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Abstract

In this paper, discrete time risk models under an excess of loss reinsurance are
studied. Adjustment coefficients of the cedent and the reinsurer are estab-
lished as functions of quota share level and retention level. By the martingale
method, ruin probabilities of the cedent and the reinsurer still have exponen-
tial form. Finally, numerical examples are provided to illustrate the results
obtained in this paper.
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1. Introduction

We consider the insurer’s surplus in period n,n=12,..
defined by:

denoted as U, is

U, =u+3Y, -3 X, =12, (11)
i=1 i=1

where:

e yu isthe insurer’s initial surplus;

e Y  denotes the premium income in period n (ie., from time n-1 to time
n), Y= {Yn}

(i.i.d.) non-negative random variables;

o is a sequence of independent and identically distributed

e X, denotes the claim amount in period n, X ={X,} _ is a sequence of

n>0
i.i.d. non-negative random variables and is independent of Y
The process {U, }n>0

Yang [1] gave the upper bounds of ruin probabilities of the insurer by using the

defined by (1.1) is called a surplus process (see [1]).
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martingale method. Cai and Dickson [2] extended the surplus process in (1.1) by
including the interest rate. Then, the surplus process {Un}n ., can be written as
following

U,=U,,(1+1,)+Y, = X,, n=12,- (1.2)

where U, =u and [, denotes the interest rate of the insurer in period n. The

n
sequence | ={|n}n20 is assumed to be a Markov chain and independent of X
and Y. With surplus process (1.2), the upper bound of the insurer’s ruin
probability was established by the martingale and inductive methods in [2].

In the classical risk model, claims are assumed to be paid by one insurer.
However, insurers can transfer risks from one primary insurer (the ceding
company or cedent) to another one (the reinsurance company) through
reinsurance contracts. For that reason, some authors extended the classical
surplus process in a consideration of an excess of loss reinsurance. For example:
the various articles [3] [4] [5] investigated the effect of the reinsurance contract
on the upper bound of the cedent’s ruin probability. The upper bounds of ruin
probabilities of the cedent and the reinsurer were estimated in [6] [7] where
Dam and Chung considered the risk model under quota share reinsurance. The
explicit expression was given for finite-time joint survival probability of the
cedent and the reinsurer in [8]. An optimal reinsurance retention was studied
under ruin-related optimization criteria in [9].

This paper investigates the effect of an excess of loss reinsurance on the
ultimate ruin probabilities of the cedent and the reinsurer in the discrete-time
model. The risk models are investigated in two cases without interest rate and
with homogeneous Markov chain interest rate. The premium income is assumed
as a sequence of independent and identically distributed random variables. In
particular, the author shows that for given value ¢ then there exists a quota
share level and a retention level so that both the ruin probabilities of the cedent
and the reinsurer are less than value ¢ .

The content of this paper is organized as follows: A brief description of the
models and some notions are presented in Section 2. Section 3 is devoted to the
construction of the ruin-related problems in the risk model without an interest
rate. The upper bounds of ruin probabilities in the risk model with interest rate

are given in Section 4. Finally, numerical illustrations are given.

2. The Risk Models

In this paper, we investigate the effect of an excess of loss reinsurance on the
surplus processes (1.1) and (1.2). First, the cedent and the reinsurer arrange an
excess of loss reinsurance that we denote « (a IS [0,1]) as the quota share level
and M(M >0) is retention level. The premiums are calculated according to
the expected value principle. Ze. for each insurance company, the premium
income expectation is greater than the claim expectation.

