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Abstract 
This paper proposes a novel Hamiltonian servo system, a combined modeling 
framework for control and estimation of a large team/fleet of autonomous ro-
botic vehicles. The Hamiltonian servo framework represents high-dimensional, 
nonlinear and non-Gaussian generalization of the classical Kalman servo sys-
tem. After defining the Kalman servo as a motivation, we define the affine 
Hamiltonian neural network for adaptive nonlinear control of a team of 
UGVs in continuous time. We then define a high-dimensional Bayesian par-
ticle filter for estimation of a team of UGVs in discrete time. Finally, we for-
mulate a hybrid Hamiltonian servo system by combining the continuous-time 
control and the discrete-time estimation into a coherent framework that 
works like a predictor-corrector system.  
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1. Introduction 

Today’s military forces face an increasingly complex operating environment, 
whether dealing with humanitarian operations or in the theater of war. In many 
situations one has to deal with a wide variety of issues from logistics to lack of 
communications infrastructure [1]. In many situations one may be even denied 
satellite access and hence unable to utilize services such as GPS for Geo-location 
and the ability reconnect back to HQ [2]. 

Given the increasing success of artificial intelligence (AI) techniques in 
recent times and the advancements made in unmanned vehicle (UV) design, 
autonomous systems in particular teams or swarms of autonomous vehicles have 
become a potential attractive solution to solving the complexity issues facing the 
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military today. Teams or swarms of intelligent autonomous vehicles would also 
introduce a level of survivability to the systems which would increase its utility 
in such complex and hostile environments [3]. 

A problem which arises in utilizing large teams or swarms of autonomous 
vehicles is one of control. Recently, the US Defence Advanced Research Projects 
Agency (DARPA) has sought to address some of the control issues associated 
with large swarm through its Offensive Swarm-Enabled Tactics (OFFSET) [4]. 
Therefore, there is a clear need for both local and global control of large teams or 
swarms of UV. This would allow for autonomous or semi-autonomous operation 
of large teams of UV which would be easily manageable. 

This paper proposes a Hamiltonian servo system which is a combined 
modeling framework for the control and estimation of such autonomous teams 
of UV’s. This paper will demonstrate the ability of this framework to handle the 
high-dimensional, nonlinear and non-Gaussian nature of the problem at hand. 
The authors will also show this to be a generalization of the classic Kalman 
Servo System. Finally results of a number of simulations will be presented to 
demonstrate the validity of the framework through the authors implementation 
using Mathematica & C++ code (which is provided in the Appendix). 

Slightly more specifically, we recall here that traditional robotics from the 
1970s-80s were mainly focused on building humanoid robots, manipulators and 
leg locomotion robots. Its modeling framework was linear dynamics and linear 
control, that is, linearized mechanics of multi-body systems (derived using 
Newton-Euler, Lagrangian, Gibs-Appel or kinetostatics equations of motion) 
and controlled by Kalman’s linear quadratic controllers (for a comprehensive 
review, see [5]-[11]). The pinnacle of this approach to robotics in the last decade 
has been the famous Honda robot ASIMO (see [12]), with a related Hamiltonian 
biomechanical simulator [13]. 

In contrast, contemporary robotics research has mainly been focused on field 
robotics, based on estimation rather than control, resulting in a variety of 
self-localization and mapping (SLAM) algorithms (see [14] [15] [16] [17] [18] 
and the OpenSLAM web-site [19]). 

Instead of following one of these two sides of robotics, in the present paper 
we will try to combine them. From a robotics point-of-view, control and 
estimation are two complementary sides, or necessary components, of efficient 
manipulation of autonomous robotic vehicles. In this paper we attempt to 
develop a computational framework (designed in Wolfram Mathematica and 
implemented in C++) that unifies both of these components. From a 
mathematical point-of-view, in this paper we attempt to provide nonlinear, 
non-Gaussian and high-dimensional generalization of the classical Kalman 
servo system, outlined in the next section. 

