurons, both in number and 
length [23] [24]. Neuronal cell lines exposed to TTR KO serum displayed 25% 
decrease in neurite number per cell and in the length of the longest neurite in 
cell culture, when compared to cells grown with WT culture. To ascertain 
whether the absence of TTR protein was directly liable for this decreased in neu-
rite number and size, TTR KO serum supplemented with wild type TTR was 
able to totally rescue the phenotype observed in the absence of the protein [25]. 
Several studies pointed that it can be a good predictor for stroke patients exhi-
biting decreased serum TTR and young women, owing to the neuroprotective 
action of steroids that are up-regulating TTR [26] [27] [28] [29]. Familial amy-
loid polyneuropathy (FAP), a neurodegenerative disorder is caused by TTR de-
position in the peripheral nervous system (PNS). The reason for TTR deposition 
in the nerve leading to FAP is still unknown. When TTR was delivered in TTR 
knock-out (KO) mice, the sciatic nerve regeneration phenotype was rescued. 

TTR binds several different proteins including megalin (LRP-2), RAGE (re-
ceptor for advanced glycation end products) and IGF-IR (insulin-like growth 
factor 1 receptor) [30] [31] [32] [33] [34] to activate the downstream signaling 
pathways. These signaling pathways activated by TTR in the CNS lead to neuro-
protection under physiological and pathological conditions involving TTR de-
pendent activation of mitogen-activated protein kinase (MAPK), extracellular 
receptor kinases (ERK1/2) and Akt through Src, leading to the phosphorylation 
of transcription factor CREB (Figure 1) [35] [36]. In addition, TTR promotes a 
transient rise in intracellular calcium through anN-methyl-D-aspartate receptor 
(also known as the NMDA receptor), in a Src/megalin-dependent manner [36]. 
The megalin molecule possesses Src homology domain (SH3) constitutes a cru-
cial point of convergence for signaling pathways. This bridging molecule Src 
could be responsible for the increase in calcium level inside neurons via activat-
ing NMDA receptor because Src regulates NMDA receptor activity [35] [37] 
[38]. 

The second pathway through which TTR stimulation rescues cell death and 
neurite loss is by activating Bcl2 protein family members in mega-
lin-dependent manners. TTR stimulation under excitotoxic conditions rescued 
TTR KO hippocampal neurons in a megalin-dependent manner, which were 
more sensitive to excitotoxic degeneration than WT neurons [39]. In this 
process, TTR activates CREB, contributing to changes in the balance between 
Bcl2 protein family members, toward anti-apoptotic proteins (Bcl2/BclXL com-
pared to Bax protein) [23] [40] [41] [42]. TTR triggered by its interaction with a 
well-known neuroprotective megalin-dependent signaling pathways promotes a 
robust neurite outgrowth response in hippocampal neurons by the upregulation 
of intracellular calcium and MAPK pathways (Figure 1). Megalin was identified  
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Figure 1. TTR via different signaling pathways responsible for phosphorylation and increase of intracellular calcium level lead to 
promote neurite outgrowth and provides neuroprotection with apoptotic gene under excitotoxic conditions. 

 
as the receptor involved in the transduction of TTR neuroprotection via megalin 
in hippocampal neuronal cell culture [23]. TTR interaction with megalin was 
found to be important determinant for neuronal survival and neurite preserva-
tion both in excitotoxic conditions and in a mouse model of permanent middle 
cerebral artery occlusion (pMCAO). As megalin was necessary for the neuro-
protective action of TTR, megalin mRNA levels was quantified after glutamate 
stimulation in both TTR KO and WT cultures. Megalin mRNA was found to be 
significantly upregulated in WT cultures in opposition to TTR KO cultures in-
dicating that megalin is required for proper functioning of TTR. TTR up-regulates 
intracellular calcium and takes Src/ErK/Akt/CREB pathway in a megalin-dependent 
manner both in vitro and in vivo. Moreover, clathrin-dependent mega-
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lin-mediated TTR internalization is required for TTR neurogenic activity in 
dorsal root ganglia neurons. Supporting this notion, it was demonstrated that 
megalin’s action as an enhancer of nerve regeneration is dependent on TTR ex-
pression and decrease levels of megalin lead to slow down the nerve regeneration 
process [20] [43]. Keeping in view the above discussions, TTR might be regarded 
as a neurotrophic factor, both in neurite outgrowth and neuroprotection under 
physiological conditions. 

3. Role in the Maintenance of Learning and Memory  
Capacities of Brain 

In this section, we ascribed the questions like how TTR regulate learning and 
memory? Which mechanism is more critical in maintaining it? Does TTR also 
contribute to play its different role during aging process? To shed light on these 
aspects, we have tried through a reductionist approach. 

