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Abstract 
The operator T from a domain D into the space of measurable functions is 
called a nonanticipating (causal) operator if the past information is indepen-
dent from the future outputs. We will study the solution x(t) of a nonlinear 
operator differential equation where its changes depends on the causal opera-
tor T, and semigroup of operator A(t), and all initial parameters ( )0 0,t x . The 

initial information is described ( ) ( )x t tϕ=  for almost all 0t t≤  and 

( )0 0tφ φ= . We will study the nonlinear variation of parameters (NVP) for this 
type of nonanticipating operator differential equations and develop Alekseev 
type of NVP. 
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1. Definitions and Example of Nonanticipative Operators 

An important feature of ordinary differential equations is that the future 
behavior of solutions depends only upon the present (initial) values of the 
solution. There are many physical and social phenomena which have hereditary 
dependence. That means the future state of the system depends not only upon 
the present state, but also upon past information (see [1]-[6]). 

Twins before the time of conception share all of their genetic history and may 
go to a different path in their future life. We are going to study the phenomenon 
which can be formulated in principle that the “present” events are independent 
of the “future”. These kinds of events are called nonanticipation or causal events. 

Definition 1.1: Continuous Nonanticipating System 
A mapping of T from the space of functions Y into itself is said to be a 
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nonanticipating mapping if for every fixed s in the real line R, ( )( ) ( )( )Tx t Ty t=  
for all t s< , whenever ( ) ( )x t y t=  for all t s< . 

Example 1.1: All of the delay operators and integral operators are 
nonanticipating. All compositions or Cartesian products of the nonanticipating 
operators are nonanticipating. 

Example 1.2: Let [ ]0,I t a R= ⊂  be a compact subset of the real line and f a 
function from the interval I Y×  into Y. The knowledge of the state of the 
system 

( ) ( )( ),y t f t y t′ =                       (1.1) 

at a given time ( )0 0,t y  is sufficient to determine its state at any future time. 
This system has no after-effect or “no memory”. 

Example 1.3: In a dynamic system 

( ) ( ) ( )( )( ), ,y t f t y t T y t′ =                  (1.2) 

when T is a nonanticipating operator, to find the state curve ( )y t  we need to 
have information about the initial function ( ) ( )y t tφ=  for 0t <  in order to 
determine the state of the solution. 

The following are examples of continuous anticipating operators (see Naylor 
and Sell 1982 [7]). 

Definition 1.2: A mapping T of Y into itself is said to be causal if for each 
integer N, whenever two inputs { }nx x=  and { }ny y=  are such that n nx y=  
for n N≤ , it follows that 

( ) ( )n nT x T y= , for n N≤  

where  

( ) ( ) ( ) ( ) ( ){ }1 0 1 2, , , , ,T x T x T x T x T x−=    

and 

( ) ( ) ( ) ( ) ( ){ }1 0 1 2, , , , ,T y T y T y T y T y−=    

In other words, if the inputs x and y agree up to some time N, then the 
outputs T(x) and T(y) agree up to time N. In particular, T(x) and T(y) agree up 
to time N no matter what the inputs x and y are in the future beyond N. The 
events in the past and present are independent from the future. 

Example 1.3: Consider ( )2Z l R= , and let T be a mapping of Z into itself 
represented by a convolution integral defined of the form 

( )( ) ( ) ( )dt
Tx t h t u x u u

−∞
= −∫  

This is a nonanticipating mapping if and only if ( ) 0h t s− =  for almost all 
0t s− < . This Voltera integral mapping shows that ( )( )Tx t  is independent of 

x(t) for t s> . 
Notice that when a mapping is not nonanticipating it will be an anticipating 

mapping, meaning that the past and the present depend on the future. 
Anticipating (anticausal) Mapping: This is a mapping that the future output 
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is independent of the past input, meaning that the mapping :T Z Z→  is said 
to be (anticausal) or anticipating if for fixed s in [ ]0,I a= , ( )( ) ( )( )Tx t Ty t=  
for t s> , whenever ( ) ( )x t y t=  for t s> . 

Example 1.4: Let T be an operator from the space of a square summable 
function ( )2L R  into ( )2L R . We can show that the following mappings are 
anticausal; 

( ) ( ) ( )e dt u

t
y t x u u

∞ −= ∫  

Since, for fixed real number s, the fact that ( ) ( )1 2x t x t=  for t s>  implies 
( ) ( )1 2y t y t=  for t s>  and means that the future input ( ){ }:y t t s>  will 

affect the past. Therefore, this is an anticausal operator. 

2. Nonanticipating Operator Differential Equation 

Notations. Let S be the interval of all nonpositive numbers. Let I be the compact 
interval [ ]0,t a , { }0:J t R t t= ∈ ≤ , and define J S I=  . Assume Y, Z, and U 
are Banach spaces. Let ( ),M I Y  be the space of all essentially bounded 
Bochner measurable functions with respect to classical Lebesgue measure from 
the interval I into the Banach space Y. Denote by ( ),L J Y  the space of all 
Lipschitzian functions y strongly differentiable almost everywhere from J into 
Y. 

Let φ  be a fixed initial function from the space ( ),L S Y . Denote by 
( ),D Yφ  the subset of the lip-space ( ),L J Y  consisting of all functions y such 

that ( ) ( )y t tφ=  for all t in S. 
According to these two definitions, ( ) ( ), ,D Y L J Yφ ⊂ . 
For any Banach space Y and Z, let ( ); ,Lip I Y Z  denote the space of all 

functions ( ),f t y  from the product I Y×  into Z, Lipschitzian in y, and for 
every fixed y the function ( ).,f y  belongs to the space ( ),M I Z . This space is 
called Lip-space. 

We apply the definition of nonanticipative operators in Section 1.1 to the 
initial domain. An operator T from the initial domain ( ),D Yφ  into ( ),M I Z  
will be called a nonanticipating operator if for every two functions y and z in 
( ),D Yφ  and every point s I∈ , the fact that 
( ) ( )y t z t=  for almost all t s<  implies that ( )( ) ( )( )T y t T z t=  for almost 

all t s< . 
An operator P from a subset D of Y into Z is said to be Lipschitzian if there 

exists a constant b such that 

( ) ( )1 2 1 2P y P y b y y− ≤ −                  (2.1) 

for every 1 2,y y Y∈ . For ( ), ;f Lip I Y Z∈  the operator 

( ) ( ) ( )( ) ( )( ): , , defined by ,F M I Y M I Z F y t f t y t→ =      (2.2) 

is called the operator induced by f  and the operator F is called Induced 
Operator generated by the function f. 