2. Motivation: Kalman Servo 

In 1960s, Rudolf Kalman developed concept of a controller-estimator servo  

https://doi.org/10.4236/ica.2017.84014


V. Ivancevic, P. Pourbeik 
 

 

DOI: 10.4236/ica.2017.84014 177 Intelligent Control and Automation 
 

 
Figure 1. Kalman’s fundamental controller-estimator servo system, including state-space 
dynamics, Kalman filter and feedback controller. 

 
system (see Figure 1; for original Kalman’s work see [20] [21] [22]), which 
consists of the following three main components, written in classical boldface 
matrix notation: 

System state dynamics: linear, low-dimensional, multi-input multi-output 
process cascade (as implemented in Matlab Control and Signal Processing 
toolboxes):  

( ) 0, , 0 ,= + = + =  x Ax Bu y Cx Du x x

             
(1) 

where we have three vector spaces: state space n⊂  , input space m⊂   
and output space k⊂  , such that ( )t ∈x   is an n-vector of state variables, 
( )t ∈u   is an m-vector of inputs and ( )t ∈y   is a k-vector of outputs; 0x  

is the initial state vector. The matrix variables are the following maps: i) n n×  
dimensional state dynamics ( ) :t= →A A   ; ii) n m×  dimensional input 
map ( ) :t= →B B   ; iii) k n×  dimensional output map ( ) :t= →C C   ; 
and (iv) k m×  dimensional input-output transform ( ) :t= →D D   . The 
first equation in (1) is called the state or dynamics equation and the second 
equation in (1) is called the output or measurement equation. 

Kalman feedback controller: optimal LQR-controller:1 

( ) ( ) ,ref t t = − y K x x                      
(2) 

with the controller gain matrix: ( ) 1 T: c ct −= → =K K R B P   determined by 
the matrix cP  governed by the controller Riccati ordinary differential equation 
(ODE):  

( )T 1 T
0, 0 ,c

c c c c c c c
−  = + + − = cP A P P A Q P BR B P P P  

where 0
cP  is the initial controller matrix. :c →Q    and :c →R    are 

matrices from the quadratic cost function:  

( )
1

0

T T d .
t

t

J Q R t= +∫ x x u u
                     

(3) 

Kalman filter: optimal LQG-estimator2 with the (additive, zero-mean, delta- 
correlated) Gaussian white noise ( )tη :  

( ) ( ) 0, 0 ,= + + − + + =      x Ax Bu L y Cx Du x x η
         

(4) 

 

 

1The acronym LQR means linear quadratic regulator. 
2The acronym LQG means linear quadratic Gaussian. 
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with the filter gain matrix: ( ) 1 T: f ft −= → =L L R P C   determined by the 
matrix fP  governed by the filter Riccati ODE:  

( )T T 1
0, 0 ,f

f f f f f f f f
−  = + + − = P A P P A Q P C R CP P P  

where 0
fP  is the initial filter matrix. :f →Q    and :f →R    are 

covariance matrices from the noisy η -generalization of the quadratic cost 
function (3).  

Defined in this way, Kalman’s controller-estimator servo system has a 
two-cycle action, similar to the predictor-corrector algorithm: in the first 
time-step the servo controls the plant (e.g., a UGV), in the second step it 
estimates the plants ( ,x y ) coordinates, in the next step it corrects the control, 
then estimates again, and so on. 

In the remainder of this paper we will develop a nonlinear, non-Gaussian and 
high-dimensional generalization of the Kalman servo. 

3. Control of an Autonomous Team of UGVs:  
Affine Hamiltonian Neural Network 

Now we switch from matrix to ( , 1, ,nα β = 
)-index notation,3 to label the 

position of n n×  individual UGVs within the swarm’s global plane coordinates, 
longitude and latitude, respectively. The first step in the nonlinear generalization 
of the Kalman servo is replacing the linear, low-dimensional, state dynamics (1) 
and control (2)-(3) with nonlinear, adaptive and high-dimensional dynamics 
and control system, as follows. 

In the recent paper [23], we have proposed a dynamics and control model for 
a joint autonomous land-air operation, consisting of a swarm of unmanned 
ground vehicles (UGVs) and swarm of unmanned aerial vehicles (UAVs). In the 
present paper we are focusing on a swarm of UGVs only, from both control and 
estimation perspectives. It can be modeled as an affine Hamiltonian control 
system (see [24]) with many degrees-of-freedom (DOFs), reshaped in the form 
of a ( ,q p )-pair of attractor matrix equations with nearest-neighbor couplings 
defined by the matrix of affine Hamiltonians:  

( )1 1 1 1
1 .
2

H q q p pαβ αβ α β αβ α β− − − −= +  

The following pair of attractor matrix equations defines the activation 
dynamics of a bidirectional recurrent neural network:  

