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Abstract 
In this paper, discrete time risk models under an excess of loss reinsurance are 
studied. Adjustment coefficients of the cedent and the reinsurer are estab-
lished as functions of quota share level and retention level. By the martingale 
method, ruin probabilities of the cedent and the reinsurer still have exponen-
tial form. Finally, numerical examples are provided to illustrate the results 
obtained in this paper. 
 

Keywords 
Excess of Loss Reinsurance, Ruin Probability, Quota Share Level, Retention 
Level, Interest Rate, Markov Chain, Martingale Process 

 

1. Introduction 

We consider the insurer’s surplus in period , 1, 2,n n =   denoted as nU  is 
defined by: 

1 1
, 1, 2,

n n

n i i
i i

U u Y X n
= =

= + − =∑ ∑                 (1.1) 

where: 
• u  is the insurer’s initial surplus; 
• nY  denotes the premium income in period n (i.e., from time 1n −  to time 

n), { } 0n n
Y Y

>
=  is a sequence of independent and identically distributed 

(i.i.d.) non-negative random variables; 
• nX  denotes the claim amount in period n, { } 0n n

X X
>

=  is a sequence of 
i.i.d. non-negative random variables and is independent of Y. 

The process { } 0n n
U

>
 defined by (1.1) is called a surplus process (see [1]). 

Yang [1] gave the upper bounds of ruin probabilities of the insurer by using the 
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martingale method. Cai and Dickson [2] extended the surplus process in (1.1) by 
including the interest rate. Then, the surplus process { } 1n n

U
≥

 can be written as 
following  

( )1 1 , 1, 2,n n n n nU U I Y X n−= + + − = 
             (1.2) 

where 0U u=  and nI  denotes the interest rate of the insurer in period n. The 
sequence { } 0n n

I I
≥

=  is assumed to be a Markov chain and independent of X 
and Y. With surplus process (1.2), the upper bound of the insurer’s ruin 
probability was established by the martingale and inductive methods in [2]. 

In the classical risk model, claims are assumed to be paid by one insurer. 
However, insurers can transfer risks from one primary insurer (the ceding 
company or cedent) to another one (the reinsurance company) through 
reinsurance contracts. For that reason, some authors extended the classical 
surplus process in a consideration of an excess of loss reinsurance. For example: 
the various articles [3] [4] [5] investigated the effect of the reinsurance contract 
on the upper bound of the cedent’s ruin probability. The upper bounds of ruin 
probabilities of the cedent and the reinsurer were estimated in [6] [7] where 
Dam and Chung considered the risk model under quota share reinsurance. The 
explicit expression was given for finite-time joint survival probability of the 
cedent and the reinsurer in [8]. An optimal reinsurance retention was studied 
under ruin-related optimization criteria in [9]. 

This paper investigates the effect of an excess of loss reinsurance on the 
ultimate ruin probabilities of the cedent and the reinsurer in the discrete-time 
model. The risk models are investigated in two cases without interest rate and 
with homogeneous Markov chain interest rate. The premium income is assumed 
as a sequence of independent and identically distributed random variables. In 
particular, the author shows that for given value   then there exists a quota 
share level and a retention level so that both the ruin probabilities of the cedent 
and the reinsurer are less than value  . 

The content of this paper is organized as follows: A brief description of the 
models and some notions are presented in Section 2. Section 3 is devoted to the 
construction of the ruin-related problems in the risk model without an interest 
rate. The upper bounds of ruin probabilities in the risk model with interest rate 
are given in Section 4. Finally, numerical illustrations are given. 

2. The Risk Models  

In this paper, we investigate the effect of an excess of loss reinsurance on the 
surplus processes (1.1) and (1.2). First, the cedent and the reinsurer arrange an 
excess of loss reinsurance that we denote [ ]( )0,1α α ∈  as the quota share level 
and ( )0M M ≥  is retention level. The premiums are calculated according to 
the expected value principle. i.e. for each insurance company, the premium 
income expectation is greater than the claim expectation. 

Proposition 1 shows that there exists ( ), Mα  such that the premiums satisfy 
the expected value principle. We will denote the probability space as a triple  
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( ), ,Ω  , 0
b

i
i a

x
=

=∑  and 1
b

i
i a

x
=

=∏  if a b> .  

