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Abstract 
We introduce two algorithms in order to find the exact solution of the nonli-
near Time-fractional Partial differential equation, in this research work. Those 
algorithms are proposed in the following structure: The Modified Homotopy 
Perturbation Method (MHPM), The Homotopy Perturbation and Sumudu 
Transform Method. The results achieved using the both methods are the 
same. However, we calculate the approached theoretical solution of the 
Black-Scholes model in the form of a convergent power series with a regularly 
calculated element. Finally, we propose a descriptive example to demonstrate 
the efficiency and the simplicity of the methods. 
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1. Introduction 

In recent years, fractional calculus has been increasingly used for numerous ap-
plications in many scientific and technical fields such as medical sciences, bio-
logical research, as well as various chemical, biochemical and physical fields. 
Fractional calculus can be, for instance, employed to solve a lot of problems 
within the biomedical research field. Such an important application is studying 
membrane biophysics and polymer viscoelasticity [1]. 

Numerous methods and approaches have been presented in recent years. 
Some of these methods are analytical such as Fourier transform method [2], the 
fractional Green function method [3], the popular Laplace method [4] [5], the 
iteration method [6], the Mellin transform method and the method of the or-
thogonal polynomial [4]. 
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Numerical methods and approaches are also popular and used to obtain ap-
proximate solutions of FPDEs. Examples of such a numerical method for solving 
FPDEs are the Homotopy Perturbation Method (HPM) [7] [8] [9] [10] [11], the 
Differential Transform Method (DTM) [12], the Variational Iteration Method 
(VIM) [13], the New Iterative Method (NIM) [3] [14], the Homotopy Analysis 
Method (HAM) [1] [6] [15] and the Adomian Decomposition Method (ADM) 
[16]. 

Among these numerical methods, the VIM and the ADM are the most popu-
lar ones that are used to solve differential and integral equations of integer and 
fractional order. The HPM is a universal approach which can be used to solve 
both fractional and ordinary differential equations FODs as well as fractional 
partial differential equations FPDEs. The HPM method was originally proposed 
by He [8] [17]. The HPM is a coupling of homotopy in the topology and the 
perturbation method. The method is used to solve various types of equations 
such us the Hellmholtz equation, the fifth order KdV [6], the Kleein-Gorden 
Equation [4], the Fokker-Plank equation [9] [18], the nonlinear Kolmogorov- 
Petrovskii-Piskunov Equation [3] as well as other types of equations as proposed 
and used in [10] [19]. 

In this paper, we present two approaches to derive the exact solution of vari-
ous types of FPDEs. Those methods are: The Modified Homotopy Perturbation 
Method (MHPM) and the Homotopy Perturbation and Sumudu Transform 
Method (HPSTM). The MHPM is a fast approach that’s based on designing and 
utilizing a proper initial approximation which satisfies the initial condition of 
the HPM. However, the HPSTM is a combination of the homotopy perturbation 
method and Sumudu transform. The paper is structured in six sections. In Sec-
tion 2, we begin with an introduction to some necessary definitions of fractional 
calculus theory. In Section 3, we describe the basic idea of the HPM. In Section 
4, we describe the MHPM. In Section 5, we describe the HPSTM. In Section 6, 
we present two examples to show the efficiency of using the MHPM and 
HPSTM to solve the fractional Black-Scholes equation. Finally, relevant conclu-
sions are drawn in Section 7. 

2. Basic Definitions of Fractional Calculus 

In this section, we present the basic definitions and properties of the fractional 
calculus theory, which are used further in this paper. 