Learning and memory is a complex process accompanied by molecular mod-
ifications and is driven by hippocampus genes [44]. To elucidate the molecular 
mechanisms responsible for stable forms of long-term memory consolidation 
require the induction of a cascade of genes responsible for producing and main-
taining structural changes associated with memory formation. Despite all these 
molecular changes that are enhancing memory, little is known about molecular 
events most relevant to recover learning and memory deficit [45] [46]. Emerging 
evidence on protein interaction networks that monitor and respond to the nor-
mal memory enhancing process suggested that TTR is involved in neurodege-
nerative disorders like Alzheimer disease [47]. 

The hippocampus, a structure essential for the formation and retrieval of spa-
tial and reference memory, is necessary for long-term memory consolidation or 
storage [48] [49] [50]. Genome-wide study investigated genes differentially ex-
pressed between aged memory-impaired (AI) and aged memory-unimpaired 
(AU) rats [51] [52] [53] [54] [55]. Long-term memory formation depends on 
two distinct parameters, 1) gene expression and 2) protein synthesis [55]. TTR is 
one of the most markedly affected genes between the two groups: aged memo-
ry-impaired (AI) and aged memory-unimpaired (AU) rats [56]. Studies showed 
that TTR is a critical component of the retinoid pathway for the maintenance of 
memory capacities during aging [56] [57] [58] [59] [60]. The upregulation of 
TTR is essential to prevent from memory deficits. During AI and AU conditions, 
TTR gene expression was affected most markedly. Decrease TTR gene expres-
sion may considerably alter the bioavailability of retinoic acid (RA) in response 
to the body’s needs because TTR delivers retinol to the target tissue as well [57]. 
This could be attributed partially to diminish the activity of C/EBP (a transcrip-
tion factor regulating both TTR and NQO2 expression) immediate-early gene 
cascade initiated by CREB since C/EBP protein levels were decreased in AI ani-
mals [56] [61] [62]. Genetic, behavioral studies and molecular evidence sup-
ported the notion that TTR is involved in the maintenance of normal cognitive 
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processes during aging by acting on the retinoid signaling pathway [3] [56]. TTR 
and RA deficiency in the hippocampus may decrease memory performance by 
impairing synaptic plasticity [58], long-term potentiation (LTP) and long-term 
depression (LTD) [63] [64]. 

TTR influence learning and spatial memory in a robust way. Studies carried 
out using TTR knockdown mice demonstrated that it regulate the cognitive 
process and protect the brain from traumatic injury [3]. Hippocampus-dependent 
memory impairment is associated with synaptic dysfunction/alterations that oc-
cur during normal aging [65] [66]. Several lines of studies pointed that TTR ac-
celerates the cognitive decline resulting from aging. Impairment resulting from 
TTR knockdown gene also temporary proceeds to functional deficits in 
processes mediated by prefrontal cortex [67]-[72]. TTR-null mice showed in-
crease neuropeptide Y levels in the hippocampus [73]. Over-expression of neu-
ropeptide Y in the hippocampus of transgenic rats induces spatial memory im-
pairment, which could also be interconnected to the cognitive phenotype in TTR 
knockdown mice [74]. 

Hippocampus 14-3-3ζ proteins are highly conserved acidic proteins 
representing 1% of the total amount of brain proteins and very important in 
many cellular processes, being their absence related to memory deficits and 
learning [75]. In neurons, this protein exists in the cytoplasm, in mitochondria, 
and also in the nucleus [76] [77]. Several studies revealed that TTR regulates 
14-3-3ζ protein levels in the hippocampus [73] [75]. TTR knockdown mice had 
decreased levels of 14-3-3ζ protein in the hippocampus and this decreased level 
impact on learning and memory [78]. The cognitive decline with decreased ex-
pression is strongly connected with synaptic activity-dependent proteins [78]. 
Western blot and immunohistochemistry analysis described the increase degra-
dation of 14-3-3ζ protein of lysosome in the absence of TTR, increasing auto-
phagy and memory deficits process [38] [79] [80] [81] [82]. In conclusion, the 
absence of TTR decreases 14-3-3ζ protein levels in the hippocampus which in 
turn attributable to increased degradation in the lysosomal compartments, 
probably by the reduced levels of 14-3-3ζ protein [83] [84].  

4. TTR Role in Alzheimer Disease 

Alzheimer disease is a neurodegenerative disorder primary characterized by the 
extracellular deposition of Aβ and the formation of neurofibrillary tangles in the 
brain [85] [86] [87]. In AD patients, two different mechanisms are involved, 
overproduction versus accumulation of soluble Aβ [88]. In both cases, seques-
tering of Aβ contribute to its clearance from the brain and protect against ac-
cumulation or susceptibility to diseases. The TTR plays pivotal role during this 
process by activating downstream signaling events leading to Aβ sequestering. 
The hallmark of TTR is its role in Alzheimer’s disease, protecting the brain from 
accumulating neurotoxic amyloidplaques. TTR suppressed Aβ and prevent its 
toxicity [89] [90]. Studies showed that TTR sequestered Aβ in the CSF and 
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moved Aβ to the choroid plexus (CP) for enzymatic degradation and removal 
from the brain [18]. In this context, TTR-Aβ interaction seems to have a neuro-
protective effect in AD patients [91] [92] [93]. Brain TTR exhibits asymmetrical 
expression pattern and was confirmed in normal and transgenic mouse model in 
AD condition [94]. The levels of TTR in the brain of AD patients are correlated 
negatively with the abundance and accumulations of amyloid plaques. In re-
sponse to elevated Aβ levels, the TTR is up regulated in transgenic mice overex-
pressing mutant amyloid precursor protein [95] [96]. 