Lipschitzian Space (or simply the Lip-Space), denoted by ( ), ;Lip K Y Z , is the 
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set of all functions :f K Y Z× →  such that ( ),f t y  is uniformly bounded, 
Lipschitzian in y, and is measurable in t. That is, ( ) {, ; : |Lip K Y Z f K Y Z f= × →  
is Lipschitzian in y and ( ) ( )}., ,f y M K Z∈ . The infimum of all Lipschitzian 
constants L will be denoted by f . 

On the space ( ),M I Y , we shall introduce a family of norms, called k-norm 
by the formula 

( ){ }ess.sup e :kt
ky y t t I−= ∈  

for any fixed real number k. Observe that from this definition follows the 
inequality 

( ) ekt
ky t y≤  

for almost all t in I. Notice that for every k, the k norms 
k

 and 
0

 are 
equivalent. 

A Lipschitzian operator P from a subset D of ( ),M J Y  into the space 
( ),M I U  is called an operator of exponential type if for some constants b and 

k0,  

( ) ( )) kk
P y P z b y z− ≤ −  

for all y and z in the domain D and all 0k k≥ . 
Example 2.1: The operator ( )( ) ( )( )sin ,T y t t y t r= −  for a constant real 

number r is an induced operator. Thus for any function ( ),y M I Y∈  the 
operator T is nonantipating and Lipschitzian. 

Properties of the nonlinear operator F in (2.2) induced by the function f  
have been studied by Bogdan 1981 and 1982. In particular, it is known that for 

( ), ;f Lip I Y Z∈  and ( , )y M I Y∈  the function :g I Z→  defined by 
( )( ) = , ( )g t f t y t  belongs to the space of measurable functions ( ),M I Z  (see 

Ahangar 1989, [1]-[6]).  
When an operator T is nonanticipating, the future values of the input will 

have no effect on the present state. One can prove that the composition and the 
Cartesian product of nonanticipating and Lipschitzian operators are 
Nonanticipating and Lipschitzian. Furthermore, the operator F induced by the 
function f  is a well defined, nonanticipating, and Lipschitzian operator. 

Definition 2.1 (Direct Sum Operators): Let ( )1,2iT i =  be operators from the 
domain ( ),D M I Y⊂  into the space ( ),M I Z . Define the direct sum operator 

1 2T T T= ⊕  such that 

( )( )( ) ( )( ) ( )( )1 2 1 2T T y t T y t T y t⊕ = +  

for every y in ( ),M J Y  and t in I.  
Lemma 2.1: A direct sum operator of two nonanticipating and Lipschitzian 

operators is nonanticipating and Lipschitzian. 
Proof: First let us prove that the direct sum operator is a nonanticipating 

operator. Assume that two functions y and z are in the space of ( ),M J Y  and 
for some point s in the interval I we have ( ) ( )y t z t=  for almost all t s< . 
Since T1 and T2 are nonanticipative, then 
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( )( ) ( )( )1 1T y t T z t=  for almost all t s< , 

( )( ) ( )( )2 2T y t T z t=  for almost all t s< . 

These two equalities will imply that ( ) ( ){ }( ) ( ) ( ){ }( )1 2 1 2T y T y t T z T z t+ = +  
for almost all t s< . Thus ( )( )( ) ( )( )( )1 2 1 2T T y t T T z t⊕ = ⊕  for almost all t s< . 
This will imply that ( )( )T y t  and ( )( )T z t  coincide for almost all t s< . 

Now let us prove that the operator 1 2T T T= ⊕  is Lipschitzian. According to 
the definition 

( )( ) ( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( )( )( ) ( )( ) ( )( )( )( )
( )( )( ) ( )( )( )( ) ( )( )( ) ( )( )( )( )

1 2 1 2

1 2 1 2

1 2 2z

T y t T z t T T y t T T z t

T y T y t T z T z t

T y t T z t T y t T z t

− = ⊕ − ⊕

= + − +

= − + −

 

Since both operators are Lipschitzian, the right hand side will be 

1 20 0L y z L y z≤ − + −  

Notice that 
0.  represents the ess.sup norm in the space measurable 

functions ( ),M I Y . If we let { }max iL L=  for 1,2i =  and take the essential 
supremum norm on the left hand side of the above relation then it will be  

( ) ( ) 00
T y T z L y z− ≤ −                   (2.3) 

for all y and z in the domain D. This proves that the direct sum operator is 
Lipschitzian.                                                  Q.E.D. 

Example 2.2: Assume that ( )( ) ( )1T y t y t r= −  for a constant real number r 
and ( )( ) ( )

0
2 d

t

t
T y t y s s= ∫ . The operator ( ) ( )( )1 2T y T T y= ⊕  is nananticipa- 

ting and Lipschitzian. 
Nonanticipating Deterministic Dynamical System: Assume that the 

operator T is nonanticipating and Lipscitzian. The behavior of a dynamic system 

( ) ( ) ( )( )( ), ,y' t f t y t T y t=                  (2.4) 

is known as an after effect differential equation with the initial domain 
( ),D Yφ . 
Given that ( ), ;f Lip I Y Z Y∈ ×  there exists a unique solution y to the 

system (2.4). 
Equations of this type arise in many mathematical modeling problems. In a 

simplest case, T as a constant delay operator can be applied (see Hale 77 [8] and 
Driver 77 [9]). The following is a single species growth model with time delay.  

Example 2.3: A single species model with delay can be described by 

( ) ( ) ( )1y t ry t y t Kτ′ = − −    

where r is the growth rate of the species y, and K is called the environment 
capacity for y. 

The chaotic behavior induced by time delays was presented by Yang Kuang 
1996. The global existence of the general single species with stage structured 
model described by a system 
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( ) ( )( ) ( )( )y' t f y t g y tτ= − −  

has been studied (See Kuang 1996, p.173, [10]). 
Example 2.4: Let T be the operator defined in example 2.2. One can verify the 

existence and uniqueness of the solution of the system ( ) ( )( )y' t T y t=  with 
the initial data function ( ) ( )y t tφ=  for 0r t t− ≤ < . Our goal is to investigate 
the conditions which guarantee the solution of the system (2.4) when there is a 
random perturbation in the system. 