Definition 2.1 
A real function ( ) , 0f t t >  is said to be in the space ,Cσ σ ∈ , if there ex-

ists a real number p σ>  such that ( ) ( )1
pf t t f t=  where ( ) [ ]1 0,f t C∈ ∞  

and it is said to be in the space mCσ  if ,mf C mσ∈ ∈ . 
Definition 2.2 
The left sided Riemann-Louiville fractional integral of order 0α ≥ , of a func-

tion , 1f Cσ σ∈ ≥ −  is defined as: 
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( ) ( ) ( ) ( )1

0

1 d
Γ

t
tJ f t t fαα α ζ ζ

α
−= −∫                 (1) 

where 0α > , 0t > , and ( )mΓ  is the Gamma function. Properties of the op-
erator tJα  for f Cµ∈ , 1µ ≥ − , , 0α β ≥ , 1γ ≥ − , can be founded in [20], 
and are defined as follow 

1) ( ) ( )0
tJ f t f t=  

2) ( ) ( ) ( )t t tJ f t J f t J f tα β α β+=  
3) ( ) ( ) ( ) ( )t t t tJ f t J f t J f t J f tα β β α=  

4) 
( )

( )
1Γ 1

Γ 1tJ t tβ γ α γγ
α γ

+ ++
=

+ +
 

Definition 2.3 
Let mf Cµ∈ , { }0n∈ ∪ . The left-Sided Caputo fractional of f  in the Ca-

puto sense is defined by [4] as follows 

( ) ( ) ( ) ( ) ( )

( )

1

0

1 d , 1
Γ

,

t n n

t
n
t

t f n n
nD f t f x

D f t n

α

α
α ζ ζ α

α

α

− − − − < ≤ −= = 
 =

∫     (2) 

According to the [20], Equations (1) and (2) becomes, for 1n nα− < ≤  

( ) ( ) ( ) ( )1

0

1 d
Γ

t
tJ f t t fαα ζ ζ ζ

α
−= −∫                    (3) 

( ) ( ) ( ) ( )1

0

1 d
Γ

t n n
tD f t t f

n
αα α ζ ζ

α
− −= −

− ∫               (4) 

Definition 2.4 
The single parameter and the two parameters variants of the Mitting-Leffler 

function are denoted by ( )E tα  and ( ),E tα β , respectively, which are relevant 
for their connection with fractional calculus, and are defined as: 

( ) ( )0 , 0,
1

j

j

tE t t
jα α

α
∞

=
= > ∈

Γ +∑ �                   (5) 

( ) ( ), 0 , , 0,
j

j

tE t t
jα β α β

α β
∞

=
= > ∈

Γ +∑ �               (6) 

the k-th derivatives are 

( ) ( ) ( )
( ), 0

!d , 0,1, 2, ,
! 1d

jk

k j

k j t
E t E t k

j j ktα α β α α
∞

=

+
= = =

Γ + +∑ �        (7) 

( ) ( ) ( )
( ), , 0

!d , 0,1, 2, ,
d

jk

k j

k j t
E t E t k

j ktα β α β α α β
∞

=

+
= = =

Γ + +∑ �        (8) 

some special cases of the Mitting-Leffler function are as follows 
1) ( )1 etE t =  
2) ( ) ( ),1E t E tα α=  
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3) ( ) ( )1 1
, ,

d
d

k

kk t E at t E at
t

β α β α α
α β α β

− − −
−

  =   

Other properties of the Mitting-Leffler functions can be found in [20]. These 
functions, are generalizations of the exponential function, because, most linear 
differential equations of fractional order have solutions that are expressed in 
terms of these functions. 

Definition 2.5 
Sumudu transform over the following set of functions 

( ) ( ) ( ) [ ]1 2| 0, , 0, e if 1 0,j

t
jA f t M f t M tττ τ

  = ∃ > > > ∈ − × ∞ 
  

     (9) 

is defined by 

( ) ( ) ( )
0

e dtf t G u f ut t
∞ −=   ∫                  (10) 

where ( )1 2,u τ τ∈ . Some special properties of the Sumudu transform are as fol-
lows 

1) [ ]1 1=  

2) 
( )

, 0
Γ 1

n
nt u n

n
 

= > 
+  

  

3) 
1e

1
at

au
  =  −

  

4) ( ) ( ) ( ) ( )f x g x f x g xα β α β+ = +              

Other properties of the Sumudu transform can be found in [21]. 
Definition 2.6 
( )G u  is the Sumudu transform of ( )f t . And according to [22] we have: 

1) ( )1G s
s

 is a meromorphic function, with singularities having ( )Re s γ< . 

