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Abstract 
The scientific community controls the possible errors by a rigorous process 
using referees. Consequently the only possible errors are very few, they come 
from what anyone considers obviously true. Three of these errors are pointed 
here: the main one is the belief that any quantum state follows a Schrödinger 
equation. This induces two secondary errors: the impossibility of magnetic 
charges and the identification between the Lorentz group and ( )2,SL  . 
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1. The Universality of the Schrödinger Equation 

Even if Erwin Schrödinger was a physicist working on General Relativity, even if 
Louis de Broglie introduced his wave for the movement of any particle from 
relativistic considerations [1], the belief that any quantum state follows a 
Schrödinger equation is now the basis of the axiomatic quantum theory. The 
first reason is the fact that the Schrödinger equation was the first one:  

( ) ( ); , , ,i H t x y z
t
ψ ψ ψ ψ

∂
= =

∂


                 
(1) 

where H is the Hamiltonian operator. For a single electron this operator reads:  

 ( ) ( ) ( )
( )

2 2 2 2

2 2 2
02

H e V
m x y z

 ∂ ∂ ∂ = + + + −
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where V is the exterior electric potential and ( )e−  is the electric charge of the 
electron. Only a few months later a wave equation was obtained by Pauli 
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accounting for the spin of the electron. Still a few months later Dirac gave a 
relativistic equation for the wave of an electron [2]:  

( ) ( ) 0 00 ; ,  ;   ;  
m ceiqA im x x ct q m

c
µ µ

µ µγ ψ ψ ψ = ∂ + + = = = = 
     

(3) 

where Aµ  is the covariant components of the electromagnetic potential 
spacetime vector. This wave equation was relativistic, it was the awaited wave 
equation: de Broglie studied all aspects and results of this equation [3]. For high 
energies, the µγ  matrices are currently chosen as following:  
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(4) 

where ( ),j j x tξ ξ= , ( ),j j x tη η= . The ( )1 2 3, ,σ σ σ  is a basis of our usual 
space, which generates the Clifford algebra 3Cl  while ( )0 1 2 3, , ,γ γ γ γ  is a basis 
of spacetime which generates the Clifford algebra 1,3Cl . With these matrix 
representations the Dirac equation is equivalent to the system:  

( )
( )

0 ,

ˆ0 .

iqA im

iqA im

µ
µ µ

µ
µ µ

σ η ξ

σ ξ η

= ∂ + +

= ∂ + +
                    

(5) 

where ξ  is named the right wave and η  is named the left wave. With:  
ˆˆ ˆ ˆ; ; ; ,A A A Aµ µ µ µ

µ µ µ µσ σ σ σ∇ = ∂ ∇ = ∂ = =              (6) 

and with:  
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(7) 

we get the Dirac equation in 3Cl :  

12
ˆ ˆ ,qA mφσ φ φ∇ = +                        (8) 

But this is only one of two wave equations, the wave equation of the electron 
and the wave equation of the positron:  
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This is equivalent to:  
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(10) 

So the approximation coming from low velocities, where the sum ξ η+  or 
the difference ξ η−  is considered as negligible and is cancelled, is pure 
nonsense: the Schrödinger equation does not approximate the Dirac equation. It 
is another world, virtual, without relativistic invariance, without charge 
conjugation. 

Therefore the postulate of axiomatic quantum physics saying that any 
quantum state is solution of the Schrödinger equation is false. The axiomatic 
form was chosen because physicists were awaiting from the mathematics the 
security given by the use of logics. But the real consequence of a false postulate is 
that anything demonstrated from the postulates may be true or may be false! 

2. The Impossibility of Magnetic Monopoles 

This impossibility is one of the false ideas coming from the previous false 
postulate. If any quantum state has value into the complex field and follows a 
Schrödinger equation, then there is only one possible phase to the wave. This 
phase is the electric gauge, its conservation gives the charge of the particle. There 
is no place for another phase. 