Solution to the Nonanticipating Operator differential Equations: The 
following operator differential equation when G is a nonanticipating operator 
from the initial domain ( ),D Yφ  to the Banach space Z is called 
nonanticipating differential equation 

( ) ( )( )
( ) ( )

0

0

)

,

y t G y t t t

y t t t tφ

′ = >


= ≤
                 (2.5) 

for almost all t in the interval I. We define that a function y from the space 
M(I,Y) is a solution to the nonanticipating operator differential equation if 
it is strongly differentiable and satisfies the system (2.5) (see Bogdan 1981 
[11], Bogdan 1982 [12], Ahangar 1989, [1], and Ahangar 1986 [2]). We accept 
the following theorem without proof. 

Theorem 2.1: Given a nonanticipating and Lipschitzian operator G from the 
initial domain ( ),D Yφ  into the space of Bochner measurable functions 

( ),M I Y , there exists a unique solution ( ),y D Yφ∈  that satisfies the nonlinear 
operator system (2.5). 

Note: The purpose of this paper is to develop a generalized nonlinear 
variation of parameters formula, analogous to Alekseev's result (see Alekseev 
1961 [13]). The generalization is listed below: 

1) The classical existence and uniqueness theorem for the solution of abstract 
Cauchy problems no longer holds if the underlying space is an infinite 
dimensional Banach space (See Lakshmikantham 1972, [14] [15] and [16]). 

2) The nonlinear system in this paper includes all evolutionary equations of C0 
semigrop of operators. 

3) Instead of continuity of the nonlinear functions ( ) ( )( )( ), ,f t y t T y t , we 
will replace the more general form of these functions in Banach spaces to be 
Bochner measurable in t and Liptschitzian in y. For regulatory conditions, we 
will assume the nonlinear operator involved in the nonlinear system is 
nonanticipating and liptchitzian. 

4) The solution functions either x or y are assumed strongly differential. 

3. Strong Solution to the Perturbed Nonanticipating  
Operator Differential Equations 

Definition 3.1: By Nant-Lip we mean nonanticipating and Lipschitzian 
operators. 

The operator G in the system (2.5) is nonanticipating and Lipschitzian. We 
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need to clarify the meaning of the solution to the nonlinear system of operator 
differential Equation (2.5). The important part is when we accept some other 
principles indirectly hidden in the proof of Theorem (2.1). In fact we use the 
equivalent relationship between (2.5) and the integral 

( ) ( ) ( )( )
0

d
t

y t t G y s sφ= + ∫  

Notice that this equivalent relation requires the absolute continuity of 
function y and the summability of the operator G which implies the 
differentiability of y. The above nonlinear operator system similarly could be 
presented by the following operator differential equation 

( ) ( ) ( )( )( ) 0, , for almost allx' t f t x t T x t t t= >          (3.1) 

which contain the initial function φ  for the past time interval { }0:S t R t t= ∈ ≤ . 
The solution of the system (3.1) is denoted by x(t) which depends on the initial 
time 0t  and the initial function 0φ  and can described by ( )0, ,x t t φ  which is 
called the strong solution to the system. 

Definition 3.2: A function x(t) is said to be a strong solution to the system 
(3.1) if it satisfies the following conditions: 

1) x is strongly differentiable, 
2) x satisfies the system (3.1) almost everywhere in the interval I, 
3) there exists a function ( ),D J Yφ ∈  such that ( ) ( )x t tφ= , for almost all 

0t t≤ . 
The following proposition will show the existence and uniqueness of the 

solution to the perturbed operator differential Equation (3.1). For introductory 
perturbation theory see Brauer 66 and Brauer 67. 

Proposition 3.1: Assume that the operator T is Nant-Lip and functions f and 
g belong to the Lip-space which is ( ), ;f Lip I Y Z Y∈ ×  and ( ), ;g Lip I Y Y∈ . 

1) If g is the perturbation to the Equation (3.1) then there is a unique strong 
solution y(t) in the initial domain ( ),D Yφ  which satisfies the perturbed 
system of differential equation 

( ) ( ) ( )( )( ) ( )( ), , ,y' t f t y t T y t g t y t= +              (3.2) 

2) Given a solution ( )0, ,x t t φ  of (3.1) then the solution to the pertrubed 
equation will satisfy the integral equation 

( ) ( ) ( )( )
0

0, , , d
t

t
y t x t t g s y s sφ= + ∫                 (3.3) 

Proof: 1) Let us assume that the operator ( )( ) ( ) ( )( )( )1 , ,P y t f t y t T y t=  
and ( )( ) ( )( )2 ,P y t g t y t= . Define the direct sum operator 1 2G P P= ⊕ . 

By Lemma 2.1, the operator G will be Nant-Lip and the differential Equation 
(3.2) will be in the following form 

( ) ( )( )y t G y t′ =                          (3.4) 

for almost all t in I. According to Bogdan’s theorm (see Bogdan 1981 and 1982, 
[11], [12]), there exists a unique solution y(t) in ( ),D Yφ  to the Equation (3.4). 
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Proof of 2) The equivalent integral equation of (3.4) will be 

( ) ( ) ( )( )
0

d
t

t
y t t G y s sφ= + ∫                    (3.5) 

Applying the direct sum operators P1 and P2 we get the conclusion which is 
(3.3). Q.E.D. 

Substitute for unperturbed solution ( ) ( ) ( ) ( )( )( )
0

0, , , , d
t

t
x t t t f s y s T y s sφ φ= + ∫  

in (3.3) as a solution of (3.1) we will get the following 

( ) ( ) ( ) ( )( )( ) ( )( )
0 0

, , d , d
t t

t t
y' t t f s y s T y s s g s y s sφ= + +∫ ∫       (3.6) 

This completes the proof of part (ii).Q.E.D 

4. Generalized Operator Differential Equations 

Introduction to the mild (Weak) solutions: For the definition of strong 
solution in the previous section, it was assumed equivalent relations between the 
differential and integral forms. This assumption required the differentiability of 
the solution. This condition may not be true in a large class partial differential 
equations. We are going to review the difficulties of applying the concepts of 
strong solution to the operator differential equations. The following are some 
examples. 