Proposition 1. Assuming that  

( ) ( )1 1X Y<                          (2.1) 

for any given M there exists α  such that:  

{ }( ) ( )1 1min ,X M Yα<                     (2.2) 

and  

{ }( ) ( ) ( )1 1max ,0 1X M Yα− < −                 (2.3) 

Proof. For any M, we denote { }1A X M= ≤  and { }1\A A X M= Ω = > . 
We have  

{ }( ) { } { }1 1 1 1min , min , d min , d d d .
A A A A

X M X M X M X M
Ω

= = = +∫ ∫ ∫ ∫


      (2.4) 

{ }( ) { } { }

( )

1 1 1

1 1

max ,0 max ,0 d max ,0 d

d d d .
A A

A A A

X M X M X M

X M X M
Ω

− = − = −

= − = −

∫ ∫

∫ ∫ ∫


  

  
  (2.5) 

Using (2.4) and (2.5), we imply that  

{ }( ) { }( ) ( )1 1 1min , max ,0 .X M X M X+ − =    

From ( ) ( )1 1X Y<  , thus  

{ }( ) { }( ) ( )1 1 1min , max ,0 .X M X M Y+ − <    

We have  

{ }( )
( )

{ }( )
( )

1 1

1 1

min , max ,0
1 .

X M X M
Y Y

−
< −

 
 

 

Since, we imply the existence α  such that  

{ }( )
( )

{ }( )
( )

1 1

1 1

min , max ,0
,1

X M X M
Y Y

α
 −

∈ −  
 

 
 

        (2.6) 

where 
{ }( )
( )

1

1

min ,
0

X M
Y

≥



 and 

{ }( )
( )

1

1

max ,0
1 1

X M
Y
−

− ≤



.             □ 

We now consider the surplus process { } 0n n
U

>
 defined by (1.1) with the 

excess of loss reinsurance. Then, the cedent’s surplus and the reinsurer’s surplus 
in period , 1, 2,n n =   are denoted by nU  and nV , respectively. Surpluses 

nU  and nV  can be expressed as  

{ }
1 1

min ,
n n

n i i
i i

U u Y X Mα
= =

= + −∑ ∑                 (2.7) 

and  

( ) { }
1 1

1 max ,0
n n

n i i
i i

V v Y X Mα
= =

= + − − −∑ ∑            (2.8) 

where u and v are initial surpluses of the cedent and the reinsurer. The processes 
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(2.7) and (2.8) are called surplus processes. 
The finite-time and ultimate ruin probability of the cedent with initial surplus 

u are respectively defined by  

( ) ( ) ( ) ( ) ( ) ( )1 1

1 1
, , 0 and , , 0 .

n

n i i
i i

u M U u M Uψ α ψ α
∞

= =

   
= ≤ = ≤   

   
 

     (2.9) 

Similarly, the finite-time and ultimate ruin probability of the reinsurer with 
initial surplus v are denoted by ( ) ( )2 , ,n v Mψ α  and ( ) ( )2 , ,v Mψ α . The 
probabilities are defined by  

( ) ( ) ( ) ( ) ( ) ( )2 2

1 1
, , 0 and , , 0 .

n

n i i
i i

v M V v M Vψ α ψ α
∞

= =

   
= ≤ = ≤   

   
 

    (2.10) 

Obviously: ( ) ( ) ( ) ( )1 1, , lim , ,nn
u M u Mψ α ψ α

→∞
=  and  

( ) ( ) ( ) ( )2 2, , lim , ,nn
v M v Mψ α ψ α

→∞
= . 

Let ( ) ( ){ }1 1

0n n
I I

≥
=  and ( ) ( ){ }2 2

0n n
I I

≥
=  be the interest rate sequences of the 

cedent and the reinsurer, respectively. The interest rates satisfy assumptions 
(2.1) and (2.2).  
• Assumption 2.1. The cedent’s interest rate sequence ( ) ( ){ }1 1

0n n
I I

≥
=  is a 

homogeneous Markov chain, ( )1
nI  takes the values in a finite set of positive 

{ }10 1, , , ME i i i= 
 and 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 0

1 1 1 1 1 1
1 1 0 1, , ,

nst n t n s n t t n t n sp I i I i I i I i I i I i
−+ − += = = = = = = =    (2.11) 

where 
1

0
1

M

st
t

p
=

=∑  for any 10,1, ,s M= 
 and 0stp >  for all 1, 0,1, ,s t M= 

.  

