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Abstract 
In this work, the use of computational methods was essential to distinguish 
the three possible isomeric structures of the [RuCl3(H2O)2(Gly)] molecule. 
The characterization of these molecules was performed using IR, NMR and 
UV-VIS simulations. Some calculations related to the optimization of struc-
tures and properties such as chemical hardness and dipole moment were also 
conducted. The fac-cis isomer presented promising data when compared to 
the experimental data, indicating that this is the likely experimentally synthe-
sized isomer. This study demonstrates the technical utility of the computa-
tional calculations by virtue of situations that prevent the realization of X-ray 
diffraction. 
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1. Introduction 

Computational calculations are widely used in research to confirm geometric 
structures and to determine the properties of coordination compounds [1] [2] 
[3] [4], especially in cases where obtaining a single crystal for X-ray diffraction is 
not possible [5] [6] or inconclusive [3] [7]. 

Chagas [8] began to develop the study of the complex [RuCl3(H2O)2(Gly)] in 
2012. In biological tests performed by Salama [9], Chagas [8] observed the po-
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tential Leishmanicidal activity of its complex. Martínez et al. [10], Iniguez et al. 
[11] and Barbosa et al. [12] demonstrated that some of their ruthenium com-
pounds exhibited improved antileishmanial activity compared with the reference 
compound and their free ligand. 

Structural variations depending on the size of the molecule, the position of the 
ligands and their spatial characteristics such as flatness and three-dimensionality 
help to understand the action of these molecules in the biological environment, 
as the interaction of a molecule with a biological receptor depends on this type 
of structural information [13] [14]. Previous research has shown the utility and 
exploitation of structural knowledge in areas such as catalytic activity and the 
use of computational calculations in these studies [15] [16]. Gianferrara, Bratsos 
and Alessio [17] give a good account of the conditions mentioned in the para-
graph beginning, based on some examples such as cisplatin and ruthenium 
compounds (NAMI-A and KP1019), which are anticancer drugs currently in use 
and under development, respectively. 

This study used computational methods to determine the possible geometric 
isomers of the compound [RuCl3(H2O)2(Gly)], in comparison with experimental 
data, illustrating the usefulness of computational methods to elucidate the possi-
ble geometrical structures of a compound in situations in which a single crystal 
for X-ray diffraction cannot be obtained. 

2. Methodology 

All calculations were performed using the Gaussian program package 09 [18]. 
The geometries were optimized by the DFT method (Density Functional 
Theory) and the functional hybrid meta-GGA M06-2x [19], and confirmed by 
vibrational analysis. The basis set used was 6-311++G(d,p) [20] for all atoms ex-
cept for Ruthenium, which was treated with the basis sets SDD (Stutt-
gart/double-ζ Dresden) and ECP (effective core potential) for the innermost 
electrons of the ruthenium atom [21]. The harmonic vibrational frequencies 
were calculated with the analytical second derivative, without the presence of 
imaginary frequencies. For the calculations of 35 excited states, the time depen-
dent method (TDDFT) with an open layer was used with a polarized solid model 
to determine the effect of the solvent water molecule through IEF (integral equa-
tion formalism). For the comparison of nuclear magnetic resonance, the calcula-
tion was performed by the GIAO method (Atomic Orbital Measure Indepen-
dent) [22] for 13C and 1H in the presence of the solvent water. All DFT calcula-
tions employed the keyword int (grid = ultrafine). All calculations were per-
formed at the Federal University of Mato Grosso, Laboratório de Estudos de 
Materiais. All experimental data were obtained for comparison of the findings 
[8]. 

3. Results and Discussion 

The [RuCl3(H2O)2(Gly)] molecule described by Chagas [8], can generate three 
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possible geometric isomers: fac-cis-diaquotrischloroglycinatoruthenium III, 
mer-cis-diaquotrischloroglycinatoruthenium III and  
mer-trans-diaquotrischloroglycinatoruthenium III. As shown in Figure 1. 

To determine which isomer was synthesized by Chagas [8], computational 
methods were used to investigate the characteristics of each isomer compared to 
the experimental data. 

3.1. Energy of the Geometrical Isomers 

Table 1 shows the data obtained from the energy optimization of each isomer. 
The data show that the mer-trans isomer showed the largest relative difference 
when compared to the fac-cis molecule with the lowest energy. The fac-cis mo-
lecule, with lower energy compared to the other two isomers, had greater stabil-
ity. However, the energies of the three structures were very close and the lowest 
energy does not guarantee formation of the compound experimentally. Thus, IR, 
UV-vis and NMR simulations were performed to elucidate the structure [5] [6] 
[23]. 

3.2. Infrared Simulation 

The infrared frequencies of the three isomers showed similar values to each oth-
er. It was also observed that, when compared to the experimental data, the 
fac-cis and mer-trans isomers demonstrated a closer approximation as show in 
Table 2. 