( )2

,
,q q q

p
j k

q A q q p H u
αβαβ αβ αβ αβ αβ αβ αβϕ ω= − − − ∂∑

           
(5) 

( )2

,
,p p p

q
j k

p A p p q H u
αβαβ αβ αβ αβ αβ αβ αβϕ ω= − − + ∂∑

           
(6) 

where superscripts ( ,q p ) denote the corresponding Hamiltonian equations and 
the partial derivative is written as: uH H u∂ ≡ ∂ ∂ . In Equations ((5), (6)) the 

 

 

3For simplicity, we are dealing with a square ( )n n× -matrix of UGV configurations. The whole 

approach works also for a rectangular ( )n m× -matrix, in which 1, , , 1, ,n mα β= =  . 
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matrices ( )q q tαβ αβ=  and ( )p p tαβ αβ=  define time evolution of the swarm’s 
coordinates and momenta, respectively, with initial conditions: ( )0qαβ  and 

( )0pαβ . The field attractor lines qA and pA  (with the field strength ϕ ) are 
defined in the simulated urban environment using the A-star algorithm that 
finds the shortest Manhattan distance from point A to point B on the 
environmental digital map (i.e., street directory). The adaptive synaptic weights 
matrices: ( )q q tαβ αβω ω=  and ( )p p tαβ αβω ω=  are trained by Hebbian learning (11) 
defined below. Input matrices ( )q qu u tαβ αβ=  and ( )p pu u tαβ αβ=  are Lie-derivative 
based controllers (explained below). 

Equations ((5), (6)) are briefly derived as follows (for technical details, see [23] 
and the references therein). Given the swarm configuration manifold M (as a 
product of Euclidean groups of motion for each robotic vehicle), the affine 
Hamiltonian function ( ), , :aH q p u T M∗ →   is defined on its cotangent 
bundle T M∗  by (see [24]):  

( ) ( ) ( ) ( )0, , , , , , ,a j j
j n

H q p u H q p H q p u t q p
<

= − ∑
           

(7) 

where ( )0 , :H q p T M∗ →   is the physical Hamiltonian function (kinetic plus 
potential energy of the swarm) and control inputs ( ), ,ju t q p  are defined using 
recurrent Lie derivatives:4 

( ) ( ) ( ) ( )( )
( )

1 1
1

1
1 .

r
r j r s j s

R f j s R f j
s

j r
g f j

o L H c o L H
u

L L H

− −
−

=
−

− + −
=

∑

            
(8) 

Using (7) and (8), the affine Hamiltonian control system can be formulated 
(for 1, , ;i n j i= <

) as:  

0 ,
i i ii i p p j j p

j i
q V H H u D

<

= + ∂ − ∂ + ∂∑

                
(9) 

0 .
i i ii i q q j j q

j i
p F H H u D

<

= − ∂ + ∂ + ∂∑

               
(10) 

where D  is Rayleigh’s dissipative function and ( ), ,i iV V t q p=  and iF =

( ), ,iF t q p  are velocity and force controllers, respectively. 
The affine Hamiltonian control system (9)-(10) can be reshaped into a matrix 

form suitable for a UGV-swarm or a planar formation of a UAV-swarm: 

iq qαβ→ , ip pαβ→ , iu uαβ→ , by evaluating dissipation terms into cubic 
terms in the brackets, and replacing velocity and force controllers with attractors 

qA  and pA , respectively (with strength ϕ ). If we add synaptic weights αβω  
we come to our recurrent neural network Equations ((5), (6)). 

Next, to make Equations ((5), (6)) adaptive, we use the abstract Hebbian 
learning scheme:  

New Value Old Value Innovation= +  

which in our settings formalizes as (see [25]):  

 

 

4
1sc −  are the coefficients of the linear ODE of order r for the error function ( ) ( ) ( )ref

j je t q t q t= − : 

( ) ( ) ( )1 1
1 1 0 0.r r

re c e c e c e−
−+ + + + =  
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( ), ,q q q q pαβ αβ αβ αβ αβω ω= − +Φ

                  
(11) 

( ), ,p p p q pαβ αβ αβ αβ αβω ω= − +Φ  

where the innovations are given in the matrix signal form (generalized from 
[26]):  

( ) ( ) ( ) ( ),q q q q qS q S p S q S pαβ αβ αβ αβ αβ αβ αβ αβ αβΦ = +  

           
(12) 

( ) ( ) ( ) ( ),p p p p pS q S p S q S pαβ αβ αβ αβ αβ αβ αβ αβ αβΦ = +    

with sigmoid activation functions ( ) ( )tanhS ⋅ = ⋅  and signal velocities: ( )S ⋅ =

( )1 tanh− ⋅ . 
In this way defined affine Hamiltonian control system (5)-(6), which is also a 

recurrent neural network with Hebbian leaning (11)-(12), represents our nonlinear, 
adaptive and high-dimensional generalization of Kalman’s linear state dynamics 
(1) and control (2)-(3). 