The collection of solutions of the problem of free oscillations of an infinite 
string expressible in the form  

2 2
2

2 2
u uc

t x
∂ ∂

=
∂ ∂

 

takes the form ( ) ( ) ( ),u t x x ct x ctφ ψ= + + − , where φ  and ψ  are twice 
differentiable functions. Notice that at the vertices of these solutions, ( ),u x t  
will not be differentiable. Notice also the Lipschitzian condition for the 
nonlinear operator G which is required for the unique solution to the system 
(2.5) may not hold for unbounded operators in evolutionary equations. Thus, we 
need to have a new concept which includes the nondifferentiable solutions for 
unbodied operators. We are going to demonstrate this study by a linear system 
of abstract Cauchy problem 

( )1
tu u f uα−∂ = +                       (4.1) 

for 1
0u H∈ , ( )2f L∈ Ω , where 1α−  may be an unbounded operator in the 

space X. Assume that the domain of this operator is denoted by ( )1D Xα− ⊂ . 
We are looking for a solution space Y X⊂ . One way to to get the solution 
space Y is to work from A and show that it generates a C0-semigroup. 

When the operator is PDE, it may be unbounded, thus the solution in (4.1) 
may not be well defined. 

We use a test function 1Hφ ∈  such that 

( )1, , ,tu u f uφ α φ φ−∂ = ∇ ∇ +                 (4.2) 

We define a weak solution “mild solution” u such that both relations (4.2) 
and the following are equivalent 
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( ) ( ) ( )( )0 0
e e d

t A t sAtu t u f u s s−= + ∫                  (4.3) 

Most of the physical models can be described by a PDE system with evolution 
equations. One can interpret the solution as an ODE solution in an appropriate 
infinite dimensional space. 

Nonlinear Operator Differential Equations(NODE):  
Suppose X is a Banach space, ( ):A D A X X⊂ →  is the generator of a 

C0-semigroup on X, U R X⊂ ×  is open and :f U X→  be a continuous 
function such that ( ),x f t x→  is differentiable and ( ) ( )0 0, ,xt x D f t x→  is a 
continuous in U. 

For ( )( )0 0,t t Uφ ∈ , we denote by ( )0, ,x t t φ  the mild solution to the Cauchy 
problem 

( ) ( )( )( )
( ) ( )

0

0

, , , for

, for

x Ax f t x t T x t t t

x t t t tφ

 ′ = + >


= ≤
            (4.4) 

which has not been defined yet. We can define it by employing a similar 
argument and using the integral form of the system (4.4)  

( ) ( ) ( ) ( ) ( )( )( )0
e e , , d

t A t sAtx t t f s x s T x s sφ −= + ∫            (4.5) 

Definition 4.1: We define the function x(t) to be a mild solution to the 
system (4.4) on [ ]0,I a=  if it satisfies (4.5) and ( )x D A∈  for all t in I. 

Lemma 4.1: Every semigroup of operators generated by the operator A is a 
nonanticipating and Lipschitzian operator. 

Proof: Assume that the semigroup tT  generated by A is given. Thus by the 
definition of semigroup, for every y in D(A) 

( ) ( ) ( ) , for 0, 0t tT y TT y y t tξξ ξ ξ= = + ≥ ≥  

Suppose that for y and y  in D(A) then ( ) ( )y yξ ξ= , for every tξ ≤ . Thus 
the equality ( ) ( )y t y tξ ξ+ = +  implies that ( )( ) ( )( )t tT y T yξ ξ= , for all 

tξ ≤ . This proves that the semigroup operator Tt is nonanticipating. 
Remarks: 1) The converse is not true. There may be a nonanticipating 

operator which may not be a semigroup. 
2) It would be interesting to find out what conditions we may impose on the 

nonanticipating operators to generate a semigroup? 
Theorem 4.2: (Existence and Uniqueness of the Solution) 
Let the operator A be a semigroup operator and T nonanticipating and 

Lipschitzian. Assume that ( ), ,f Lip I Y Z∈ . Then the system (4.4) has a unique 
solution in the space of initial domain ( ),D Yφ . 

Proof: The homogeneous solution is guaranteed by the semigroup of 
operators and it will be equal to ( )eAt tφ . The unique solution of the entire 
system (4.4) will be obtained by the nonanticipating and Lipschitzian properties 
of T and the Theorem 2.1. 

These types of problems arise in a variety of physical models like heat 
conduction, population dynamics, and chemical reactions. 
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5. Variation of Parameters for Perturbed  
Operator Differential Equations 

Suppose X is a Banach space, ( ):A D A X X⊂ →  is a generator of a 
C0-semigroup on X, U R X Y⊂ × ×  is open and :f U Y→  be a continuous 
function such that ( ), ,x f t x z→  is differentiable and ( ) ( )0 0 0 0, , ,xt x D f tφ φ→  
is continuous in U where ( )z T x=  and ( )0 0 0z T x φ= = . 

For ( )0 0 0, ,t x z U∈ , we denote by ( )0 0, ,x t t φ  the mild solution to the 
following Cauchy problem 

( ) ( ) ( )( )
( ) ( )

0 0 0 0 0

0

, , , , , , , , for almost all

, for almost all

x x t s t A t x f t s x t t t t
t

x t t t t

φ φ

φ

∂ = + > ∂
 = ≤

  (5.1) 

Assume also that y(t) is a solution to the following perturbed system 

( ) ( ) ( ) ( )( )( ) ( )( )
( ) ( )

0

0 0 0 0

, , , ,

, , , , ,

y t A t x f t y t T y t g t y t t t

y t t x t t t tφ φ

 ′ = + + >


= ≤
     (5.2) 

These solutions in the system (5.1) are then related by the evolutionary 
property 

( ) ( )( )0 0 0 0; , ; , ; ,x t t x t s x s tφ φ=  

for all 0t s t≤ ≤ . The initial function φ  depends on t, t0, and x0. It is denoted 
by ( )0 0, ,t t xφ . The solution to the system says that the future is determined 
completely by the present, with the past being involved only in that it 
determines the present. This is a deterministic version of the Markov property. 

We make use of the following theorem in developing the variation formula for 
nonlinear differential equations. The Alekseev’s formula for C0-semigroups was 
generalized by Hale 1992 [17]. In addition, F. Bruaer 1966 [18] and 1967 [19] 
studied the perturbation of Nonlinear Systems of Differential Equations [10], 
[11]. 

We will use the same approach to develop the Nonlinear Variation of 
Parameter (NVP) for operator differential equations. 

Let X be a Banach space, operator ( ):A D A X Y⊂ →  is generator of a 
C0-semigroup on X, ( ), ;f Lip I Y Z Y∈ ×  is continuously differentiable with 
respect to x. 

Let us summarize our conditions to present the following hypothesis; 
(H1) The operator tA  in (5.1) and (5.2) is a Semigroup. 
(H2) Assume that functions f and g belong to the following Lip spaces. That is 

they are Bochner measurable on the first variable and Lipschitzian on the other 
variables. 