The fac isomer showed lower frequencies than the mer isomers for the same 
bandwidth allocations in regions below 1000 cm−1. However, a difference was 
 

 
Figure 1. Structure of the molecule isomers [RuCl3(H2O)2gly]. 
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Table 1. Relative energies of isomers of the molecule [RuCl3(H2O)2gly]. 

Molecules Optmization energy (Hartree) Relative energies (kCal∙mol−1) 

fac-cis −1912.7912080 0 

mer-cis −1912.7794975 7,35 

mer-trans −1912.7661652 15,71 

 

Table 2. Calculated frequency by DFT of isomers [RuCl3(H2O)2(Gly)], and FTIRmed (4000 
- 600 cm−1) with approximate assignment bands. 

(fac-cis) (mer-cis) (mer-trans) Experimental Assigned bands 

1791 1848 1730 1664 νa (COO−) 

1395 1290 1454 1388 νs (COO−) 

1665 - 1595 1667 - 1613 1654 - 1589 1571 δ ( 3NH+ ) 

1510 1516 1513 1490 δs( 3NH+ ) 

1479 1472 1491 1441 δ(CH2) 

1344 1373 1348 1334 - 1322 ρw(CH2) 

1118 1112 1125 1155 - 1110 ρr( 3NH+ ) 

1015 1027 1003 1043 ν (C-N) + ν (C-C) 

905 910 924 927 ρr(CH2) 

871 894 897 889 ν (CCN) 

676 ----- ----- 684 ρw(COO−) 

617 635 647 607 δ(COO−) 

Not observed. νa: Asymmetrical stretch; νs: Symmetrical stretch; δa: Asymmetrical bending; δs: symmetric-
al bending; ρw: Wagging deformation; ρr: Rocking deformation. 
 
not observed between mer-trans and mer-cis, which did not conform to any 
general pattern. 

( )2exp1
1

n
cal
i i

i
RMS v v

n
= −

− ∑  

The root mean square error (RMSE) between the experimental and the calcu-
lated frequency of the molecules were 42.44 cm−1 (fac-cis), 75.67 cm−1 (mer-cis) 
and 37.36 cm−1 (mer-trans), with the lowest RMSE found for the mer-trans mo-
lecule, according to the above equation [24]. The overestimated values of the 
calculated frequency were due to neglecting anharmonicity. The calculation was 
performed on a single molecule, disregarding intermolecular interactions [25]. 

The theoretical and experimental spectra in Figure 2 and Figure 3 showed 
characteristic peaks related to the glycine molecule and the compound. The car-
boxylate group showed variations between asymmetric and symmetric peaks, 
which assisted in the distinction of the three isomeric structures of the theoreti-
cal spectra as fac-cis (396 cm−1), mer-cis (558 cm−1) and mer-trans (276 cm−1). 
This distinction was observed in a previous work was well Alam et al. [26]. The  
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Figure 2. Theoretical spectrum. 

 

 
Figure 3. Experimental spectrum. 

 
experimental spectrum showed a variation between asymmetric and symmetric 
peaks of 276 cm−1. The peak at 676 cm−1 was assigned to a “wagging” group 
(COO−) in the fac-cis isomer and was not observed in the mer isomers. 

3.3. Ultraviolet-Visible Simulation 

Table 3 shows the data on electron density-related oscillator strength. Ligand 
charge transfer to the metal (LMCT) can be evidenced by the HOMO and  
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Table 3. Electronic density of the molecular frontier orbitals. 

Isomers Homo (orbitals) Characteristics Lumo (orbitals) 

fac-cis 

 

State 16 Orbital 
58β → 64β Energy 

7.59 (eV) 

 

mer-cis 

 

State 14 Orbital 
59β → 64β Energy 

7.08 (eV) 

 

mer-trans 

 

State 14 Orbital 
60β → 64β Energy 

6.96 (eV) 

 
 
LUMO, referring to the excited states shown in Table 4. The excited state closest 
to the experimental value was presented by the fac-cis molecule. 

The values related to states 19 and 26 (fac-cis), 19 and 22 (mer-cis) and 22 and 
27 (mer-trans) show π-π* type transitions relating to the glycine binder. The 
greatest contribution of the chlorides to the metal center occurred in states 19, 
16 and 19 of the fac-cis structures, mer-cis and mer-trans, respectively. 

3.4. Molecular Properties 

The HOMO is the occupied orbital with the highest energy that has the ability to 
donate electrons, while the LUMO is the unoccupied orbital with the least ener-
gy that has the ability to accept electrons; the difference between them can ex-
plain charge transfer within a molecule [27] [28]. The HOMO and LUMO data 
energies as well as their differences are shown in Table 5. 