Proposition 1 shows that there exists («,M ) such that the premiums satisfy

the expected value principle. We will denote the probability space as a triple
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(QF,P),

b
x;=0 and []x =1 if a>b.
i=a

b
=a

Proposition 1. Assuming that

E(X,)<E(Y,) (2.1)
for any given M there exists « such that:
E(min{X,;,M})<aBE(Y,) (2.2)
and
E(max{X, -M,0})<(1-a)E(Y,) (2.3)
Proof For any M, we denote A={X, <M} and A=Q\A={X;>M}.
We have
E(min{X,,M})=[min{X, M}dP= [ min{X,,M}dP = [X,dP+ [MdP. (2.4)
Q AUA A A

E(max{X, ~M,0})= [max{X,~M,0}dP= [ max{X,-M,0}dP

AUA

(2.5)
=[(X,~M)dP = [X,dP - [MdP.
A A A
Using (2.4) and (2.5), we imply that
E(min{X,,M})+E(max{X,-M,0})=E(X,).
From E(X,;)<E(Y,), thus
E(min{X,,M})+E(max{X,-M,0})<E(Y,).
We have
E(min{xl,M})<1_E(max{X1—M,0}).
B(Y,) E(Y,)
Since, we imply the existence « such that
E(min{ X, M E X,—M,0
J[EmnDmy | B omo))
B(Y) E(Y,)
E(min{X,,M E X,—M
where MZO and 1- (max{ : ’0})31. U

E(Y,) E(Y,)
We now consider the surplus process {Un}n>0 defined by (1.1) with the
excess of loss reinsurance. Then, the cedent’s surplus and the reinsurer’s surplus

in period N,N=12,--- are denoted by U, and V_, respectively. Surpluses

U, and V, can be expressed as
Un=u+azn:Yi—Zn:min{Xi,M} (2.7)
=
and
V,=v+(1-a)3Y, -3 max{X, ~M,0} (2.8)

where uzand vare initial surpluses of the cedent and the reinsurer. The processes
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(2.7) and (2.8) are called surplus processes.
The finite-time and ultimate ruin probability of the cedent with initial surplus
u are respectively defined by
yfﬁ”(u,a,M):I@(U(ui so)j and y" (u,a,M)= [U (U, <0) j (2.9)
i=1 i=1
Similarly, the finite-time and ultimate ruin probability of the reinsurer with
initial surplus v are denoted by l//r(]z) (v,a,M) and (//(2) (v,a,M) . The
probabilities are defined by
y? (v,a,M)= P(U(Vi < o)] and " (v,a,M )= IP{U(Vi < o)). (2.10)
i=1 i=1
Obviously: y/()(u a, M)—Ilmy/n (u,a,M) and
w(z)(v,a,M): Iimt//n (v a,M )

Let 1Y ={|r(11) }M and 1? ={|,(12)}n>0 be the interest rate sequences of the
cedent and the reinsurer, respectively. The interest rates satisfy assumptions
(2.1) and (2.2).

e Assumption 2.1. The cedent’s interest rate sequence 1@ :{Ir(]l)} is a
homogeneous Markov chain, 1Y takes the values in a finite set of nS(z)sitive

E ={ig.i;,+,iy,} and
p =P(15 =i 1 =i 1 =i, 1 =i ) =P (1 =i =i) @

My
where » p, =1 forany s=0,1,---,M, and p, >0 forall st=01---,M,.
t=0

e Assumption 2.2. The reinsurer’s interest rate sequence 1 :{Ir(]z)} is a
n=0

homogeneous Markov chain, Ir(f) takes the values in a finite set of positive
F :{jon jll"' jM } and

(s _P(Ir(wi_h " :js’l'(ﬁi:jtnfl"”’l((JZ):jto):P(lr(ﬁ:jt

1P =) @12

M,
where qutzl forany s=0,1,---,M, and q,>0 forall s,t=0,1---,M

t=0
Then, the cedent’s surplus and the reinsurer’s surplus in period n,n=12,--
are denoted by U, and V..