If you disagree with this false postulate you will be able to read the Dirac wave 
as a function of space and time with value in the Clifford algebra of space. This 
algebra is non commutative, then several different phases are available. This is 
the starting point of the Lochak’s theory of the leptonic monopole [4]-[9]. There 
is, aside the i of the electric phase, another object with square −1, the 

0 1 2 3γ γ γ γ=i , allowing another gauge that Lochak associates to a magnetic 
monopole. Actually the 3Cl  algebra contains not only 2 but 4 different and 
independent i, each giving a particular gauge:  

3 12 3 1 23 1 2 31 2 123 1 2 3; ; ; .i i i i i i iσ σ σ σ σ σ σ σ σ σ= = = = = = = =       (11) 

The Lie algebra generated by these four elements is exactly the Lie algebra of 
the ( ) ( )1 2U SU×  Lie group. This group is the gauge group of the electro-weak 
Weinberg-Salam model [10]. Then the chiral gauge ( )1U  used by the Lochak’s 
magnetic monopole is a part of the electro-weak gauge group. We have used this 
inclusion to study both the magnetic monopole [11] [12] [13] and the electro- 
weak gauge. We have even extended the gauge to a geometric electro-weak- 
chromodynamics [14]-[27]. 

3. The Confusion between Different Lie Group 

The main success of the non-relativistic quantum mechanics was the explanation 
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of the energy levels of the electrons in atoms. The calculation of the quantum 
states uses the spherical symmetry of the wave in the electric central potential. 
All solutions have this same symmetry, they are invariant under the ( )3SO  
group of rotations around a fixed center. The theory is well understood: if a 
physical system has a quantum state ψ  and if this system is transformed, for 
instance if we rotate the physical system by a rotation R, the quantum state 
becomes ( )Tψ ψ′ = . The T transformation is linear, since the wave equation is 
a linear one. Then the f defined by:  

: f R T                          (12) 

is an homomorphism from the group ( )3SO  of the spacial rotations 
(containing R) into another group G (containing T) of linear transformations 
upon the quantum states. Physicists usually name this homomorphism a 
representation of ( )3SO . 

The theory of homomorphisms of Lie group classifies all possible representations, 
using the properties of the Lie algebras of these Lie groups [28]. In the case of 

( )3SO , for each representation an integer exists. On the physical point of view 
this integer is the angular momentum l. The only important result to remember 
here is: this l number is necessary an integer number. So the resolution of the 
Schrödinger equation introduced three integer numbers, 0,1,2,3,l =  , 

0,1,2,3,p =   and , 1, , 1,m l l l l= − − + − . The integer number p is the degree 
of a radial polynomial. The principal quantum number 1l p= + +n  is then a 
non null integer. The energy of these states are:  

4
0
2 2 .

2
m eE = −
n                         

(13) 

The number of states with this energy is  

( )
1

2

0
2 1 .

l

l
l

= −

=

+ =∑
n

n
                       

(14) 

The true number awaited is 22n . Of course this was never considered as a 
problem, because Pauli had solved this difficulty even before the wave equation, 
by adding a spin number with only two possible values, 1/2 and −1/2. But these 
non integer numbers are totally out of the frame of the Schrödinger equation, 
where only integer numbers are available. This should be a sufficient reason to 
falsify the postulate of universality of the Schrödinger equation. 