( ) ( ), , , ; ,f Lip J Y Z Y g Lip J Y Y∈ × ∈  

(H3) Assume that ( )0 0, ,x t t φ  is a mild solution to the following unperturbed 
operator differential Equation (5.1). 

(H4) also let ( )0, ,y t t φ  be a solution to the following perturbed nonlinear 
operator differential Equation (5.2). 
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Lemma (5.1): Assume that all conditions for the existence of the solution to 
the nonlinear operator system of the unpeturbed equation hold. Then 

1) The derivative ( ) ( )0 0 0 0 0 0
0

, , , , , ,x t t x U t t x
x

φ φ
∂

≡
∂

 exists and it is denoted by  

( )2 0 0 0, , ,x t t x φ∂  as partial derivative on variation with respect to the second 
parameter 0x . It satisfies the following nonlinear operator equation 

( ) ( )

( )
0 0 0 0

0 0

d , , , , for
d

for all

x
UU t f t x t t x U t t
t

U t I t t

φ ′  = = >  

 = ≤

         (5.4) 

The relation (5.4) shows how fast the unperturbed solution x(t) changes with 
respect to its initial position x0, and its initial function φ . This is a partial 
derivative with respect the variable x(s) for new initial value ( )0x s t= . 

2) Also assume that the function x(t) is Frechet differentiable with respect the 
first parameter variable 0t  

( ) ( )0 0 0 0 0 0
0

, , , , , ,x t t x V t t x
t

φ φ
∂

≡
∂

 

exists and it is denoted by ( )1 0 0 0, , ,x t t x φ∂ . 
It satisfies the second kind of operator differential equation  

( ) ( )
( ) ( )

0 0 0 0

0 0 0 0 0

, , , , for

, , for all
xV t f t x t t x V t t

V t f t x t t

φ

φ

 ′  = >  


= − ≤
           (5.6) 

Furthermore 

( ) ( ) ( )0 0 0 0 0 0 0 0 0, , , , , , , ,V t t x U t t x f t xφ φ φ= −            (5.7) 

Proof: 
Part 1): We are assuming that the transformation T will be applied on the 

solution function x(t) and will produce a function at ( )0 0,t x  which will be the 
initial function 0φ . Though the unperturbed solution can be described by 
( ) ( )0 0 0, , ,x t x t t x φ= . Let us take the derivative of both sides of (5.3) w.r.t variable 

t: 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )( )

0 0 0 0 0 0 0 0 0
0 0

0 0

d d d, , , , , , , , ,
d d d

( , , , ,

U t t x x t t x x t t x
t t x x t

xf t x t T x t f t x t T x t
x x x

φ φ φ
∂ ∂

= =
∂ ∂

∂ ∂ ∂
= = ⋅  ∂ ∂ ∂

 

Substitute its equivalent from (5.3) then we can conclude: 

( ) ( )0 0 0 0 0 0, , , , , , ,xU t t x f t x t t x Uφ φ′  =    for 0t t>  

where the second part of the relation (5.4) can be interpreted as an identity 
matrix: 

( ) ( ) ( )0 0 0 0 0 0
d, , , 0
d

U t U t t x I U t
t

φ≡ = ⇒ =               (5.8) 

2) Notice that, at the starting point 0t t=  we can re-evluate the rate of 
change of the solution with respect to the initial moment 
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( ) ( )0 0 0 0 0 0
0

, , , , , ,x t t x V t t x
t

φ φ
∂

≡
∂

 

A few notes are important: For a vector solution 

( ) ( ) ( )
0

0 0 0 0 0 0 0 0 0 0
0

, , , , , , ,
t t

x t t x t x x t t x I
x

φ φ φ φ
→

∂
= = ⇒ =

∂
       (5.9) 

Similar to (5.8) 

( ) ( )0 0 0 0 0 0 0 0
d, , , , , , 0
d

V t t x I V t t x
t

φ φ= ⇒ =   

Notice that 

( ) ( ) ( )

( )

( ) ( )

0 0 0 0 0 0 0 0 0
0 0

0 0 0
0 0

0 0 0 0 0 0

d d d, , , , , , , , ,
d d d

d, , ,
d

, , , , , ,x

V t t x x t t x x t t x
t t t t t

f xf t t x
t x t

f t t x V t t x

φ φ φ

φ

φ φ

∂ ∂
= =

∂ ∂

∂ ∂
= = ⋅
∂ ∂

= ⋅

 

for all 0t t≥ . ⇒  

( ) ( ) ( )0 0 0 0 0 0 0 0 0
d , , , , , , , , ,
d xV t t x f t t x V t t x
t

φ φ φ= ⋅  

This completes the proof of the first part of (b). 
To prove the second part of (b), we can assume that ( )0t s  has a variation on 
[ ]0 ,s t t∈ . 

Let us take the derivative of both sides of (5.9) with respect t0:  

( ) ( ) ( )
0

0
0 0 0

0 0

, , , 0
t t

xx t t x x t x t
t t x t

φ
→

 ∂∂ ∂ ∂
= + ⋅ = ∂ ∂ ∂ ∂ 

 

( ) ( )
0

0
0

0 0

0
t t

xx t x t
t x t→

∂∂ ∂
+ ⋅ =

∂ ∂ ∂
 

( ) ( ) ( ) ( )0 0 0 0 0 00 , ,x t I V t V t x t t u′ ′+ ⋅ = ⇒ = −  

( ) ( ) ( )
0

0 0 0 0 0 0 0
d , , , , ,
d t t

x t t x V t f t x
t

φ φ
→

= = −           (5.10) 

This completes the second part of the result in (2). 
Proof of the last part of (2): using the definition of operators U and V: 

( ) ( )

( ) ( ) ( )

0

0 0 0 0 0 0
0

0 0 0 0 0 0 0
0 0

, , , , , ,

d
, , , , , ,

d
t t

V t t x x t t x
t

x t
x t t x x U t t x

x t t

φ φ

φ φ
→

∂
=
∂

∂ ∂
= ⋅ = ⋅
∂ ∂

 

Substiting (5.10) yields 

( ) ( ) ( )0 0 0 0 0 0 0 0 0, , , , , , , ,V t t x U t t x f t xφ φ φ= − ⋅   

Theorem (5.1): Alekseev Type Variation of Parameters Theorem for NODE 
Systems: 
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Let ( )0 0 0, , ,x t t x φ  and ( )0 0 0, , ,y t t x φ  be solutions of the NODE systems: (5.1) 
and (5.2) through the initial conditions ( )0 0 0, ,t x φ  respectively. Then for 0t t≥  

( ) ( ) ( ) ( )
0

0 0 0 0 0 0 0 0 0, , , , , , , , , , , , d
t

t
y t t x x t t x U t s y s t x g s y s t x sφ    = +    ∫  

( ) ( ) ( ) ( )
0

0 0 0 0 0 0 0 0 0 0
0

, , , , , , , , , , , , , d
t

t
y t t x x t t x x t s y s t x g s y s t x s

x
φ φ

∂
   = +    ∂∫ (5.11) 

Notice: As we see in Equations (5.1) and (5.2), the perturbation causes the 
changes on the initial conditions at 0t t=  and ( )0 0x t x=  and on the initial 
function ( )tφ . Up to the initial condition both functions ( )x t  and ( )y t  have 
the past history and they will be identical at 0t t= . 