Us =U,s(1+19)+ @Y, —min{X,,M} (2.13)
and
Vi =V (1+17) + (1- @)Y, ~max{X, - M,0} (2.14)

where U;=u and V, =v are the cedent’ initial surplus and the reinsurer’s
initial surplus, respectively.
It is easy to see that (2.13) and (2.14) are equivalent to

u; :uﬁ(l+ |§1>)+nf(aYk —min{X,,M}) ] (2+1§)+ @Y, —min{X,, M}
k=1 k=1 j=k+1

(2.15)

“TT (e ){u +Z(aY —min{X,,M })ﬁ(1+ |§1>)1}

k=1 j=L
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and
n n-1 n
Vy =V (1 17)+ X (1) Y ~max{X, -M,0}) [ ] (1+1?)
k=1 k=1 j=k+1
+(1-a)Y, —max{X, —M,0} (2.16)

k

2>){v+§((1—a)vk —max {X, M, 0} ] (1+ |§2))1}

i1

Il
—_—
[N
+
~—

=~
[iN

The finite-time and ultimate the cedent’s ruin probabilities with surplus
(1) _

s

A (u,a,M i) = (U (Ur<0) ‘I 0 _j j (2.17)
k=1

process (2.15), initial surplus zand a given | are respectively defined by

and

(Ur<o)1gY

m(u,a,M,iS):P(

= |j (2.18)

=~

T(Cs

1

Similarly, the finite-time and ultimate the reinsurer’s ruin probabilities with
(2)

surplus process (2.16), initial surplus vand a given 1;” = j, are
¢,§2)(v,a,M,sz]P’{Q(Vk*SO)‘IéZ) - jtJ (2.19)
and
e (v,a,M,jt)zlP(Q(Vk*so)‘léz) = jt]. (2.20)

Clearly: ¢(l) (U, M, i) =lim ¢r(11) (ua,M,i;) and
#? (v M, ) = limg? (v,a, M, ).

3. The Ruin Probabilities in the Risk Model without
Interest Rate

The adjustment coefficients, which depend on quota share level and retention
level, are established in the following lemmas.

Lemma 2. If essup{X,} <+oo, essup{Y,} <+w, aB(Y,)>E(min{X;,M})
and ]P(min (X, M}—aY, > 0) >0 for any (a,M) then there exists the
unique R;(a,M) (ﬁo (a,M)> O) such that

E(eﬁo(a,M)(min{XLM}faYl)) =1. (3.1)
Proof. We set N, =essup(X;),N, =essup(Y,) and Q =min{X,,M}-ay,.

We have

eR(min{Xl,M}—aY1)

<e™ forall0<R<w; E(eRN1)<oo.

Therefore, there exists the expectation value of eR(MMMI) g all
0<R<w.

Forany (a,M),ifweset g, (R)zE(eRQl)—l for 0<SR<o then
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9, (0)=0. (3.2)

Differentiating the above function, we get

ga,M (R+AR)_ gtl,M (R) — Iim

AR—0 AR AR—09Q

eRQl (eARQl _1)

dP. (3.3)

Let {ARn}nﬂ(ARn #0,R+AR >0), AR, —0 be an arbitrary real-valued
sequence as n— . Using the Mean Value Theorem for e“%% te[0,1], we

obtain

e =1+ AR Q™™ (0< 0 <1)

Moreover, for any e>0, there exists a natural number n, such that
|AR | <N, forall n>1,where N,= max{e,|AR1|,|AR2| ,~~,|ARno } .
Thus, we have
efa (eAR"Ql —1)

AR|

Qle(RWARn)Ql‘ < ‘Qle(R“gNs)\Ql\‘ < (Nl + Nz)e(RWNa)(NﬁNz), n>1

and

E (( N, + Nz)e(R+0N3)(N1+N2)) = (N, + Nz)e(R+0N3)(N1+N2) < 400,

Applying Lebesgue’s Dominated Convergence Theorem, we imply that

eRQ1 (eARan _1) eRQl (eARan _1)

lim [, dP = [, lim dP = [ Qe"dP =E(Qe™®). (3.4)

From (3.3) and (3.4) function g, (R) is differentiable
g;‘M (R) _ E(QleRQl) _ E((min {Xl’ M } _ aYl)eR(min{XyM}*aYi))_

n

So,
9.m (0)=E(min{X1,M}—aYl)<0. (3.5)
It means that the g, (R) is decreasingat R=0.