2) There exists a circular region Γ  with radius R and positive constants, M 
and k, with 

( )1 kG s
MR

s
−<  

then the function ( )f t  is given by 

( )1

1
1 1 de residuse e

2π
i st st
i

G
s sG s G

i s s s
γ

γ

+ ∞−

− ∞

  
      =       

  

= ∑∫        (11) 

Definition 2.6 
The Sumudu transform  , of the Caputo functional integral is defined as [22] 

( ) ( ) ( ) ( )1

0

0kn

t k
k

G u f
D f t

u u
α

α α

−

−
=

  = −  ∑                  (12) 

then it can be easily understood that 
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( )
( ) ( ) ( )1

0

, 0
, 1

kn

t k
k

f x t f
D f t n n

u u
α

α α α
−

−
=

    = − − ≤ <  ∑


         (13) 

Theorem 2.1 
Consider the following n-term liner fractional differential equation [7] theo-

rem 

( ) ( )1 0
1 0

n n
n t n t t ta D a D a D f tβ β β ω−

−+ + + =�              (14) 

with the constant initial condition 

, 0,1, , , 1, 2, ,i
i

j
ij iC i n j lω = = =� �  

where 

, , 1 ,
ii ij i i i ia C n n nβ∈ − < ≤ ∈   and 0 1 2 1 1n nn nβ β β β β−< < < < < ≤ < +� . 

Then we see that the analytical general solution of Equation (14) is 

( ) ( ) ( ) ( )
1

1
0

0 0
d

i
i i

i
i

lt B j
n i ij n

i j
t G t f a C G tω ζ ζ ζ

−∞
− −

= =

= − +∑∑∫          (15) 

where nG  is the Green function and it’s defined by 

( ) ( ) ( )

( ) ( )

( )

0 1 2 0 1 2

2
1 10

1
2

1 10

0 1 2
0 , , , 0,

2 1

0

1
, 1

11 ; , , ,
! n n

p
n

n n n n j jj

n n
n

n n n n j jj

m

n n
m k k k k k k mn

kn m kp

p n

m n
k

n

G t m k k k
a m

a
t

a

aE D
a

β β β β β

β β
β β β β β

− −

−
− −=

−
−

− −=

∞

−
= ≤ + + + =

−
− + + − −

=

−−
− + − −

∑

∑

−
= ×

 
×  

 
 

× − 
 

∑ ∑

∏

� �

�

    (16) 

where ( )0 1 2
0 01 2

!; , , ,
! ! !n

n

mm k k k
k k k−

−

=�
�

. 

And ( ) ( ). , .
mE  is the m-th derivative of the Mitting-Leffler function. 

In a special case of the latter theorem, the following relaxation-oscillation [7] 
is solved: 

( ) ( ) ( ) ( ), 0, 0 , 1, 2, , 1i
t iD t A t f t t b i nαω ω ω+ = > = = −�       (17) 

where ib  are real constants, and 1n nα− < ≤ . By utilizing theorem 2.1, we 
obtain the solution of Equation (14) as follows 

( ) ( ) ( ) ( )
1

1
2 20

0

nt j
j t

j
t G t f b D G tαω ζ ζ

−
− −

=

= − +∑∫           (18) 

where ( ) ( )2 ,G t t E Atα α
α α= − . It is easy to see that if 0 1α< ≤ , then the solu-

tion of the Equation (14) is given as follows 

( ) ( ) ( ) ( )1
2 00

d
t

tt G t f b D G tαω ζ ζ ζ −= − +∫            (19) 

which will be used in the coming examples, discussed in this work. 