Using Wolfram Mathematica code given below, the Hamiltonian neural net 
was simulated for 1 sec, with the matrix dimensions 10n =  (i.e., with 100 
neurons in both matrices ijq  and ijp , which are longitudes and latitudes of a 
large fleet of 100 UGVs, see Figures 2-4). The Figures illustrate both stability 
and convergence of the recurrent Hamiltonian neural net. 

C++ code for the the Hamiltonian neural net is given in Appendix 1.1. 
Mathematica code 
Dimensions: 

10;Tfin 1; 30;n ϕ= = =  

Coordinates and momenta: 
 

 
Figure 2. Adaptive control for a large fleet (a 10 10×  matrix) of 100 UGVs: time 
evolution of coordinates ( )q tαβ , where , 1, ,10α β = 

. As expected, we can see the 

exponential-type growth of coordinates ( )q tαβ  together with their spreading from zero 

initial conditions. This plot is the simulation output of the recurrent activation dynamics 
given by Equations ((5), (6)) with Hebbian learning dynamics given by Equations ((11), 
(12)), starting from zero initial coordinates and momenta and random ( )1,1−  initial 

weights. 
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Figure 3. Adaptive control for a large fleet (a 10 10×  matrix) of 100 UGVs: time 
evolution of momenta ( )p tαβ . As expected, we can see the exponential-type decay of 

momenta ( )p tαβ  together with their spreading, after the initial convergent growth from 

zero initial conditions. This plot is the simulation output from the same recurrent neural 
network as in Figure 2. 

 

 
Figure 4. Adaptive control for a large fleet (a 10 10×  matrix) of 100 UGVs: time 
evolution of synaptic weights ( )tαβω . As expected, we can see the converging behavior 

of the weights ( )tαβω , starting from their initial random distribution. Simulating the 

same recurrent neural network from Figure 2. 
 

[ ] { } { }
[ ] { } { }

,

,

Table , , , , ;

Table , , , , ;

q t n n

p t n n

α β

α β

α β

α β

  
  

 

Hyperbolic tangent activation functions: 

[ ] { } { }

[ ] { } { }
, ,

, ,

Table Sq Tanh , , , , ;

Table Sp Tanh , , , , ;

q t n n

p t n n

α β α β

α β α β

α β

α β

  =   
  =   

 

Derivatives of activation functions: 

{ } { }
{ } { }

2
, ,

2
, ,

Table Sdq 1 Sq , , , , ;

Table Sdp 1 Sp , , , , ;

n n

n n

α β α β

α β α β

α β

α β

 = − 
 = − 
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Control inputs: 

{ } { } { },Table RandomReal 1,1 , , , , ;a n nα β α β = −     

{ } { } { },Table RandomReal 1,1 , , , , ;b n nα β α β = −     

{ } { } { },Table RandomReal 1,1 , , , , ;c n nα β α β = −     

{ } { }, , , ,Table [ ] Sin , , , , ;u t a b c t n nα β α β α β α β α β  = +    

Affine Hamiltonians (nearest-neighbor coupling): 

[ ] [ ] [ ] [ ]( ) { } { }, , 1, 1 , 1, 1
1Table , ,2, , ,2, ;
2

H q t q t p t p t n nα β α β α β α β α β α β− − − −
 = +  

 

Attractor lines (figure-8 attractor): 

[ ] [ ]Aq Sin ;Ap Cos ;t t= =  

Equations of motion: 