Since P(min{Xl,M}—aY1>0)>0 there exists 6 >0 so that
P(min{X;,M}-aY,>5)>0. We have

Gom (R) E(eR(min{Xl,M}—aYl)) _1

E(eR(min{Xl,M}—aYl)l(

\%

min{X;,M}-a¥;>5) ) -

(3.6)
.
> E(e ol(min{xl,M }—aY1>§)) -1

=eMP(min{X,,M}-aY, >5)-1.
The right side of (3.6) tends to infinity as R — oo . It implies that

limg, (R)=c0. (3.7)

Combining (3.2), (3.5) and (3.7), function g, (R) must intersect the x-axis.
In other words, there exists a positive x-intercept of g, (R). Let’s denote it
R, (. M) (Iio (M) > O) . Apparently, FAQO (a,M) is a root of the following
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equation
9.m (R)=0. (3.8)

Similarly, function g, (R) is twice differentiable. Hence,

07 (R)=E((min{X,, M} - a¥, ™™ M) g7 (R) >0,

That means g, ,, (R) is strictly convex for Re[0,+0). Thus, R, ((x, M ) is
the unique positive of Equation (3.8)
O
The proof of Lemma 3 is similar to Lemma 2 and we omit the proof here.

Lemma 3. If

essup{X, } <o, essup{Y,} <o, (1-a)E(Y,) > E(max{X, - M,0})

and
P(max{X,~M,0}-(1-a)Y,>0)>0

for any (a,M) then there exists the unique R, (M )(ﬁo(a, M)>0) such
that

B (eﬁo(a,M )(max{ X;-M ,0}7(1701)\(1)) -1 (3.9)

The following theorem provides the exponential upper bounds of
l//(l)(u,a,M) and y? (v,a,M).
Theorem 4. Assuming that the surplus processes given in (2.7) and (2.8)

satisfy assumptions in Lemma 2 and Lemma 3. Then,

y® (u,a,M) < e M) (3.10)
and

y? (v,a, M) <e M) (3.11)

forany (a,M).
Proof In order to prove (3.10), we set the stochastic process {Zn}

n>0

~Ro(a,M )[u+i§1(aYi—min{Xi,M})] _ efﬁo(ﬂlvM)Un for = 1, 2, v and

Zoze—uﬁo(a,M)’z —e
the filtration {F,} , where % ={2,0Q},
Fo=0(20 2y Z0) =0 ( Xy Xprrors X Yo Yy Y, )5 N=12,0

The stochastic process {Z,}  is a martingale with respect to the filtration

{‘7:n}nzo'

Indeed

n>0

E (Z1| j_.o) -E (e—ﬁo(a,M)(u+aY1—min{X1,M}))
-E (e—uﬁo(a,M JpRolam )(min{X1,M}—aY1)) (3.12)

— efuﬁo(a,M) — Zo-

We now consider for n=1,2,---
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B(Z,.| %)
B (Z e—FEO(a,M N@¥pgr—min{ X p,q,M}) |j—' )
n n

_7 E(eéo(a,m)(min{an,M}aYM) ,7-") (3.13)
n n :
Ro(a,M )(min{X ,1,M }-aY,,.
:ZnE(e ol )( o M) l) X]_,Xz;"'yxnaYlszr"'yYn)
_7 E(eﬁo(a,M)(min{XnH,M}—aYnﬂ)).
Moreover
E(eﬁo(a,M)(min{XnH,M}—ale)) _ E(eﬁo(a,m)(min{xl,M}-avl)) -1 (3.14)

Combining (3.13) and (3.14), thus

E(Z,,%)=2, forn=12,. (3.15)

n

Since the stochastic process {Zn} is a martingale with respect to the

n=0
filtration {F,} . Let z=min{n:U <0}. Then naz=min(n,z) is a finite
stopping time. Thus, using the optional stopping theorem for martingale
{Zn}nzo , (see [10]) we get

E(Z,,)=E(Z,)=¢ R,

This deduces that
el Z (2, )2 B(Z L ) = B(Z, ). (3.16)
From (3.16) and (Z, >1), we obtain
e RleM > B(1_ ) =P(r<n)=p (u,a,M). (3.17)

Therefore, inequality (3.10) is followed by letting n — oo in (3.17).
The proof of inequality (3.11) is similar to the one for inequality (3.10).
O

In reinsurance businesses, evaluation the two ruin probabilities of the cedent
and the reinsurer are crucial. Because the insurers based on the ruin probabilities
to determine (a,M) so that y® (u,@,M) and ' (v,a,M) are decreased.
However, the issue is a difficult topic. The following theorem shows us how to
determine (a, M ) so that (//1(1) (u,a, M) and l//l(z)(v,a, M) are less than a
given value €.