Proof: Variations of unperturbed solution x(t) and perturbed solution y(t) 
when the initial conditions of the moving object change with respect to the 
independent variable [ ]0,s t t∈  can be demonstrated by the following chain rule 
formula 

( )

( ) ( ) ( )

( ) ( ) ( )

d d, ,
d d

, , , ,

, , , ,

x x yx t s y s
s s y s

x t s y s x t s y s y s
s v

x t s y s x t s v s y s
s y

∂ ∂
= +   ∂ ∂
∂ ∂ ′= +      ∂ ∂
∂ ∂ ′= +      ∂ ∂

 

Substitute (5.3) and the perturbed solution y'(s) from (5.2) 

( ) ( ) ( )( ) ( )( ), , , , , ,V t s y s x t s y s f s y s g s y s
v
∂

= + ∗ +      ∂
  

Substitute for V(s) by (5.7) 

( ) ( )( ) ( ) ( )( ) ( )( ), , , , , , ,U t s x s f s x s U t s y s f s y s g s y s = − + +          

As a result of these substitutions we can integrate the following relation on 
[ ]0,s t t∈ : 

( ) ( ) ( )( )d , , , , ,
d

x t s y s U t s y s g s y s
s

=        ⇒  

Now integrate 

( ) ( ) ( )( )
0 0

, , d , , , d
t t

t t
x t s y s s U t s y s g s y s s=      ∫ ∫  

( ) [ ] ( ) ( )( )
0

0
0 0 0 0, , , , , , , , , d

t

t
x t t y t x t t x x t s y s t u g s y s s

x
∂

 − =    ∂∫  

( ) [ ] ( ) ( )( )
0

0 0 0 0 0 0
0

, , , , , , , , , , , d
t

t
x t t y t x t t x x t s y s t x g s y s s

x
φ φ

∂
 = +    ∂∫  

Now the question is this: what is ( ), ,x t t y t   ? The unperturbed solution x(t) 
with the perturbed solution as the initial conditions 0t t=  and ( ) ( )0 0x t u y t= = . 

Thus ( ) ( )0 0, , , ,x t t y t y t t u=   , and the above relation will be concluded as 
follows: 

[ ] [ ] ( ) ( )( )
0

0 0 0 0 0 0 0 0 0
0

, , , , , , , , , , , , d
t

t
y t t x x t t x x t s y s t x g s y s s

x
φ φ φ

∂
 = +  ∂∫  

This is a conclusion of the Alekseev type Theorem for Nonlinear Operator 
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Differential Equations. 

6. Generalized Alekseev’s VOP of NODE with  
Initial Functions 

When the operator A is unbounded, one cannot expect to derive the same result 
for any 0x X∈  since ( )0 0 0, , ,x t t x φ  in general is not differentiable with 
respect to 0t . We also need the differentiability of the solution ( )0 0 0, , ,x t t x φ  
with respect to the parameters ( )0 0 0, ,t x φ . The variation of parameters was 
investigated with respect to the parameters ( )0 0,t x  in the previous section and 
it will be investigated in this section with respect to 0φ . 

The relation (5.2) has been generalized in Hale 1992 for infinite dimensional 
variational operator when 1f C∈  

( ) ( ) ( )( )1 0 0 0 3 0 0 0 0 0 0 0, , , , , , , ,x t t x x t t x Ax f t x T xφ φ  ∂ = −∂ +        (6.1) 

Assume that ( ) ( )0 0 0 0, , , , , ,y t t x W t t xφ φ
φ
∂

≡
∂

 exists, then 

( )( )( )0
d d d , ,
d d d y
W y y f yW Ax f t y T y f W
t t t yφ φ φ φ

 ∂ ∂ ∂ ∂ ∂′ = = = = + = = ⋅ ∂ ∂ ∂ ∂ ∂ 
 

This argument can lead to the fact that if the operator ( ), ;yf Lip I Y Z Y∈ × , 
then the solution to the system 

( )
( )

0 0

0 0

, , , ,

, for
yW f t y t t W t t

W t I t t

φ ′  = ≥  


= ≤
                (6.2) 

has a unique solution. The system (6.2) is called the variational equation. 
Notice that for all 0t t≤ , ( ) ( )0, ,y t t tφ φ=  then 

( ) ( ) ( ) ( ) ( )0 0, , , ,U t t y t t t Iφ φ φ φ φ= ∂ ∂ = ∂ ∂ =  

Using the chain rule for abstract functions, we get 

( ) ( )( )( )0 0 0 0 0 0 0 0 0 0
d , , , ,
d

y t t s U t t s
s

φ ψ φ φ ψ φ ψ φ + − = + − −   

Thus by integrating the system,  

( ) ( ) ( )( )( )1
0 0 0 0 0 0 0 00

, , , , , , dy t t y t t U t t s sψ φ φ ψ φ ψ φ− = + − −∫     (6.3) 

Proposition 6.1 (Alekseev's Theorem for Operator Differential Equations): 
Suppose :f U R X X⊂ × →  and :g U R X X⊂ × →  are of class 1C . If 
( )0 0, ,x t t φ  is the solution of Equation (5.1) through the initial state, ( )0 0 0, ,t x φ  

and ( )0 0 0, , ,y t t x ψ  is the perturbed solution of 

( ) ( ) ( )( ) ( )( )
( ) ( )

0

0

, , , ,

, for

y t Ay f t y t Ty t g t y t t t

y t t t tφ

 ′ = + + >


= ≤
         (6.4) 

through ( )0 0,t φ , then, for any ( ) ( )0 ,D A D Yφ φ∈   we have 

( ) ( ) ( )( ) ( )( )
0

0 0 0 0 0 0 0 0 0 0
0

, , , , , , , , , , , , , d
t

t
y t t x x t t x x t s y s t g s y s t sφ φ φ φ

φ
∂

= + ⋅
∂∫  (6.5) 