[

[ ] [ ] [ ] [ ] [ ]( ){
[ ] [ ] [ ] } { } { }

[ ] [ ] [ ] [ ] [ ]( ){
[ ] [ ] [ ] } { } { }

,

,

2
, , , , ,

, , ,1 1

2
, , , , ,

, , ,1 1

Eqns Flatten Join

Table Aq

, 0 0 , , , , ,

Table Ap

, 0 0 , , , , ,

n n
p t

n n
q t

q t q t t q t p t

H u t q n n

p t p t t p t q t

H u t p n n

α β

α β

α β α β α β α β α β

α β α β α βα β

α β α β α β α β α β

α β α β α βα β

ϕ ω

α β

ϕ ω

α β

= =

= =

= 
 ′ == − −

− ∂ == 
 ′ == − −

+ ∂ == 

∑ ∑

∑ ∑

 

[ ] [ ]{
[ ] { } } { } { }

, , , , , ,

,

Table Sq Sp Sdq Sdp ,

0 RandomReal 1,1 , , , , ;

t t

n n

α β α β α β α β α β α β

α β

ω ω

ω α β

 ′ == − + +
== −   

 

Numerical solution: 

{ } { }

{ } { } { } { } { }

,

, ,

sol NDSolve[ Eqns,Flatten Join Table , , , , ,

Table , , , , ,Table , , , , , ,0,Tfin ;

q n n

p n n n n t

α β

α β α β

α β

α β ω α β

    =  
       

 

Plots of coordinates: 

[ ] { } { } { }

[ ]
,Plot Evaluate Table /.sol, , , , , ,0,Tfin ,

PlotRange All,PlotStyle AbsoluteThickness 1.5 ,Frame True

q t n n tα β α β     
→ → → 

 

Plots of momenta: 

[ ] { } { } { }

[ ]
,Plot Evaluate Table /.sol, , , , , ,0,Tfin ,

PlotRange All,PlotStyle AbsoluteThickness 1.5 ,Frame True

p t n n tα β α β     
→ → → 

 

Plots of weights: 

[ ] { } { } { }

[ ]
,Plot Evaluate Table /.sol, , , , , ,0,Tfin ,

PlotRange All,PlotStyle AbsoluteThickness 1.5 ,Frame True

t n n tα βω α β     
→ → → 
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4. Estimation of an Autonomous Team of UGVs:  
High-Dimensional Bayesian Particle Filter 

The second step in the nonlinear generalization of the Kalman servo is to replace 
the linear/Gaussian Kalman filter (4) with a general nonlinear/non-Gaussian 
Monte-Carlo filter, as follows. 

4.1. Recursive Bayesian Filter 

Recall that the celebrated Bayes rule gives the relation between the three basic 
conditional probabilities: i) a Prior ( )P A  (i.e., an initial degree-of-belief in 
event A, that is, Initial Odds), ii) Likelihood ( )|P B A  (i.e., a degree-of-belief in 
event B, given A, that is, a New Evidence); and Posterior: ( )|P A B  (i.e., a 
degree-of-belief in A, given B, that is, New Odds). Provided ( ) 0P B ≠ , Bayes 
rule reads:  

( ) ( ) ( )
( )

Prior Likelihood
Posterior |

| .
P A P B A

P A B
P B
×

=
                  

(13) 

In statistical settings, Bayes rule (13) can be rewritten as:  

( ) ( ) ( )
( )

Prior Likelihood
Posterior |

| ,
p H p D H

p H D
p D
×

=
                 

(14) 

where ( )p H  is the prior probability density function (PDF) that the 
hypothesis H is true, ( )|p D H  is the likelhood PDF for the data D given a 
hypothesis H, ( )|p H D  is the posterior PDF that the hypothesis H is true 
given the data D, and the normalization constant: ( ) ( ) ( )= |

iHp D p D H p H∑  
is the PDF for the data D averaged over all possible hypotheses iH . 

When Bayes rule (13)-(14) is applied iteratively/recursively over signal 
distributions evolving in discrete time steps, in such a way that the Old 
Posterior becomes the New Prior and New Evidence is added, it becomes the 
recursive Bayesian filter, the formal origin of all Kalman and particle filters. 
The Bayesian filter can be applied to estimate the hidden state tx  of a 
nonlinear dynamical system evolving in discrete time steps (e.g., a numerical 
solution of a system of ODEs, or discrete-time sampling measurements) in a 
recursive manner by processing a sequence of observations { } 1

T
T t tY y

=
=  

dependent on the state tx  within a dynamic noise (either Gaussian, or 
non-Gaussian) tη  measured as tµ . The state dynamics and measurement, or 
the so-called state-space model (SSM) are usually given either by Kalman’s 
state Equation (1), or by its nonlinear generalization. Instead of the Kalman 
filter Equation (4) combined with the cost function (3), the Bayesian filter 
includes (see, e.g. [27] [28]): 