Theorem 5. Assuming that the surplus processes given in (2.7) and (2.8)
satisfy the following assumptions:

1) Random variable X, ,n=1,2,--- takes values in a finite set of non-negative

numbers Gy ={X,%,,---, Xy} where (0<x <X, <--<x,) and
N

P =P(X,=%), 0<p, <L, > p =1
k=1

2) Xy, —u-v>0.
For any given e satisfies

P(Ylst—u—v)P[U (X1=Xi)JS€ (3.18)
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there exists (&, M) such that

and

Proof. By X, —u—V>0,weimply that there exists (M,a) such that

wl(l)(u,a, M)<e

!//1(2) (v,a, M ) <e.

M =u+a(x, —u-v) foralla (0,1).

Obviously M >u.

Expression (3.21) is equivalent to

M -u
a

=Xy —U—V.

For any given e satisfies (3.18). We have

e>P(Y, <x, —U _V)P(i-LNL;inZU(Xl =X )J

=P(u+a¥,-min{X,,M}<0)=y (u,a,M).

(3.19)

(3.20)

(3.21)
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Since, (//1(1) (ua,M)<e

Moreover, Expression (3.21) can be written

Hence

i=LNx;>u (3.22)
e )

Using (3.22) and M +v >u, thus

i:lW:x@Mw

zp[vlsw}ﬂ[ U (X1=Xi)ﬂ

1_a i:l,W:x@Mw

_p [v+(1—a)Y1—(X1—M)§°]n[ . (Xlzxi)D

i=LN:G2M+v

=P|[v+(1-@)Y,-max{X, - M,0 <0]ﬂ{ 7UM V(X1=Xi)D

=P(v+(1-a)Y,-max{X, -M,0} <0)
1((VaM)

O

Li [9] investigated the optimal M to maximize the joint survival probability
for the cedent and the reinsurer in one period insurance. If both companies
don’t occur ruin at certain period n-1, U, , and V, _, will be initial surpluses
of the insurance companies before period z, respectively. Therefore, we apply
Theorem 5 to estimate the probabilities of the insurance companies to period

n-1 from period n.

4. The Ruin Probabilities in the Risk Model with
Interest Rate

In the section, we consider surplus processes (2.15) and (2.16). The proofs of
Lemma 6 and Lemma 7 are similar to the one for Lemma 2.

Lemma 6. If

essup{X,} <+oo, essup{Y,} <+, aB(Y,)>E(min{X;,M}) and
P(min (X, M}-aY, > 0) >0 for any (a,M) then there exists the unique
R, (@.M) (R, (2,M)>0) such that

i ig
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fzis(a,M)(min{xlvM}*a‘ﬁ)(lﬂl(l))*l 1 _-
. -1 )

forany s,5s=0,1,---,M,.
Proof. Forany (a,M) and s,5=0,1---,M,, we set

R(min{xl,M}7z;zv1)(1+|{1))7l .
f.us(R)=E|e "o =i, |-1 (4.2)
for Re[0,).
Similarly, we show the expectation value existence in (4.1). In particular
foms(0)=0, (4.3)
£ ):E( (min{X;,M}-aY,)(1+11) ‘Hl) =isj
E(mln{xl,M —aY,) (4.4)

< )
E(1+ 1)1 _is)

172 min{X; M }-aY; +(l) N
7\ S( )=E[[(min{X1,M}—aYl)(1+ |1(1)) 1} eR( (Xg.M} Y)(l I j ‘Iél) =is}>0. (4.5)
Moreover
lim £,y s (R) =0, (4.6)

Combining assertions to (4.3) from (4.6), we deduce that function f,,,  (R)
must intersect the x-axis. Let’s denote it Iiis (a.M )(F\A’iS (M) > 0) . Apparently,
ﬁis (a,M) is the unique intersection.