• Assumption 2.2. The reinsurer’s interest rate sequence ( ) ( ){ }2 2

0n n
I I

≥
=  is a 

homogeneous Markov chain, ( )2
nI  takes the values in a finite set of positive 

{ }20 1, , , MF j j j= 
 and  

( ) ( ) ( ) ( )( ) ( ) ( )( )1 0

2 2 2 2 2 2
1 1 0 1, , ,

nst n t n s n t t n t n sq I j I j I j I j I j I j
−+ − += = = = = = = =   (2.12) 

where 
2

0
1

M

st
t

q
=

=∑  for any 20,1, ,s M= 
 and 0stq >  for all 2, 0,1, ,s t M= 

.  

Then, the cedent’s surplus and the reinsurer’s surplus in period , 1, 2,n n =   
are denoted by *

nU  and *
nV .  

( )( ) { }1* *
1 1 min ,n n n n nU U I Y X Mα−= + + −                (2.13) 

and  
( )( ) ( ) { }2* *

1 1 1 max ,0n n n n nV V I Y X Mα−= + + − − −            (2.14) 

where *
0U u=  and *

0V v=  are the cedent’ initial surplus and the reinsurer’s 
initial surplus, respectively. 

It is easy to see that (2.13) and (2.14) are equivalent to  

( )( ) { }( ) ( )( ) { }

( )( ) { }( ) ( )( )

1
1 1*

11 1

11 1

11 1

1 min , 1 min ,

1 min , 1

n nn

n k k k j n n
kk j k

n kn

k k k j
kk j

U u I Y X M I Y X M

I u Y X M I

α α

α

−

== = +

−

== =

= + + − + + −

 
= + + − + 

 

∑∏ ∏

∑∏ ∏
 (2.15) 
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and  

( )( ) ( ) { }( ) ( )( )
( ) { }

( )( ) ( ) { }( ) ( )( )

1
2 2*

11 1

12 2

11 1

1 1 max ,0 1

1 max ,0

1 1 max ,0 1

n nn

n k k k j
kk j k

n n

n kn

k k k j
kk j

V v I Y X M I

Y X M

I v Y X M I

α

α

α

−

== = +

−

== =

= + + − − − +

+ − − −

 
= + + − − − + 

 

∑∏ ∏

∑∏ ∏

  (2.16) 

The finite-time and ultimate the cedent’s ruin probabilities with surplus 
process (2.15), initial surplus u and a given ( )1

0 sI i=  are respectively defined by  

( ) ( ) ( ) ( )1 1*
0

1
, , , 0

n

n s k s
k

u M i U I iφ α
=

 
= ≤ = 

 


              (2.17) 

and  

( ) ( ) ( ) ( )1 1*
0

1
, , , 0 .s k s

k
u M i U I iφ α

∞

=

 
= ≤ = 

 


             (2.18) 

Similarly, the finite-time and ultimate the reinsurer’s ruin probabilities with 
surplus process (2.16), initial surplus v and a given ( )2

0 tI j=  are  

( ) ( ) ( ) ( )2 2*
0

1
, , , 0

n

n t k t
k

v M j V I jφ α
=

 
= ≤ = 

 


             (2.19) 

and  

( ) ( ) ( ) ( )2 2*
0

1
, , , 0 .t k t

k
v M j V I jφ α

∞

=

 
= ≤ = 

 


             (2.20) 

Clearly: ( ) ( ) ( ) ( )1 1, , , lim , , ,s n sn
u M i u M iφ α φ α

→∞
=  and  

( ) ( ) ( ) ( )2 2, , , lim , , ,t n tn
v M j v M jφ α φ α

→∞
= .  

3. The Ruin Probabilities in the Risk Model without  
Interest Rate  

The adjustment coefficients, which depend on quota share level and retention 
level, are established in the following lemmas.  

Lemma 2. If { }1essup X < +∞ , { }1essup Y < +∞ , ( ) { }( )1 1min ,Y X Mα >   
and { }( )1 1min , 0 0X M Yα− > >  for any ( ), Mα  then there exists the 
unique ( ) ( )( )0 0

ˆ ˆ, , 0R M R Mα α >  such that  

( ) { }( )( )0 1 1ˆ , min ,e 1.R M X M Yα α− =                     (3.1) 

Proof. We set ( ) ( )1 1 2 1essup , essupN X N Y= =  and { }1 1 1min ,Q X M Yα= − . 
We have  

{ }( ) ( )1 1 1 1min ,e e for all 0 < ; e .R X M Y RN RNRα− ≤ ≤ ∞ < ∞  

Therefore, there exists the expectation value of { }( )1 1min ,eR X M Yα−  for all 
0 R≤ < ∞ . 