Time-update equation: 

( ) ( ) ( )
Old PosteriorPredictor Prior

1 1 1 1 1| | | d ,nt t t t t t tp x Y p x x p x Y x− − − − −= ∫            
(15) 

and 
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Measurement-update equation: 

( ) ( ) ( ) ( )
New Posterior Predictor Likelihood

1
1| | | ,t t t t t t tp x Y Z p x Y l y x−
−=               (16) 

where tZ  is the normalizing constant, or partition function, defined by:  

( ) ( )1| | d .nt t t t t tZ p x Y l y x x−= ∫  

In the Bayesian filter (15)-(16), given the sequence of observations tY , the 
posterior fully defines the available information about the state of the system and 
the noisy environment—the filter propagates the posterior (embodying time and 
measurement updates for each iteration) across the nonlinear state-space model; 
therefore, it is the maximum a posteriori estimator of the system state. In a 
special case of a linear system and Gaussian environment, the filter (15)-(16) has 
optimal closed-form solution, which is the Kalman filter (4). However, in the 
general case of a nonlinear dynamics and/or the non-Gaussian environment, it is 
no longer feasible to search for closed-form solutions for the integrals in 
(15)-(16), so we are left with suboptimal, approximate, Monte Carlo solutions, 
called particle filters. 

4.2. Sequential Monte Carlo Particle Filter 

Now we consider a general, discrete-time, nonlinear, probabilistic SSM, defined by 
a Markov process { } 1

xn
t tx

≥
⊆  , which is observed indirectly via a measurement 

process { } 1
yn

t ty
≥
⊆  . This SSM consists of two probability density functions: 

dynamics ( )f ⋅  and measurement ( )h ⋅ . Formally, we have a system of 
nonlinear difference equations, given both in Bayesian probabilistic formulation 
(left-hand side) and nonlinear state-space formulation (right-hand side):  

( )1 1 1Dynamics :  | ~ | ( ) ,t t t t t t tx x f x x x f x+ + +⇔ = +          (17) 

( ) ( )Measurement : | ~ | ,t t t t t t ty x h y x y h x ν⇔ = +          (18) 

( )1 1with initial state :  ~ ,x xµ  

where f  and h  are the state and output vector-functions, t  and tν  are 
non-Gaussian process and measurement noises and µ  is a given non-Gaussian 
distribution. The state filtering problem means to recover information about the 
current state tx  in (17) based on the available measurements 1:ty  in (18) (see, 
e.g. [29]; for a recent review, see [30] and the references therein). 

The principle solution to the nonlinear/non-Gaussian state filtering problem 
is provided by the following recursive Bayesian measurement and time update 
equations:  

( ) ( ) ( )
( )

Measure Predictor
New Filter

1: 1
1:

1: 1

| |
|  ,

|
t t t t

t t
t t

h y x p x y
p x y

p y y
−

−

=
               

(19) 

where 

( ) ( ) ( )
Old FilterDynamicsPredictor

1: 1 1 1 1: 1 1| | | d .t t t t t t tp x y f x x p x y x− − − − −= ∫            
(20) 
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In a particular case of linear/Gaussian SSMs (17)-(18), the state filtering 
problem (19)-(20) has an optimal closed-form solution for the filter PDF 
( )1:|t tp x y , given by the Kalman filter (4). However, in the general case of 

nonlinear/non-Gaussian SSMs—such an optimal closed-form solution does not 
exist. 

The general state filtering problem (19)-(20) associated with any nonlinear/ 
non-Gaussian SSMs (17)-(18) can be only numerically approximated using the 
sequential Monte Carlo (SMC) methods. The SMC-approximation to the filter 
PDF, denoted by ( )1:ˆ |t tp x y , is an empirical distribution represented as a 
weighted sum of Dirac-delta functions:  

( ) ( )1:
1

ˆ | ,i
t

N
i

t t t tx
i

p x y w xδ
=

= ∑
                   

(21) 

where the samples { } 1

Ni
t i

x
=

 are called particles (point-masses ‘spread out’ in the 
state space); each particle i

tx  represents one possible system state and the 
corresponding weight i

tw  assigns its probability. In this way defined particle 
filter (PF) plays the role of the Kalman filter for nonlinear/non-Gaussian SSMs. 
PF approximates the filter PDF ( )1:|t tp x y  using the SMC delta-approximation 
(21). 