Ul
Forany (a,M).We set

ﬁl(a,M)zTJQ{ﬁis (@.M)>0:1,, (R, (@.M))=1}. (4.7)

The function f,, ((R) is strictly convex for Re[0,00), 0< Iil(a, M)<R. .
Since, f,,, (R1 (a,M )) <0 this is equivalent to

Ry(a.M )(min{X;,M )ﬂyl)(lﬂ{l))’l
Ele =i <1 (4.8)

forall s=0,1,---,M;.

We have
E{eﬁl(a,M)(min{xl,M}aYl)(hll(l))_l Iél)]
M, Ry(er,M )(min{ Xy M}y (11 B .
- E[e ) ‘|(()1>:|s 1(|(1):i) (4.9)
s=0 0 s
My
<H 1 =1.
=0 (Ii()l)—'s)
Hence
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Ry(a.M )(min{X;,M ;ﬂyl)(m{l))’l
| e ‘lé” <1, (4.10)

Lemma 7. If

essup{ X, } < +oo, essup{Y, } < +oo, (1-a ) E(Y,) > E(max { X, —M,0})

and
P(max{X,—M,0}-(1-a)Y,>0)>0

for any (a,M) then there exists the unique Iijl (a,M) (Iij‘ (a,M)> 0) such
that

. -1
| Ruam - Op-(1-a)1{?) ‘ 0= =1 (4.11)
forany t,t=0,1---,M,.
Proof. The proof of Lemma 7 is similar to the one for Lemma 2. U
If
R, (M) = min (R, (:M)>0:0,4, (R, (@M))=1}  @12)
then
o -1
E [eRl(“‘M max{ X4 0}-(1-s 1) ‘ |(§2)J <1 (4.13)
where

R(max{X;-M ,0}~(1-a )Y, )(M(Z))’l
gaMt(R):E[e( {X1-M, a)Yy 1 ‘Iéz):jt]

Using martingale method, we present the exponential upper bounds of
¢ (u,a,M,i;) and ¢?(v,a,M, j,).
Theorem 8. Assuming that the surplus processes given in (2.15) and (2.16)
satisfy assumptions in Lemma 6 and Lemma 7. For any (a,M) then
8 (U, M, i, ) < Rl (4.14)
and

¢? (v,a, M, ) < e Rl (4.15)

forall s=0,1,---,M, and t=0,1,---,M,.
Proof. We first consider the stochastic process {Hn} and the filtration

n=0
{Go},.o Where

k=1 =1

~Ry(aM ){u+ 3 (i -min{ X, M })ﬁ(ulﬁ”)ﬂ

and

go :O-(I(gl))ugn :6<X1’x2|"’vxanllY21"',anI(gl)l I:El)v”'l Ir(ml))lnzlxzn"'-

We have
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—uRy(,M Ry (@, M )(min{ X;,M }705\(1)(1”1(1))_1

E(Hl|go):E[e

A -1
_ e—uﬁl(avM )E{eRl(a,M )(min{X;,M }—aﬁ)(lﬂ{l)) ‘ | (1)] (4.16)

<o RlEM) |

For n=12,--, we get

E(Hn+1|gn)
n+l -1
Ry M)(min{ X 1M }-a¥.1)TT 11
—H,E|e fiu7) ‘xl,xz,-.-,xn,Yl,YZ,---,Yn,|(§1>,|1<1>,---,|§1) (4.17)

Ry(@ M )(min{Xp,q,M }anﬂ)nf[l(ngl))fl
I ‘ |

=H,E|e =

n

n 1
We set r:H(l-i-lgl)) ,(0<r<1). According to Jensen’s Inequality, it

1/r
|;1>,.1<1>,...,|£“ﬂ

j=1
implies that
|§1)J (4.18)