Proof: For ( ) ( )0 ,D A D Yφ φ∈   assume ( ) ( )( ), ,y s x t s sφ= . Differentiating 
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with respect to the first parameter ( )( ),s sφ , 

( )
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )1 2

, , , ,

, , , ,

x t s s x t s s s
y' s

s v s
x t s s x t s s x s

φ φ φ

φ φ

∂ ∂ ∂
= + ⋅

∂ ∂ ∂
′= ∂ + ∂

 

Using the relation (5.3) 

( )( ) ( )( ) ( )( ) ( )
( )( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( )( )( ) ( )( )

( )( ) ( )( )

1 2

2

2

2

, , , , , ,

, , , ,

, , , , ,

, , ,

x' t s y s x t s y s x t s y s y s

x t s y s Ay s f s y s T y s

x t s y s Ay f s y s T y s g s y s

x t s y s g s y s

′= ∂ + ∂

 = −∂ + 
 + ∂ + + 

= ∂ ⋅

 

Integrating from t0 to t, we will conclude that 

( )( ) ( )( ) ( )( ) ( )( )
0

0 0 2, , , , , , , d
t

t
x t t y t x t t y t x t s y s g s y s s− = ∂ ⋅∫  

Therefore, 

( ) ( )( ) ( )( ) ( )( )
0

0 0 0 2, , , , , , , d
t

t
y t t x t t t x t s y s g s y s sφ φ= + ∂ ⋅∫  

This proves the theorem for ( ) ( )0 ,D A D Yφ φ∈  . 
Assume that for the initial function 0 Yφ ∈  the maximal interval is [ )0 ,t a  

for the solution ( )0, ,y t t φ . 
For 0t t τ≤ ≤  let us define ( ) ( ){ }:B y Y yδ τξ φ δ τ∈ = ∈ − ≤  and operators 

( ) ( ) [ ]( ) ( ) ( ) [ ]( )1 0 2 0. : , , , . : , ,F B C t Y F B C t Yδ τ δ ττ τ→ →  

by the following relations 

( )( ) ( )( ) ( )( ) ( )( )
0

1 0 0 0 2, , , , , d
t

t
F t x t t t x t s y s g s y s sφ φ= + ∂ ⋅∫  

( )( ) ( ) ( ) ( ) ( )( )( ) ( )( )0

0
2 0 0e e , , , d

tA t t A t s

t
F t f s y s T y s g s y s sφ φ− −  = + + ∫  

Since both operators are well defined and continuous on ( )Bδ τ  and coincide 
on ( ) ( )D A Bδ τ , they must coincide on ( )Bδ τ . This proves the theorem. 

The next theorem will provide the variation of parameters formula for 
operator differential equations. 

Theorem 6.1 (Variation of Parameters for NODE): The solution of the 
systems (5.1) and (5.2) satisfy the following 

( )( ) ( )( ) ( )( )( )
( )( )( )

0
0 0 0 0 0

0

, , , , , , , , , ,

, , , d

t

t
y t t x t x t t x t W t s y s t t

g s y s t t s

φ φ φ

φ

= +

⋅

∫
     (6.6) 

where ( )( )( ) ( )( )0
0

, ,
, , , ,

x t t t
W t s y s t t

φ
φ

φ
∂

=
∂

 and assume the inverse matrix 

( )( )1
0, ,W t t v t−  exists. 

Proof: In a variation of parameters, we will determine a function ( )v t  to 
satisfy the differential equation for perturbed solution y such that 
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( )( ) ( )( )
( ) ( )

0 0 0

0 0

, , , , , for

, for

y t t t x t t v t t t

v t t t t

φ

φ

 = >


= ≤
           (6.7) 

is a solution process for the system (5.7). From the system (5.7) and differentia- 
tion of (5.9) we will get 

( )
( )( ) ( )( ) ( )

( ) ( )( )( ) ( )( )

0 0

0

, , , ,

, , , ,

x t t v t x t t v t v t
y t

t v t
Ay f t y t T y t g t y t t t

∂ ∂ ∂
′ = + ⋅

∂ ∂ ∂
= + + >

         (6.8) 

Since ( )( )0, ,x t t v t  is a solution of (5.5), then 

( )( ) ( )( ) ( )0, ,
,

x t t v t
g t y t v t

φ
∂

′= ⋅
∂

                  (6.9) 

It can be observed that the inverse matrix ( )( )1
0, ,W t t v t−  exists, then 

( ) ( )( ) ( )( )( )1
0 0, , , , ,v t W t t v t g t x t t v t−′ =              (6.10) 

By integrating we will obtain 

( ) ( ) ( )( ) ( )( )( )
0

1
0 0 0, , , , , d

t

t
v t t W s t v s g s x s t v s sφ −= + ∫         (6.11) 

Differentiation with respect to the second independent variable s when 

0t s t≤ ≤  implies that 

( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

0 0 0

0

d , , , , , ,

, ,

x t t v s x t t v s x t t v tv s
v t

ds v s
W t t v s v t

φ
∂ ∂∂

′= ⋅ = ⋅
∂ ∂ ∂

′= ⋅

 

Substituting (6.10) for ( )v' t  we get the following for the right hand side 

( )( ) ( )( ) ( )( )( )1
0 0 0, , , , , , ,W t t v s W s t v s g s x s t v s−= ⋅ ⋅   

which implies 

( )( ) ( )( ) ( )( ) ( )( )
( )( )

0

1
0 0 0 0

0

, , , , , , , ,

, ( , , d

t

t
x t t v s x t t t W t t v s W s t v s

g s x s t v s s

φ −= + ⋅

⋅

∫  

Using variation definition (6.7) in the above relation, we will now get the 
variation of parameters for nonlinear operator differential Equation (6.5)  

( ) ( )( ) ( )( ) ( )( )
( )( )( )

0

1
0 0 0 0 0

0

, , , , , , , ,

, , , d

t

t
y t t x x t t t W t t v s W s t v s

g s y s t t s

φ

φ

−= + ⋅

⋅

∫
    (6.12) 

The operator T in the differential Equation (5.1) and (5.7) could be any delay, 
integral, composition, or Cartesian product of nonanticipating and 
Lipschitzian operators which will affect the nonperturbed solution 

( )( )0 0, , ,x t t x tφ . The variation formula (5.14) will be effected by the operator T 
through these changes. 