Patients suffering from AD showed significant reduction of TTR concentra-
tion in the CSF compared to age-matched healthy control subjects suggesting 
that AD patients expressed decrease TTR level with an enhanced level of Aβ in 
the brain (p = 0.004) [97] [98] [99] [100]. Gene expression of TTR can be in-
duced in response to overproduction of Aβ but this seems to be in contrast to 
the observations that the concentration of TTR is lower in most cases, if not all, 
AD patients than in aged-match control groups [96] [101] [102]. In situ hybri-
dization analysis identified very low level of TTR mRNA transcripts in the hip-
pocampus while the majority was localized in the choroid plexus of the brain 
[103]. Results from the experiment using C57BL/6JNarl mice and Tg2576 mice 
showed that not only the level but also the hemispheric symmetry of TTR ex-
pression in the mouse brain was significantly altered in the AD mouse model 
Tg2576 [94]. Interestingly, in this study, the levels of TTR transcripts in the he-
mispheres of the adult females, aged females, and aged males were all higher 
than the adult males. Furthermore, this asymmetrical distribution of TTR in the 
brain hemispheres might have an important link with the pathogenesis of the 
AD [104] [105]. 

The implication of TTR as a neuroprotective agent in AD was further vali-
dated by two well-characterized models of AD: the APP-V717I and the Tg2576 
(K670N, M671L) transgenic mice, described to display cognitive impairment 
and amyloid plaques [68] [107] [108]. By immunohistochemistry analysis, TTR 
immunoreactivity was restricted to the choroid plexus of the brain. These two 
validated models of AD clearly showed that TTR expression can be seen in cho-
roid plexus and mutation to TTR can lead to disease pathology [68]. 

Oxidative stress and inflammation also contribute to AD. Multiple genes and 
molecular mechanisms have been implicated in this process. Significantly altered 
gene expression was found in AD-affected Choroid Plexus Epithelium (CPE) 
[109]. Specific cellular changes were observed due to increased oxidative stress. 
Most likely, CPE sink action may be impaired in AD patients due to down regu-
lation of CLDN5 gene. Aβ PP processing pathways are responsible for AD con-
dition (Figure 2) [106]. Reduced TTR levels in CSF have also been reported in 
AD patients with depression. The inconsistency among the finding has made it 
an unsuitable CSF marker for AD patients and made it more complicated to un-
derstand its role in AD pathogenesis. The third way, the TTR affect AD model 
depends upon its function as an RBP binding protein. Increased TTR indirectly  
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Figure 2. Amyloid precursor protein (APP) processing pathway during Alzheimer Disease. AICD, AbPP 
intracellular domain; C83 (C99), carboxy-terminal fragments C83 (C99); DR6, death receptor 6; LRP, 
lipoprotein receptor-related protein; sAPP, secreted AbPP fragment; TTR, transthyretin. Degradation, 
see “Clearance of Ab” of the text for details. Involvement of TTR regulation: it has been suggested that 
APP or its fragments upregulate TTR [106]. 

 
increases the amount of available retinoic acid in the brain, thus enhancing 
neuronal maintenance. Similarly, the accelerating effect could also depend on a 
relative lack of retinoid in the CNS which amplifies Aβ. RBP inhibitors have 
been shown to compromise neuronal function in aged rodents whereas retinoic 
acid has been found to enhance performance [56] [110]. 

Despite the stable role of TTR in the CNS and AD, it is far to understood the 
specific and pivotal role of TTR’s site of synthesis in AD. Altered TTR gene ex-
pression in the choroid plexus and the TTR levels in CSF consequently could 
impact on AD pathology and disease prognosis. Further studies are needed to 
explore the main domain of TTR in AD so that it can be recovered in a more 
sophisticated way. The scenario like that could certainly account for the findings 
in the overexpression models of AD, whether it applies to sporadic disease is a 
subject matter of speculation and further investigation. Any such studies could 
not ignore the possible role of TTR since cortical and hippocampal neurons 
from human AD and mouse AD model brains seem to increase its production 
[106]. 
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5. Conclusion 

TTR plays a significant novel role in sequestering of beta-amyloid peptides de-
position in the brain, promotes neurite extension and provides neural protection 
in Alzheimer disease. TTR plays an important role in nerve regeneration process 
supporting a pivotal role for TTR in neurobiology. It regulates learning and 
memory process in the hippocampus and decreased expression of TTR leads to 
memory deficits in brain. It has been widely studied related to AD but further 
investigations are needed to explore its role in different brain-related diseases. 
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