I:E [e Ri(ar.M)(min{Xp.q.M }*aYn+1)(1+'r(11+)1)7lr

IA

B [efal(a,lvl J(min{Xp,1,M }7aYn+1)(1+|§1+)1)71

_E {eﬁl(a,M )(min{X;,M }_ayl)(1+|1(1))'1 |

Combining (4.17) and (4.18), we obtain
]E(Hn+1|gn)g H, forn=1,2,--

Hence, the stochastic process {Hn} is a supermartingale with respect to

the filtration {gn}

n=0

n>0*
k

Let 7, = min{n:u +§n:(aYk -min{X,,M })H(1+ |(1))f1 <0
k=1

! i

j=1

I(()l) = is} . Then

nNAat,=min{n,z,} is a finite stopping time. Thus, by the optional stopping

theorem for supermartingale {Hn }nzo , (see [10]), we get
E(H,., )<E(H,)=e M),
This implies that
e R > B(H,, )2 B(Hy L ) =B(H, 1) (4.19)
By (M, >1) and (4.19), we have
e MM > E(L ) =P(r, <n) =4 (u,a,M.i,). (4.20)

By letting n — oo in (4.20), we obtain inequality (4.14).
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The proof of inequality (4.15) is similar to the one for inequality (4.14). ]

5. Numerical Illustrations
5.1. Example 5.1

oy and X = {Xn}m satisfy the conditions in

Theorem 5. Initial surpluses u=2.1 and v=1.5. The distribution functions of

Suppose that sequences Y = {Yn}

Y, and X, are defined in Table 1 and Table 2, respectively:

Inequality (3.18) implies for all €>0.028643 there exists (&,M) such that
l//l(l) (ua,M)<e and 1/11(2) (v,a,M)<e.E.g. from (3.21) we chose
o =0.758614 this follows M =2.403446 then couple
(r=0.758614,M =2.403446) is the solution of Theorem 5.

If (a=0.758614,M =2.403446) then E(Y,)=2.500000,
E(min X;,M)=1.274934 and ]E(max {X,-M ,O}) =0.222952 . Hence, couple
(o =0.758614,M =2.403446) also satisfy Proposition 1.

5.2. Example 5.2

In this example, let Y, and X, take the same structure and values as the ones
in Example 5.1. Initial surpluses u=12.1 and v=105.

The interest rate sequence of the cedent 1 ={Ir(]l)} is a homogeneous
Markov chain, I,El) takes values: i, =6% , i,=8% nZOand i,=10% . The

transition probability matrix of the process 1® is

03 06 01
03 04 03]
02 07 01

Similarly, the interest rate sequence of the reinsurer |(2)={|,(11)} is a
n>0

homogeneous Markov chain, I,(]l) takes values: j,=55% , j =8% and

j, =12% . The transition probability matrix of the process 11 is

02 08 O
015 0.7 015
0 08 02

Let «=0.350000 and M =1.103245, we have Table 3 and Table 4.
We denote the moment-generating functions of W, =min{X;,M}—-aY, and
W, =max{X,-M,0}-(1-a)Y, are

Table 1. Distribution function of Y, .

Y, 0 1 5

=] 0.205112 0.366128 0.42876

Table 2. Distribution function of X, .

X, 0 2 4
=] 0.390703 0.469651 0.139646
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Table 3. Distribution function of min {Xl, M } -ay,.

min{X,,M}-ay, -1.750000 —0.646760

P 0.167518 0.261242
~0.350000 0.000000 0.753245 1.103245
0.143047 0.080138 0.223081 0.124974

Table 4. Distribution function of max{X, -M,0} -(1-a)Y,.

max{X,-M,0} -(1-a)V, —3.250000

P 0.167518
~2.353250 ~0.650000 -0.353250 0.000000
0.201368 0.143047 0.059875 0.080138
0.246755 0.896755 2.246755 2.896755
0.171952 0.096331 0.051128 0.028643

M, (R)= E(eR(min{xivM}faYl) )
= 0.167518e L7%%0R | () 2612426 OSHTOR | 143047 OBR (5 1)
+0.080138 +0.223081e%7%%24R 1. 0,124974¢"13%5R
and

=0.167518e>#%%R +0.201368e > %R +0.143047¢ *#00%R (5.2)
+0.059875e %R 1+ 0,080138 +0.171952e° "R
+0.096331e°%°7%°% 1.0,051128e***°"*°% +.0.028643¢>%°"*%
for Re(0,).