Actually the problem was solved only from the Dirac equation, and in a very 
strange way. First the space-time was considered as included in the space algebra 
by letting:  

0 1 2 3
1 2 3

0 3 1 2
0

1 2 0 3

 ;   ;  ,

.

x ct x x x x
x

x x x ix
x x x

x ix x x

µ µσ σ σ
∂

= = + + ∂ =
∂

 + −
= + =  

+ − 





            

(15) 

The next oddity is:  
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0x̂ x x x= = −


                        (16) 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 20 2 0 1 2 3ˆdet x xx x x x x x x x x= = ⋅ = − = − − −


     (17) 

Then the square of the pseudo-norm of any space-time vector is the 
determinant of this vector. Let M be any non null element in 3Cl  and let R be 
the transformation from space-time into itself that associates to any x the space- 
time element x′  satisfying  

( )0 .x x x R x MxM′ ′ ′= + = =
 †

                  (18) 

We note, if ( )det 0M ≠ :  

( ) ( )det e  ,  det .iM r r Mθ= =
                  

(19) 

This gives:  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 20 1 2 3

†

2 2 2 22 0 1 2 3

det det e det ei i

x x x x

x MxM r x r

r x x x x

θ θ−

′ ′ ′ ′− − −

′= = =

 = − − −                

(20) 

So R multiplies by r any space-time distance and we name R a Lorentz dilation 
with ratio r. Moreover with  

.= νµ
ν

µ xRx′                         (21) 

we get for any 0
a b

M
c d
 

= ≠ 
 

 [24]:  

2 2 2 20
02 0R a b c d= + + + >                  (22) 

0x′  has then the same sign as 0x  at the origin: R conserves the arrow of 
time. 

Moreover we get for any M in 3Cl  (see [29] A.2.4)  

( ) 4det R rµ
ν =

                        
(23) 

R conserves then the orientation of space-time, and since it conserves also the 
orientation of time it conserves also the orientation of space. The Dirac theory 
uses only the particular case ( )det 1M =  that gives:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 20 1 2 3 0 1 2 3 ;  det 1.x x x x x x x x Rµ
ν

 ′ ′ ′ ′− − − = − − − =    
(2

4) 

And R is a Lorentz transformation belonging to the restricted Lorentz group 
made of the transformations conserving the orientation of space and time. The 
Dirac wave satisfies:  

( ) ( ) ( ) ( )ˆ ˆ; .x M M x x M M xξ ξ ξ ξ η η η η′ ′ ′ ′ ′ ′= = = = = =        (25) 

And we also get, with †ˆM M= :  

ˆ; .M M Mφ φ′ ′= ∇ = ∇                      (26) 
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When ( )det 1M =  and from the general relation ( )det M MM=  we get 
1M M −=  and (8) gives:  

1
21

1
21

21 21

ˆ ˆˆ ˆ0
ˆ ˆ ,

ˆ ˆ ˆ ˆ0 0 .

M M qMA M mM M

M qA m

qA m qA m

φσ φ φ

φ σ φ φ

φ σ φ ϕ φσ φ φ

−

−

′ ′= ∇ + +

 ′ ′ ′ ′ ′= ∇ + + 
′ ′ ′ ′ ′= ∇ + + ⇔ =∇ + +          

(27) 

This is why the Dirac equation is said invariant under a Lorentz transformation. 
Nothing is wrong there, except that the Dirac equation is form invariant under 
the set of the M, that is ( )2,SL  , not the set of the R which is the subgroup 

↑
+  of the Lorentz group. In the case of the initial formulation of the Dirac 

theory, it is necessary to use instead of M the N verifying  

0
.ˆ0

M
N

M
 

=   
                         

(28) 

Since the conjugation ˆM M  is the main automorphism of 3Cl  the 
group of the N is isomorphic to the group of the M. 

Next for any M satisfying (20), (21), (23) and (25) we have for each value 
0,1,2,3ν =  (a proof is in [30] A.2.2):  

R N Nν µ ν
µγ γ=                          (29) 

We also have  

 ;   ;  ,R A R A
x

ν ν
ν µ µ ν µ µ νν

∂′ ′ ′∂ = ∂ = ∂ =
′∂                 

(30) 

and so we get:  

( )
( )
( )

0

.

iqA im

R iqA im

N N iqA im

µ
µ µ

µ ν
µ ν ν

ν
ν ν

γ ψ

γ ψ

γ ψ

 = ∂ + + 
 ′ ′= ∂ + + 
 ′ ′= ∂ + + 


 