Briefly, a PF can be interpreted as a sequential application of the SMC 
technique called importance sampling (IS, see e.g. [31]). Starting from the initial 
approximation: ( ) ( ) ( )1 1 1 1 1ˆ | |p x y h y x xµ∝ , at each time step the IS is used to 
approximate the filter PDF ( )1:|t tp x y  by using the recursive Bayesian 
Equations ((19), (20)) together with the already generated IS approximation of 
( )1 1: 1|t tp x y− − . The particles { }1 1

Ni
i

x
=

 are sampled independently from some 
proposal distribution ( )1r x . To account for the discrepancy between the 
proposal distribution and the target distribution, the particles are assigned 
importance weights, given by the ratio between the target and the proposal: 

( ) ( ) ( )1 1 1 1 1|i i i iw h y x x r xµ∝ , where the weights are normalized to sum to one 
(for a recent technical review, see e.g., [30]). 

The IS proceeds in an inductive fashion:  

( ) ( )
1

1 1: 1 1 1
1

ˆ | ,i
t

N
i

t t t tx
i

p x y w xδ
−

− − − −
=

= ∑  

which, inserted as an old/previous filter into the time-update Equation (20), 
gives a mixture distribution, approximating ( )1: 1|t tp x y −  as:  

( ) ( ) ( ) ( )
1

Dynamics

1: 1 1 1 1 1 1 1
1 1

ˆ | | d | .i
t

N N
i i i

t t t t t t t t t tx
i i

p x y f x x w x x w f x xδ
−

− − − − − − −
= =

= =∑ ∑∫
   

(22) 

Subsequent insertion of (22) as a predictor into the measurement-update 
Equation (19), gives the following approximation of the filter PDF:  

( ) ( )
( ) ( )

Measure
Weighted DynamicsFilter

1: 1 1
11: 1

|
| | ,

|

N
t t i i

t t t t t
it t

h y x
p x y w f x x

p y y − −
=−

≈ ∑  

which needs to be further approximated using the IS. The proposal density is 
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pragmatically chosen as: ( ) ( )1: 1 11| |N j j
t t t t tjr x y w f x x− −=

= ∑ . The N ancestor 
indices { } 1

Ni
t i

a
=

 are resampled into a new set of particles { }1 1

Ni
t i

a − =
 which is 

subsequently used to propagate the particles to time t. 
The final step is to assign the importance weights to the new particles as:  

( ) ( )

( )

1 1
1

1 1
1

| |
.

|

N
i j i j

t t t t t
ji

t N
j j

t t t
j

h y x w f x x
w

w f x x

− −
=

− −
=

=
∑

∑
 

By evaluating i
tw  for 1, ,i N=   and normalizing the weights, we obtain a 

new set of weighted particles { } 1
,

Ni i
t t i

x w
=

, constituting an empirical approximation 
of the filter PDF ( )1:|t tp x y . Since these weighted particles { } 1

,
Ni i

t t i
x w

=
 can be 

used to iteratively approximate the filter PDF at all future times, this completes 
the PF-algorithm with an overall computational complexity of ( )O N  (as 
pioneered by [31]; for more technical details, see e.g., [30] and the references 
therein). 

We remark that the pinnacle of the PF-theory is the so-called Rao- 
Blackwellized (or, marginalized) PF, which is a special kind of factored PF, 
where the state-space dynamics (17) is split into a linear/Gaussian part and a 
nonlinear/non-Gaussian part, so that each particle has the optimal linear- 
Gaussian Kalman filter associated to it (see [32]-[40]). However, in our case of 
highly nonlinear and adaptive dynamics, the use of Rao-Blackwellization does 
not give any advantage, while its mathematics is significantly heavier than in an 
ordinary PF. 