Using Matlab software, we obtain ﬁo (a =0.035000,M :1.103245) =0.493945
and R,(a =0.035000,M =1.103245)=0.571825 which are the solutions of
equations M, (R)=1 and My, (R) =1, respectively.

If I(()l) =i, then Equation (4.1) can be written

R R R
0.3M,, | — |+0.6M,, | — |+0.IM,,, | — |=1. 5.3
Wl[l.oaj Wl(l.osJ Wl(l.lj (5:3)

Similarly, for I((,1)=il and I(()1)=i2 Equation (4.1) is equivalent to,

R R R
03MW1 (EJ+O4MW1 (EJ+O3MW1 (ﬂjzl (5.4)

oo &) om [ Joma,(£) o s
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Combining the solutions of Equations (5.3), (5.4) and (5.5), we have
R, (a =0.350000, M =1.103245) = 0.531355
Similarly, for I(()2)=jo,|(()2)=j1 and I(()2)=jZ Equation (4.11) can be

written, respectively,

R R R
0.2M,, | —— [+0.8M,, | — |[+OM,, | — |=1, 5.6
We (1.055) We (1.08) We (1.12) (5.6)

R R R
0.15M,, | —— [+0.7M,, | — |+0.15M,, | — |=1 5.7
e (1.055) e (1.08j W (1.12) (5.7)
and

R R R
OM,, | —— |+0.8M,, | — |+0.2M,, | — |=1. 5.8
e [1.055) Ve (1.08) W (1.12) (5.8)

From the solutions of Equations (5.6), (5.7) and (5.8), this implies
Fil (a =0.350000, M =1.103245) =0.614597.

Other couples (o,M) then Ry(a,M), Ry(a,M), R(a,M) and
ﬁl(a, M) are defined as the ones above. Table 5 gives some numerical results
of the upper bounds of y/(l)(u,a,M), l//(z)(v,a,M), ¢(1)(u,a,M,is) and
¢(2) (V,a,M , jt) for all $=0,12 and t=0,12. Note couples (a,M) in
Table 5 satisfy Proposition 1.

In Table 5, the upper bounds of (4.14) and (4.15) are tighter than the ones
(3.10) and (3.11), respectively. This is in a good accordance with [1] [2]. If «
and M increase then the cedent’s upper bounds of the ruin probabilities

increase while the reinsurer’s upper bounds of the ruin probabilities decrease.

6. Conclusions and Suggestions

e The surplus processes given by (2.7) and (2.13) can be viewed as an extension
of the ones (1.1) and (1.2);

¢ By martingale method, the author obtains the upper bounds of the ultimate
ruin probabilities of the cedent and the reinsurer in the risk models under

excess of loss reinsurance;

Table 5. The upper bounds of the ruin probabilities for other couples (a,M).

Upper bound of
v (uaM)
(a =0.350000,M =1.103245) 0.002537
(a =0.508604, M =1.903245) 0.005140
(a=0.758614,M = 2.403446) 0.006472
Upper bound of Upper bound of Upper bound of
4 (1, M. i,) v (va.M) 4 (M, )
0.001577 0.003103 0.001872
0.003448 0.000015 0.000006
0.004417 0.000010 0.000004
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There remain many open issues, e.g.

building the upper bounds of the ultimate ruin probabilities in the risk model
under combination of quota share and excess of loss reinsurance;
investigating the joint ruin probability of the cedent and the reinsurer in the
risk model under excess of loss reinsurance;

establishing the optimality problems under ruin-related optimization criteria.

Further research in some of these directions is in progress.
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