3. The Basic Idea of the HPM 

In this section, we will briefly present the main idea of the HPM. At first, we will 
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consider the following nonlinear differential equation 

( ) ( ) 0,A u f x x− = ∈Ω                      (20) 

where ( ), ,A B f x  and Gamma are a general differential function operator, a 
boundary operator, a known analytical function and the boundary of the domain 
Ω , respectively. The operator A can be decomposed into a linear operator de-
noted by L, and nonlinear operator denoted by N. Hence, the equation can be 
written as follows 

( ) ( ) ( ) 0,L u N u f x x+ − = ∈Ω                   (21) 

As a result, we construct a homotopy ( ) [ ], : 0,1v x p Ω× →�  that satisfies: 

( ) ( ) ( ) ( ) ( ) ( )0, 1 0, 0 1v p p L u N u p A u f x p = − + + − = ≤ <        (22) 

which equivalent to 

( ) ( ) ( ) ( ) ( ) ( )0 0, 0, 0 1v p L v N u pL u p N v f x p= − + + + = ≤ <       (23) 

when the value of p is varied from zero to one, we can see easily that 

( ) ( ) ( )0, 0v p L v N u= − =                              (24) 

( ) ( ) ( ) ( ) ( ) ( ), 0v p L v N u f x A u f x= − − = − =             (25) 

If the parameter p is assumed as small, then the solution of the Equation (23) 
can be expressed as a power series in p as follows 

2 3
0 1 2 3v v pv p v p v= + + + +�                    (26) 

The best approximation for the solution of Equation (23) is 

1 0 1 2 30lim p iv v v v v vω ∞
→ =

= = = + + + +∑ �              (27) 

4. The Modified Homotopy Perturbation Method (MHPM) 

Meanwhile, we are able to apply the HPM to solve the class of time-fractional 
partial differential equations defined by 

( )( ) ( )( ) ( )( ) ( )( ), , , ,tD x t L x t N x t f x tα ω ω ω ω= + +          (28) 

subject to the initial condition 

( ) ( ),0x h xω =                         (29) 

where 0 1α< ≤ . The constructed homotopy satisfies 

( )( ) ( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

0, 1 , ,

, , , ,

t t

t

x t p D x t D x t

p D x t L x t N x t f x t

α α

α

ω ω ω

ω ω ω ω

 = − − 
 + − − − 


  (30) 

By simplifying Equation (30) we get 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

0, , , ,

, ,

t t tD x t D x t p D x t L x t

N x t f x t

α α αω ω ω ω

ω ω

= + −
− − 

       (31) 

where the embedding parameter p is considered to be small, and applied to the 
classical perturbation technique. The next step is to use the homotopy parameter 

https://doi.org/10.4236/am.2018.91006


M. Ouafoudi, F. Gao 
 

 

DOI: 10.4236/am.2018.91006 92 Applied Mathematics 
 

p to expand the solution into the following form 

( ) ( )
0

, ,k
k

k
x t p x tω ω

∞

=

=∑                       (32) 

For the sake of clarifying the solution procedure of this method, we consider a 
general nonlinear time-fractional partial differential equation: 

( ) ( ) ( ) ( ), , , ,tD x t L x t N x t f x tαω ω ω= + +               (33) 

By substituting Equation (32) into Equation (31) and equating the terms with 
identical power of p, we can obtain a series of equations as the following 

( )( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( ) ( )

0
0

1
1 0 0 0

2
2 1 1 1

: ,

: , , , , ,

: , , , , ,

t t

t t

t t

p D x t D h x

p D x t D x t L x t N x t f x t

p D x t D x t L x t N x t f x t

α α

α α

α α

ω

ω ω ω ω

ω ω ω ω

=

= − − −

= − − −

�

    (34) 

Applying the Riemann-Louiville fractional integral of order 0, tJαα ≥  in the 
both sides 

( ) ( )
( ) ( )( ) ( )( ) ( ) ( )
( ) ( )( ) ( )( ) ( ) ( )

0

1 0 0 0

2 1 1 1

,

, , , , , ,

, , , , , ,

t t

t t

x t h x

x t J D x t L x t x t N x t f x t

x t J D x t L x t x t N x t f x t

α α

α α

ω

ω ω ω ω

ω ω ω ω

=

 = − − − 
 = − − − 

�

   (35) 

Substitute the results of the Equation (35) into the Equation (32), and apply-
ing the Perturbation technique [15] [22] we obtain an authentic n-th approxi-
mation of the exact solution, given by 

( ) ( )
0

, ,
n

i
i

x t x tω ω
=

=∑                      (36) 

If there exist some terms 0, 0vn n= > , then the exact solution can be written 
in the following form 

( ) ( )
1

0
, ,

n

i
i

x t x tω ω
−

=

= ∑                      (37) 

We Assume that the initial approximation of Equation (28) is given by 

( ) ( ) ( ) ( ) ( )0 1 2, ,0x t x c t x c tω ω ω= +               (38) 

where ( ),0xω  is the initial condition of the Equation (28), and ( ) ( ),0x x
t
ω

ω
∂

=
∂

. 

