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Abstract 
Neuroblastoma (NBL) is one of the most common solid tumors and around 
15% of cancer mortality in children. Amplification of the N-Myc pro-
to-oncogene is strongly correlated with advanced disease and poor clinical 
outcome in NBL. Recent studies described that ubiquitin-specific protease 7 
(USP7; also known as HAUSP) interacts with N-Myc, induces deubiquitina-
tion and subsequent stabilization of N-Myc that in-turn potentiates N-Myc 
function, and treatment with the HAUSP inhibitor (P22077) blocked such ef-
fects. 
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1. Introduction 

Neuroblastoma (NBL), the most common solid tumor of childhood, is origi-
nated from the neural crest cells of the developing sympathetic nervous system 
[1]. It represents 8% - 10% of pediatric tumors and accounts for 15% of all pe-
diatric cancer deaths [2] [3] [4]. In the recent years, considerable progress has 
been made in the treatment effect of NBL including chemotherapy, radiothera-
py, surgical resection and hematopoietic stem cell transplantation; however the 
5-year overall survival (OS) is still less than 50% in high-risk NBL [4] [5]. 

The genetic feature most consistently associated with treatment failure is an 
amplification of the N-Myc proto-oncogene, which is strongly correlated with 
advanced disease and poor prognosis [6] [7] [8] [9] [10]. Generally, amplifica-
tion of N-Myc occurred in neuroblastoma based on the mechanisms involving 
double minutes (dmin) or homogeneously staining regions (hsr) [11]. Expres-
sion of N-Myc is associated with accelerated proliferation, migration, invasion 
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and metastasis [3] [12] [13] [14] [15]. Consistence with these evidences, 
N-Myc transgene can induce tumor formation in transgenic mice [16], and 
N-Myc-knockout mouse shows embryonic lethality [17] [18] [19], whereas the 
Nes-Cre-driven conditional knockout of N-Myc has a decrease in cerebellar and 
cerebral cortex mass due to defective cellular proliferation [20]. 

At the early stage of NBL, it is often clinically unrecognized [21]. The primary 
tumor usually occurs in the abdomen (60%), but neuroblastoma children 
present with metastasis more than 50% at diagnosis [2]. NBL metastasis is 
usually present in the bone marrow (70.5%) or the skeleton (55.7%); patients 
may also present with metastasis in the lymph nodes (30.9%), liver (29.6%), or 
intracranial and orbital sites (18.2%) [22]. Recently, Yue Z-X. et al. demonstrat-
ed that clinical outcome was poorer in NBL patients metastases to bone marrow 
with N-Myc amplification than in those without amplification [23]. 

2. Results 
2.1. PI3K/mTOR/N-Myc Inhibition 

Both C-Myc and N-Myc contribute to the regulation of VEGF and angiogenesis. 
Like C-Myc, N-Myc is stabilized by activation of phosphatidylinositol 3-kinase 
(PI3K) [24], and inhibition of PI3K and mTOR (mammalian target of rapamy-
cin) leading to reduced secretion of VEGF and decreased levels of N-Myc pro-
tein [25] [26] [27]. Moreover, Chanthery Y.H. et al. demonstrated that a clinical 
PI3K/mTOR inhibitor, NVP-BEZ235, decreased angiogenesis and improved 
survival on N-Myc dependent mechanism in both primary human (highly pre-
treated recurrent N-Myc-amplified orthotopic xenograft) and transgenic mouse 
models for N-Myc-driven neuroblastoma, suggesting that NVP-BEZ235 should 
be tested in children with high-risk, N-Myc-amplified neuroblastoma [28].  

2.2. PARP1/N-Myc Inhibition 

Poly (ADP-ribose) polymerase (PARP) is involved in a number of cellular 
processes such as DNA repair, genomic stability, and programmed cell death in 
the response to numerous endogenous and environmental genotoxic agents [29] 
[30] [31]. Survival studies of PARP knockout (PARP-/-) mice after γ-irradiation 
showed that, PARP-/- mice died within 10 days post-irradiation compared to 
wild-type controls, those remained apparently healthy [29]. Recently, Colicchia 
V. et al. described that higher expression of PARP1 was associated with poor 
clinical outcome in NBL patients [32]. Moreover, PARP1 is highly expressed in 
N-Myc amplified and advanced stages compared to N-Myc non-amplified and 
lower stages in primary NBL or NBL cell lines; supporting N-Myc inhibition 
might be a promising developmental therapy in NBL. 

2.3. PD-L1/N-Myc Inhibition 

Cancer immune evasion is a major stumbling block in designing effective anti-
cancer therapeutic strategies [33]. Cancer cells frequently produced factors such  
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Figure 1. Schematic diagram of model shows the association between 
HAUSP and N-MYC, and how HAUSP inhibitor (P22077) can facili-
tate the degradation of N-MYC protein that in-turn suppressed Neu-
roblastoma (NBL) cell proliferation & tumor growth. Courtesy of Ta-
vana O. et al. (modified by M.K. Hasan). 

 
as PD-L1, adenosine, IL-10 and TGF-β that bind negative regulatory surface re-
ceptors expressed on cytotoxic T cells [34]-[39]. Tumor cells expressed PD-L1 
on the surface and prevent binding of its inhibitory receptor PD-1 on T cells 
[40]. Targeting PD-L1 or PD-1 by mAb immunotherapies was shown to have 
pronounced anti-tumor activity in clinical trials [34] [35] [41] [42]. Recently, 
Melaiu O. et al. described that higher level of PD-L1 expression was correlated to 
unfavorable prognosis in NBL patients [43]. PD-L1 expression was observed 
higher with N-Myc amplification in NBL patients and cell lines. Moreover, 
N-Myc blockade causes suppression of PD-L1 expression in NBL; suggesting 
N-Myc-inhibition therapy could restore an efficient anti-tumor immunity in 
high-risk neuroblastoma. 

2.4. HAUSP/N-Myc Inhibition 

Ubiquitin-specific protease 7 (USP7; also known as HAUSP) is a ubiquitin spe-
cific protease or a deubiquitylating enzyme that cleaves ubiquitin from its sub-
strates [44]. As ubiquitylation process (polyubiquitination) is most commonly 
associated with the stability and degradation of cellular proteins, HAUSP activity 
generally stabilizes its substrate proteins. In cancer biology, HAUSP have im-
portant role for the modulation of the stability and activity of several cellular 
proteins [45]-[50]. 

Recently, Tavana O. et al. found that ubiquitin-specific protease 7 (USP7 or 
HAUSP) directly interacts with N-Myc, and HAUSP expression induces deubi-
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quitination and subsequent stabilization of N-Myc [51]. RNA interference 
(RNAi)-mediated knockdown of USP7 in neuroblastoma cancer cell lines, or 
genetic ablation of Usp7 in the mouse brain, inhibits stabilization of N-Myc 
protein, which leads to suppression of N-Myc function. Structural analysis re-
vealed that amino acids from 281 to 345 region of N-Myc protein are necessary 
for this interaction. 

Moreover, high expression of HAUSP in patients with neuroblastoma is asso-
ciated with poor prognosis, and significantly correlates with N-Myc transcrip-
tional activity. Treatment with the small-molecule inhibitor of HAUSP (P22077) 
suppressed cell proliferation, and the growth of xenograft tumor models in 
mouse derived from N-Myc-amplified human neuroblastoma cell lines. (See 
Figure 1). 

3. Conclusion 

Overall results suggesting that inhibition of N-Myc might have important appli-
cations for the treatment of NBL patients with N-Myc amplification. 
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