5. Hamiltonian Servo Framework for General Control  
and Estimation 

The Hamiltonian servo system is our hybrid5 global control-estimation 
framework for a large team/fleet of UGVs (e.g., 10 10 100× = ), consisting of the 
following four components: 

Adaptive Control, which is nonlinear and high-dimensional, defined by:  

( )2

,
,q q q

p
j k

q A q q p H u
αβαβ αβ αβ αβ αβ αβ αβϕ ω= − − − ∂∑

          
(23) 

( )2

,
,p p p

q
j k

p A p p q H u
αβαβ αβ αβ αβ αβ αβ αβϕ ω= − − + ∂∑  

( ) ( ), , , ,q q q p p pq p q pαβ αβ αβ αβ αβ αβ αβ αβ αβ αβω ω ω ω= − +Φ = − +Φ 

      
(24) 

( ) ( ) ( ) ( ) ( ), , 1, ,q q q q qS q S p S q S p nαβ αβ αβ αβ αβ αβ αβ αβ αβ α βΦ = + = 

  

( ) ( ) ( ) ( ).p p p p pS q S p S q S pαβ αβ αβ αβ αβ αβ αβ αβ αβΦ = +    

Measurement process, given in discrete-time, probabilistic and state-space 
Hamiltonian ( ,q p )-form:  

( ) ( ) ( )1 1| ~ | , with:  ~ ,t t t t t t tp q h p q p h q q qαβ αβ αβ αβ αβ αβ αβ αβν µ⇔ = +     
(25) 

 

 

5Half continuous-time, half discrete-time. 
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where tν  is a non-Gaussian measurement noise. Note that here we use the 
inverse dynamics (given coordinates, calculate velocities, accelerations and 
forces)—as a bridge between robot’s self-localization and control: measuring 
coordinates tqαβ  at discrete time steps t and from them calculating momenta 

tpαβ  and control forces tpαβ
 ; 

Bayesian recursions, given in discrete-time Hamiltonian ( ,q p )-form:  

( ) ( ) ( )
( )

Measure Predictor
New Filter

1: 1
1:

1: 1

| |
| ,

|
t t t t

t t
t t

h p q p q p
p q p

p p p

αβ αβ αβ αβ
αβ αβ

αβ αβ

−

−

=  

where 

( ) ( ) ( )
Old FilterDynamicsPredictor

1: 1 1 1 1: 1 1| | | d ;t t t t t t tp q p f q q p q p xαβ αβ αβ αβ αβ αβ
− − − − −= ∫           

(26) 

and 

( ) ( )
( ) ( )

( ) ( )( )
Measure

We ghted DynamicsFilter PDF

1: 1 1
11: 1

|
| | ,

|

iNt t i i
t t t t t

it t

h p q
p q p w f q q

p p p

αβ αβ
αβαβ αβ αβ

αβ αβ − −
=−

≈ ∑
         

(27) 

with IS weights: 

( )

( )( ) ( ) ( ) ( )( )
( ) ( )( )

1 1
1

1 1
1

| |
,

|

N
i n i n

t t t t t
i n

t N
n n

t t t
n

h p q w f q q
w

w f q q

αβ αβ αβαβ

αβαβ

− −
=

− −
=

=
∑

∑
 

 

 
Figure 5. Sample output of the Hamiltonian servo framework applied to a large fleet (a 
9 9×  matrix) of 81 UGVs. As expected, the plot shows almost periodic time evolution of 
coordinates ( )q tαβ  and momenta ( )p tαβ . Slight variation of both coordinates ( )q tαβ  

and momenta ( )p tαβ  from the intended regular harmonic motion is due to adaptive 

control with initial random distribution of synaptic weights ( )tαβω . This plot is the 

simulation output of the Hamiltonian neural network (23)-(24) and recurrent estimation 
(larger amplitudes, governed by the Bayesian particle filter (25)-(27)). 
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where bracketed superscripts ( ),i n  label IS weights.  
This Hamiltonian servo framework has been implemented in C++ language 

(using Visual Studio 2015; see Appendix 1.2). A sample simulation output of 
the servo system is given in Figure 5. The Figure demonstrates the basic stability 
and convergence of the servo system. 

6. Conclusion 

In this paper we have outlined a novel control and estimation framework called 
the Hamiltonian Servo system. The framework was shown to be a generalization 
of the Kalman Servo System. Using an example of a large team/fleet of 81 ( 9 9× ) 
unmanned ground vehicles (UGVs), it was shown that the framework described 
provided the control and estimation as required. This approach encompassed a 
three tired system of adaptive control, measurement process and Bayesian 
recursive filtering which was demonstrated to enable control and estimation of 
multidimensional, non-linear and non-Gaussian systems. 
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Appendix: C++ Code  
1.1. Affine Hamiltonian Neural Network 
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1.2. High-Dimensional Bayesian Particle Filter 

The following C++ code uses the Armadillo matrix library [41].  
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