The aim of this algorithm is to find the terms 1c  and 2c . We assume that 
0nω ≡ , 0n∀ ≥ , which means that the exact solution is given by 

( ) ( )0, ,x t x tω ω=                        (39) 

As ( ),x tω  satisfies also the initial condition, we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2,0 ,0 ,0 0 0x x x c x c h xω ω ω ω= = + =          (40) 

and ( ) ( )1 20 1, 0 0c c= = , on the other part we have, 
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( )( ) ( )( ) ( ) ( ) ( )1 0 0 0, , , , , 0t tD x t D x t L x t N x t f x tα αω ω ω ω= − − − ≡      (41) 

By substitution the Equation (38) into the Equation (28), we obtain 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

1 2

1 2

1 2

,0

,0

,0 ,

t tx D c t x D c t

L x c t x c t

N x c t x c t f x t

α αω ω

ω ω

ω ω

+

= +

+ + +

             (42) 

Therein, the FPDEs are changed to a fractional order differential equation, 
which simplifies the problem. When α  is an integer, the equation is trans-
formed to an ordinary differential equation. 

5. The Homotopy Perturbation Sumudu Transform Method 
(HPSTM) 

We illustrate the basic idea of HPSTM by considering the general time-fractional 
nonlinear non-homogeneous partial differential equation with the initial condi-
tion of the general form defined by: 

( ) ( ) ( ) ( ), , , ,tD x t L x t N x t g x tαω ω ω= + +              (43) 

where 0α >  and 1n nα− ≤ < . 
With the initial condition 

( )( )
( ) ( )

[ ]
, 0,1, , 1

0
0,

mm f x m n
D

m n
ω

α

 = −= 
= ≡

�
              (44) 

where ( ): ,x tω ω= . 
Here by applying Sumudu Transform on the both sides of the Equation (43), 

we get 

( ) ( ) ( ) ( ), , , ,tD x t L x t N x t g x tαω ω ω  = + +                      (45) 

which, upon using a property of the Sumudu transform, yields 

[ ] ( ) [ ] [ ] ( ),f x u L u N u g x tα α αω ω ω= + + +                (46) 

where f is a function of x. 
Taking the inverse of Sumudu on the both sides, we obtain 

( ) ( ) ( )

( ) ( ) ( )

11
0

1

, ,0

, , ,

n kk
kx t u f x

p u L x t N x t g x tα

ω ω

ω ω

−−
=

−

 =  
 + + +   

∑

 
        (47) 

Now, we apply the HPM to the Equation (47) to get the solution 

( ) ( )
0

, ,n
n

n
x t p x tω ω

∞

=

=∑                      (48) 

where [ ]0,1p∈  is the embedding (or homotopy) parameter. 0ω  is an initial 
approximation which satisfies the boundary conditions, and ,n nω ∈  are the 
nth order approximations which are functions yet to be determined. It is noted 
that setting 1p =  in the Equation (48) gives an approximate solution of the 
given nonlinear differential equation. 
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The nonlinear term can be decomposed as follows 

( )( ) ( )0 1
0

, , , ,n
n n

n
N x t p Hω ω ω ω

∞

=

=∑ �                (49) 

where nH  are the He’s polynomials given by, 

( ) ( )( )0 1 0

1, , , ,
!

n
n k

n n kn kH N p x t
n p

ω ω ω ω
=

∂
=

∂ ∑�            (50) 

By substituting Equation (48) and Equation (49) into Equation (47), we obtain 
the following equation 

( ) ( ) ( )( )
( )

11 1
0 0 0

0

, ,

,

nn k n
n k nn k n

n
nn

p x t u f x p u L p x t

p H g x t

αω ω∞ − ∞− −
= = =

∞

=

  = +   
+ + 

∑ ∑ ∑

∑

  
  (51) 