The range of energy between HOMO and LUMO as well as the hardness and 
chemical dipole moment may provide additional information. The fac-cis mo-
lecule had the largest energy difference and greater chemical hardness, making it 
more stable kinetically and less favorable to adding electrons to LUMO or ex-
tracting electrons from HOMO, i.e. this molecule had low chemical reactivity 
[29] [30]. 

The dipole moment implies that the higher the stronger value is an intermo-
lecular interaction [30], The mer-trans molecule should form stronger intermo-
lecular bonds than the other two isomers, for example with other molecules or 
DNA bases, as shown previously Pramanik et al. [30] and Das et al. [31]. 
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Table 4. Excitation energies (eV), Oscillator strength (f) and wave length (nm) calculated 
and experimental. 

Molecules States λ (nm) eV f exp 

fac-cis 

13 314.98 3.9363 0.0162 

290 
(LMCT) 

16 287.49 4.3127 0.0260 

19 257.63 4.8124 0.0087 

26 238.53 5.1979 0.0093 

mer-cis 

14 319.96 3.8750 0.0101 

16 304.82 4.0675 0.0161 

230 
(π-π*) 

19 263.97 4.6969 0.0292 

22 251.81 4.9236 0.0079 

mer-trans 

14 321.58 3.8555 0.0119 

19 283.60 4.3718 0.0170 

22 257.28 4.8190 0.0223 

27 244.79 5.0648 0.0337 

 
Table 5. Calculated data of some molecular properties. 

Molecules Homo eV Lumo eV 
Homo-lumo gap 

∆(eV) 
Chemical 

hardness (η) 
Dipole moment 

µ (Debye) 

fac-cis −8.2584 −2.2746 5.9838 2.9919 7.6920 

mer-cis −8.2682 −2.5070 5.7612 2.8806 6.3862 

mer-trans −7.7153 −2.2888 5.4265 2.7133 12.5112 

 
According to the Koopman theorem, the chemical hardness η can be de-

scribed by the following equation, 
2

Lumo HomoE E
η

−
=  [32]. 

3.5. Nuclear Magnetic Resonance Simulation (nmr) 

Table 6 is presented the magnetic resonance of 13C and 1H in comparison with 
experimental data. 

The NMR theoretical data indicate overestimated values. These overestimated 
values can be explained by the method and the basis set, resulting in poor results 
[33]. Another explanation for such high values is that the simulation was per-
formed on a single molecule, meaning that various types of chemical interac-
tions were not considered theoretically [25]. 

The NMR data for the mer-cis isomer provided a close approximation to the 
experimental data of the group (COO−), but the other NMR results were poorly 
related to the other two structures. Therefore, a correction of the basis sets 
and/or the method may provide better results in general. 

4. Conclusions 

Although some experimental data showed overestimated values, the spectral 
characteristics were maintained according to the experimental data. 
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Table 6. Magnetic resonance 13C and 1H. 

Parameters fac-cis mer-cis mer-trans Experimental 

( )COOC−  192.15 188.93 193.77 172.61 

( )2CHC  43.93 47.06 44.69 41.69 

( )2CHH  1.85 
2.39 

3.87 
5.84 

2.82 
3.35 

3.45 
- 

( )3NHH  5.07 
6.52 

5.50 
6.72 

3.60 
4.05 

4.64 
4.71 

 
The fac-cis-diaquotrischloroglycinatoruthenium III and mer-trans-diaquo- 

trischloroglycinatoruthenium III isomer presented data indicating greater stabil-
ity compared to the other two isomers and was confirmed by optimizing data 
from the UV-vis simulation, the energy of the frontier orbitals and the chemical 
hardness, which supported its greater stability. 

The fac-cis-diaquotrischloroglycinatoruthenium III and mer-trans-diaquo- 
trischloroglycinatoruthenium III isomer presented the lowest RMSE in compar-
ison with the other structures. The difference between the RMSE of the 
mer-trans and fac-cis isomers was relatively small compared to the mer-cis iso-
mer, which had the highest value. Thus, observing only the frequency values 
cannot differentiate between two isomers, but allowed us to discard the mer-cis 
isomer, which showed the worst results. 

The observation of the theoretical spectrum suggests the mer-trans structure. 
The mer-trans structure showed higher reactivity compared to the other struc-
tures, which implies that this molecule can be modified easily as a function of 
applied energy compared to the other two structures. 

Analyzing the results in general, the fac-cis-diaquotrischloroglycinatoruthe- 
nium III isomer presented results suggesting that this was the molecule synthe-
sized by Chagas [8]. 

The data relating to the properties of these three molecules may assist in fu-
ture studies addressing structural modifications and interactions with the bio-
logical environment, since the molecule [RuCl3(H2O)2(Gly)] has been shown to 
possess antileishmanial activity. 
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