Assuming that the variation of parameters is given, we will investigate some of 
the properties of this formula through the following conclusions for particular 
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cases. 
Corollary 6.1: Suppose that the conditions of Theorem 6.1 satisfy and 

guarantee the existence and uniqueness of the solution of the system (5.2). 
Assume also ( )0 0tφ φ=  is the initial state of the system x Ax′ = . Then the 
relation (5.7) will be 

( ) ( ) ( ) ( )( )( )

( )( ) ( )( )
0

0

0 0 0 0

0 0 0 0 0 0
0

, , , , , , d

, , , , , , , , , d

t

t

t

t

y t t x t t f s x s T x s s

x t s y s t x g s y s t x s
x

φ φ

φ φ

= +

∂
+ ⋅

∂

∫

∫
  (6.13) 

Proof: Assuming that ( )0 0, ,x t t φ  is a solution to the homogeneous equation 
0x Ax′ − = , then by the direct integration of the system (5.1) and applying the 

variation of parameters formula (5.3) to the nonlinear system (5.2), we will get 
the formula (6.13). 

Corollary 6.2: Suppose that the conditions of H1 through H4 guarantee the 
existence and uniqueness of the solution of (5.1) and (5.6). Assume also a 
particular case when 0f ≡  and ( )( ) ( ),g t x t g t≡ , then the Alekseev’s formula 
(5.7) deduces the variation of parameters formula 

( ) ( ) ( ) ( )
0

0 0, , d
t

t
x t t t x t s g s s= Φ + Φ∫               (6.16) 

for linear differential equation: ( ) ( ) ( ) ( )x' t A t x t g t= + . 
Proof: Assuming that ( )0 0, ,x t t x  is a solution to the homogeneous 
( ) ( ) ( ) 0x t A t x t′ − = , then the fundamental matrix of the homogeneous system 

will be  

( ) ( )0 0 0 0, , ,x t t x t t x= Φ  

By considering the following 

( ) ( )0 0 0 0 0 0 0, , ,x t t x t t x x= Φ =  and ( )( ) ( ) ( )0 0 0 0, , , , , , ,x t s y s t x t s y s t x= Φ  

we conclude that 

( )( ) ( ) ( ) ( ) ( )0 0 0 0 0
0 0 0

, , , , , , , , ,x t s y s t x t s y s t x t s x t s
x x x
∂ ∂ ∂

= Φ = Φ = Φ
∂ ∂ ∂

 (6.17) 

{It can be verified that ( )0 0 0, ,y s t x x= } 
Notice that the deterministic function f is identically equal to zero 0f ≡ . 

This concludes the variation of constants for linear system (6.17). 
Corollary 6.3: Suppose that in the differential Equation (5.1) 0A = , then the 

general solution of (6.16) about the equilibrium solution 0y ≡  will be 

( ) ( ) ( )( )
0 0

0 0 0 0 0, , , d , , , d
t t

t t
y t t x x f s x s s g s y s t x s= + +  ∫ ∫         (6.18) 

Proof: Since the operator 0A = , then the solution ( )0 0 0, ,x t t x x=  is a 

constant function. Therefore ( )0 0
0

, ,x t t x I
x
∂

=
∂

. To find the perturbed solution  

of the system (5.6), we use the conclusion of the Proposition 5.1 for unperturbed 
solution of the system (5.1) to obtain the relation (6.18). 
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We will study the variation of parameters for operator differential equations 
disturbed force operator functions. These nonlinear operators can involve the 
following types: delay, integrals, composition, or cartesian products of all 
nonanticipating and Lipschitzian operators. 

7. Conclusions 

Assume that ( )A t  is a matrix function on I Y×  into the space ( ),M I Z . 
Suppose that ( )tΦ  represents the fundamental matrix solution process of a 
differential equation 

( ) ( ) ( ) ( )0 0,x t A t x t x t x′ = =                  (7.1) 

Then 

( ) ( ) ( ) ( )0, unit matrixt A t t t′Φ = Φ Φ =               (7.2) 

( ) ( )
0

exp d ,
t

t
det t trA s s t I Φ = ∈  ∫                (7.3) 

A method of variation of parameters for the systems (7.1) - (7.3) is presented 
by G. S. Ladde and V. Lakshmikantham, 1980. 

Suppose ( )A t  is Lebesgue summable from I into ( ),M I Z  and let 
( ), ;f Lip I Y Z∈  be a perturbation in the system (6.1) then the solution process 

( ) ( )0 0, ,y t y t t y=  of the following nonlinear system 

( ) ( ) ( ) ( )( ) ( )0 0, ,y t A t y t f t y t y t y′ = + =             (7.4) 

will satisfy the following integral equation 

( ) ( ) ( ) ( ) ( )( )
0

1
0 0, , , d

t

t
y t x t t x t s f s y s s−= + Φ Φ∫            (7.5) 

for all 0t t≥ . Further study of this general form of the variation of parameters 
for nonlinear operator differential equations should be very interesting. These 
nonlinear operators can involve varieties of many types of operators like: delay, 
integrals, composition, or Cartesian products of all nonanticipating and 
Lipschitzian operators. 

A classical nonlinear system type ( ) ( )( ),y' t f t y t=  for 0t t>  and 
( )0 0y t y=  in (1.1) is well known and extensively studied. The variation of 

parameters discovered by Alekseeve is a great tools to study this kind of 
nonlinear system and use this conclusion for stability and asymptotic behavior 
of a nonlinear system. The solutions to a nonlinear operator differential 
equations of type (1.2) which include all operators T satisfying nonanticipating 
and lipschitzian conditions also reviewed here, have a huge range of application. 

For operator in this paper we proved and demonstrated a general form of 
Alekseeve Theorem when a non linear system (5.1) includes a C0-semigroup of 
opeartor A.  

All important conditions in (H1) through (H4) are connecting the 
nonanticipating property of T, semigroup property of At, and Lipschitzian 
property of f. The variation of parameters helped us to find the solution to the 
purturbed system. This perturbed solution for nonanticipating dynamic systems 
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will help us in the future to study the stability and asymptotic behavior of the 
system. Two major issues related to the Variatiion of Parameters can be 
developed for Nonlinear Operator Differential Equations. 

First, is the numerical algorithm and computational program to produce the 
solution to such a general form of nonlinear variational of parameters method. 
Second, generalize the stability application to nonlinear system to operator 
differential equations. 
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