In the meantime, we have completed the coupling of the Sumudu transform 
and the HPM using He’s polynomials. By equating the terms of the same power 
of p in the Equation (51), we obtain the given approximation for ,n nω ∈� . 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
0 1

0
0

1 1
1 0 0 0

2 1
2 1 1 0 1

1
1 1 0 1 2 1

: ,

: ,

: , ,

: , , , , ,

n
k

k
k

n
n n n

p x t u f x

p x t u L H

p x t u L H

p x t u L H

α

α

α

ω

ω ω ω

ω ω ω ω

ω ω ω ω ω ω

−
−

=

−

−

−
− −

 
=  

 
  = +  
  = +  

  = +  

∑

�

�



 

 

 

       (52) 

Finally, the approximate and analytical solution of the Equation (43) is given by 
truncating the following series 

( ) ( ) ( )
1 0 0

, lim , ,n
n np n n

x t p x t x tω ω ω
∞ ∞

→ = =

= =∑ ∑               (53) 

6. Applications 

In order to apply the MHPM and the HPSTM in Sections 4 and 5, respectively, 
consider the following fractional Black-Scholes option pricing equations as fol-
lows: 

6.1. Example 1 

( )
2

2 1k k
xx x

α

α

ψ ψ ψ
ψ

∂ ∂ ∂
= + − −

∂∂ ∂
                 (51) 

( ) ( ),0 max e 1,0xxψ = −                      (55) 

6.1.1. Use the MHPM 
By applying the MHPM, the initial approximation will be given by 

( ) ( ) ( ) ( ) ( )0 1 2, ,0x t x c t x c tψ ψ ψ= +               (56) 

where 
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( ) ( ),0 max e ,0xx
x
ψ∂

=
∂

                   (57) 

therefore 

( ) ( ) ( ) ( ) ( )0 1 2, max e 1,0 max e ,0x xx t c t c tψ = − +          (58) 

Hence, 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1 2

2

1 22

1 2

1 2

max e 1,0 max e ,0

max e 1,0 max e ,0

1 max e 1,0 max e ,0

max e 1,0 max e ,0 0.

x x
t t

x x

x x

x x

D D c t c t

c t c t
x

k c t c t
x

k c t c t

α αψ = − +

∂
− − +
∂

∂
+ − − +

∂

− − + ≡

     (59) 

We obtain the fractional system 

( ) ( )
( )

1 1

1

0

0 0
tD c t kc t

c

α + =


=
                    (60) 

( ) ( )
( )

1 2

2

0

0 0
t tD c t D c t

c

α α + =


=
                  (61) 

Solving the Equation (60) and Equation (61) by applying the theorem 2.1, we 
obtain 

( ) ( )
( ) ( )

1

2 1

c t E kt

c t E kt

α
α

α
α

 = −


= − −

                   (62) 

and the exact solution is 

( ) ( ) ( ) ( ) ( )( ), max e 1,0 max e ,0 1x xx t E kt E ktα α
α αψ = − − + − −      (63) 

If we put 1α →  in Equation (63) or solving Equation (60) and Equation 
(61) with 1α = , we obtain the exact solution 

( ) ( ) ( ) ( ) ( ), max e 1,0 e max e ,0 1 e
kt ktx xx t
α α

ψ
− − = − −


+ 


         (64) 

6.1.2. Use the HPSTM 
Applying the Sumudu transform to the both sides of the Equation (54), we get 

( ) ( ) ( )
2

2, max e 1,0 1xx t u k k
xx

α ψ ψ
ψ ψ

 ∂ ∂
= − + + − −     ∂∂ 

        (65) 

Operating the inverse Sumudu transform on both sides in the Equation (65), 
we have 

( ) ( ) ( )
2

1
2, max e 1,0 1xx t p u k k

xx
α ψ ψ

ψ ψ−   ∂ ∂
= − + + − −  ∂∂   

       (66) 

Now, applying the HPM 

https://doi.org/10.4236/am.2018.91006


M. Ouafoudi, F. Gao 
 

 