If we restrict M to ( )2,SL  , we get ( )det 1MM M= = , so 1M M −=  and 
1N N −=  which allows us to write  

( ) ( )1 .N N iqA im N iqA im Nν ν
ν ν ν νγ ψ γ ψ−   ′ ′ ′ ′∂ + + = ∂ + +   



      
(31) 

So the Dirac theory supposes:  

,Nψ ψ′ =                           (32) 

we can easily see that it is equivalent to (25) and we get  

( ) ( )10 .iqA im N iqA imµ µ
µ µ µ µγ ψ γ ψ−   ′ ′ ′= ∂ + + = ∂ + +          

(33) 

Then we must say that, even in the first form of the Dirac theory, the Dirac 
wave is invariant not under the Lorentz transformations, but under the 

( )2,SL   Lie group. This is more easy to see if we extend the invariance to the 
( ) *

32,GL Cl=  group made of any invertible M in 3Cl . This invariance is 
possible because (20), (23) and (26) are general and do not need the restrictive 
condition ( )det 1M = . This allows not only an extended invariance, but also an 
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extended Lagrangian density and an extended wave equation accounting for all 
elements of one generation [24]. 

The resolution of the Dirac equation in the case of the H atom is possible [31], 
like with the Schrödinger equation, by separating the variables in spherical 
coordinates. Simply now it is much more difficult because we have a system of 
angular equations and a system of radial equations. The first step of the 
separation introduces a constant of separation for the time that is the energy of 
the stationary state and another constant λ  that is the magnetic number. Next 
the separation between the angular and the radial system introduces a numeric 
constant κ . To get well defined functions κ  cannot be zero and to get a 
density of probability κ  must be an integer. Then 1, 2, 3,κ = ± ± ±  . The 
solution is automatically a proper vector of the 3J  momentum operator with 
the proper value λ  and a proper vector of the 2J  operator with the proper  

value ( )1j j +  where 
1
2

j κ= − . And the angular functions are well defined  

only if , 1, , 1,j j j jλ = − − + − . A last integer 0,1,2,n =   appears necessary, 
as degree of radial polynomial functions, so as to get a density of probability. 
The energy levels are:  

( )

2
2 20

22
; ,

1

m cE s
s n

κ α
α

= = −
+ +                

(34) 

where α  is the fine structure constant. Next there are none state to count with 
0κ <  and 0n = , this gives for 0κ >  a number of states equal to ( )1+n n  

and for 0κ <  a number of states equal to ( )1−n n  where nκ= +n . Finally 
the total number of states with principal quantum number n  is 
( ) ( ) 21 1 2+ + − =n n n n n . The result was correctly guessed from the reasoning of 

Pauli. Today, compared with the true complicated explanation, this presentation 
by spin up and down is only a tale for children! 

4. Concluding Remarks 

The link between the main error in section 1 and the last one is the abuse of 
methods of approximations in quantum mechanics. The first study of the 
relativistic invariance of the Dirac equation used infinitesimal operators next the 
exponentiation of these operators. On the contrary we used here exact and 
general calculations completely without the ≈ symbol. 

The false postulate of the universality of the Schrödinger wave also induced 
the idea that any true physical formalism was necessary based on the complex 
field. If you look at the Dirac equation all seem actually based on the complex 
field. But this is mainly an accident, a coincidence between the Clifford algebra 

3Cl  of the real space with dimension 23 on   and the complex space of the 
2 2×  matrices with dimension 4 on the   field, which is then also an algebra 
on the real field with dimension 8. This isomorphism is not an isomorphism of 
complex algebras, only of real algebras. The generator of the electric gauge for 
the Dirac Equation (8) is 3 3i iσ= . The fact that several different i exist in 
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quantum physics is totally incredible for any believer of the axiomatic quantum 
theory [32]. 
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