DOI: 10.4236/am.2018.91006 96 Applied Mathematics 
 

( ) ( ) ( )( )1
0 0, max e 1,0 ,n x n

n nn np x t p u p x tαψ∞ ∞−
= =

  = − + Ψ  ∑ ∑      (67) 

where 

( ) ( )
2

2, 1n n
n nx t k k

xx
ψ ψ

ψ
∂ ∂

Ψ = + − −
∂∂

                 (68) 

Equating the corresponding power where, of p on both sides in Equation 
(67), we obtain 

( ) ( )0
0: , max e 1,0xp x tψ = −  

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1
1 0

1

: , ,

max e ,0 max e 1,0

max e ,0 max e 1,0
1 1

x x

x x

p x t u x t

u k k

t tk k

α

α

α α

ψ

α α

−

−

 = Ψ   
  = − −  

= − −
Γ + Γ +

 

   

( ) ( )

( )
( ) ( ) ( )

( ) ( )

2 1
2 1

2 2

: , Ψ ,

max e ,0 max e 1,0
Γ 2 1 Γ 2 1

x x

p x t u x t

kt kt
k

α

α α

ψ

α α

−  =    

−
= − −

+ +

 
 

�  

( ) ( )

( )
( ) ( ) ( )

( ) ( )

1
1: , ,

max e ,0 max e 1,0
1 1

n
n n

n n
x x

p x t u x t

kt kt
k

n n

α

α α

ψ

α α

−
− = Ψ   

−
= − −
Γ + Γ +

 
     (69) 

So that the solution ( ),x tψ  of the problem is given by 

( ) ( )

( ) ( ) ( ) ( )( )
1 0

, lim ,

max e 1,0 max e ,0 1

n
np n

x x

x t p x t

E kt E ktα α
α α

ψ ψ
∞

→ =

=

= − − + − −

∑
      (70) 

where ( )E xα  is the Mittag-Leffler function in one parameter. For special case, 
1α = , we get 

( ) ( ) ( ) ( ) ( ), max e 1,0 e max e ,0 1 e
kt ktx xx t
α α

ψ
− − = − + − 

 
         (71) 

6.2. Example 2 

( )
2

2
20.08 2 sin 0.06 0.06 0, 0 1x x x

xx x

α

α

ψ ψ ψ
ψ α

∂ ∂ ∂
+ + + − = < ≤

∂∂ ∂
     (72) 

Subject to the initial condition, 

( ) ( ),0 max 25e ,0xx xψ = −                   (73) 

6.2.1. Use the MHPM 
By applying the MHPM, the initial approximation will be given by 

( ) ( ) ( ) ( ) ( )0 1 2, ,0x t x c t x c tψ ψ ψ= +                (74) 

https://doi.org/10.4236/am.2018.91006


M. Ouafoudi, F. Gao  
 

 

DOI: 10.4236/am.2018.91006 97 Applied Mathematics 
 

where, 

( ),0 1x
x
ψ∂

=
∂

                        (75) 

Therefore, 

( ) ( ) ( ) ( )0 1 2, max 25e ,0xx t x c t c tψ = − +              (76) 

Thus, 

( ) ( ) ( ) ( )

( ) ( ) ( )
1 2 1

1 2

max 25e ,0 0.06

0.06max 25e ,0 0.06 0

x
t t

x

x D c t D c t c t

x c t c t

α α− + + +

− − − =
         (77) 

We obtain the final system 

( ) ( )
( )

1 1

1

0.06 0

0 0
tD c t c t

c

α − =


=
                        (78) 

( ) ( ) ( )
( )

2 1 2

2

0.06 0.06 0

0 0
tD c t xc t c t

c

α + − =


=
             (79) 

Solving the Equation (49) and Equation (50), we get 

( ) ( )
( ) ( )( )

1

2

0.06

1 0.06

c t E t

c t x E t

α
α

α
α

 =


= −

                 (80) 

Hence, 

( ) ( ) ( ) ( )( )0.06, max 25e ,0 0.06 1 0.06x t x E t x E tα α
α αψ −= − + −      (81) 

This is the exact solution of the given option pricing Equation (72). The solu-
tion at the special case 1α = , is given as follows 

( ) ( ) ( )0.06 0.06 0.06, max 25e ,0 e 1 et tx t x xψ −= − + −            (82) 

6.2.2. Use the HPSTM 
Applying the Sumudu transform on both sides of the Equation (72) subject to 
initial condition given in Equation (73), we get 

( ) ( )

( )

0.06

2
2

2

, max 25e ,0

0.08 2 sin 0.06 0.06

x t x

u x x x
xx

α

ψ

ψ ψ
ψ

−= −  

 ∂ ∂
− + + − ∂∂ 




     (83) 

Operating the inverse Sumudu transform on both sides in the Equation (83), 
we have 

( ) ( )

( )

0.06

2
21

2

, max 25e ,0

0.08 2 sin 0.06 0.06

x t x

p u x x x
xx

α

ψ

ψ ψ ψ

−

−

= −

  ∂ ∂ − + + −  ∂∂   
 

   (84) 

Now, applying the homotopy perturbation method we have 

https://doi.org/10.4236/am.2018.91006


M. Ouafoudi, F. Gao 
 

 

DOI: 10.4236/am.2018.91006 98 Applied Mathematics 
 

( ) ( ) ( )0.06 1

0 0
, max 25e ,0 ,n n

n n
n n

p x t x p u p x tαψ
∞ ∞

− −

= =

  
= − − Ψ  

  
∑ ∑      (85) 

where, 

( ) ( )
2

2
2, 0.08 2 sin 0.06 0.06n n

n nx t x x x
xx

ψ ψ
ψ

∂ ∂
Ψ = + + −

∂∂
        (86) 

Equating the corresponding power of p on both sides in Equation (85), we 
obtain 

( ) ( )0 0.06
0: , max 25e ,0p x t xψ −= −  

( ) ( )

( )

( ) ( ) ( )

1 1
1 0

1 0.06

0.06

: , ,

0.06 0.06max 25e ,0

0.06 0.06 max 25e ,0
1 1

p x t u x t

u x x

t tx x

α

α

α α

ψ

α α

−

− −

−

 = Ψ   
  = − −  

−
= + −

Γ + Γ +

 

   

( ) ( )

( )
( )

( )
( )

( )
( ) ( )

2 1
2 1

2 2 2
0.06

: , ,

0.06 0.06 0.06
max 25e ,0

Γ 2 1 Γ 2 1 Γ 2 1

p x t u x t

t t t
x x

α

α α α

ψ

α α α

−

−

 = Ψ   

−
= + −

+ + +

 
 

�  

( ) ( )

( )
( )

( )
( )

( )
( ) ( )

1
1

0.06

: , ,

0.06 0.06 0.06
max 25e ,0

Γ 1 Γ 1 Γ 1

n
n n

n n n

p x t u x t

t t t
x x

n n n

α

α α α

ψ

α α α

−
−

−

 = Ψ   

−
= + −

+ + +

 
   (87) 

So that the solution ( ),x tψ  of the problem is given by 

( ) ( )

( ) ( ) ( )( )
1 0

0.06

, lim ,

max 25e ,0 0.06 1 0.06

n
np n

x t p x t

x E t x E tα α
α α

ψ ψ
∞

→ =

−

=

= − + −

∑
      (88) 

This is the exact solution of the given option pricing equation Equation (72). 
The exact solution at the special case 1α =  is 

( ) ( ) ( )0.06 0.06 0.06, max 25e ,0 e 1 et tx t x xψ −= − + −            (89) 

7. Conclusion 

It is widely known that various scientific models in the life sciences end up with 
a PDEs or FPDEs. Solving these equations is very important to understand many 
phenomena in life sciences. In this work, two methods are applied: MHPM and 
HPSTM, in order to find the solution of the Fractional Black-Scholes model. The 
both methods are based on the HPM. However, they are effectively employed for 
getting the solution. To conclude, MPHM and HPSTM are exceptionally effec-
tive and productive methods to discover the approached solution, also the nu-
merical solution for the Time-Fractional Partial Differential Equations. 
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