For any ( ), Mα , if we set ( ) ( )1
, e 1RQ
Mg Rα = −  for 0 R≤ < ∞  then  
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( ), 0 0.Mgα =                          (3.2) 

Differentiating the above function, we get  

( ) ( ) ( ) ( )1 1
, ,

, 0 0

e e 1
lim lim d .

RQ RQ
M M

M R R

g R R g R
g R P

R R
α α

α

∆

Ω∆ → ∆ →

−+ ∆ −
′ = =

∆ ∆∫   (3.3) 

Let { } ( )1
0, 0n n nn

R R R R
≥

∆ ∆ ≠ + ∆ > , 0nR∆ →  be an arbitrary real-valued 
sequence as n →∞ . Using the Mean Value Theorem for [ ]1e , 0,1nt R Q t∆ ∈ , we 
obtain  

( )1 1
1e 1 e , 0 1n nR Q R Q

nR Q θ θ∆ ∆= + ∆ < <  

Moreover, for any 0> , there exists a natural number 0n  such that 

3nR N∆ <  for all 1n ≥ , where { }03 1 2max , , , , nN R R R= ∆ ∆ ∆ . 
Thus, we have  

( ) ( ) ( ) ( ) ( )( )
11

1 3 1 3 1 2
1 1 1 2

e e 1
e e e , 1

n

n

R QRQ
R R Q R N Q R N N N

n

Q Q N N n
R

θ θ θ
∆

+ ∆ + + +
−

= ≤ ≤ + ≥
∆

 

and  

( ) ( )( )( ) ( ) ( )( )3 1 2 3 1 2
1 2 1 2e e .R N N N R N N NE N N N Nθ θ+ + + ++ = + < +∞  

Applying Lebesgue’s Dominated Convergence Theorem, we imply that  

( ) ( ) ( )
1 11 1

1 1
1 1

e e 1 e e 1
lim d lim d e d e .

n nR Q R QRQ RQ
RQ RQ

n n
n n

P P Q P Q
R R

∆ ∆

Ω Ω Ω→∞ →∞

− −
= = =

∆ ∆∫ ∫ ∫   (3.4) 

From (3.3) and (3.4) function ( ),Mg Rα  is differentiable  

( ) ( ) { }( ) { }( )( )1 11 min ,
, 1 1 1e min , e .R X M YRQ
Mg R Q X M Y α

α α −′ = = −   

So,  

( ) { }( ), 1 10 min , 0.Mg X M Yα α′ = − <                (3.5) 

It means that the ( ),Mg Rα  is decreasing at 0R = . 
Since { }( )1 1min , 0 0X M Yα− > >  there exists 0δ >  so that  

{ }( )1 1min , 0X M Yα δ− > > . We have  

( ) { }( )( )
{ }( )

{ }( )( )
{ }( )( )
{ }( )

1 1

1 1

1 1

1 1

min ,
,

min ,
min ,

min ,

1 1

e 1

e 1 1

e 1 1

e min , 1.

R X M Y
M

R X M Y
X M Y

R
X M Y

R

g R

X M Y

α
α

α
α δ

δ
α δ

δ α δ

−

−
− >

− >

= −

≥ −

> −

= − > −









           (3.6) 

The right side of (3.6) tends to infinity as R →∞ . It implies that  

( ),lim .MR
g Rα→∞

= ∞                        (3.7) 

Combining (3.2), (3.5) and (3.7), function ( ),Mg Rα  must intersect the x-axis. 
In other words, there exists a positive x-intercept of ( ),Mg Rα . Let’s denote it 

( ) ( )( )0 0
ˆ ˆ, , > 0R M R Mα α . Apparently, ( )0

ˆ ,R Mα  is a root of the following 
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equation  

( ), 0.Mg Rα =                           (3.8) 

Similarly, function ( ),Mg Rα  is twice differentiable. Hence,  

( ) { }( ) { }( )( ) ( )1 12 min ,
, 1 1 ,min , e ; 0.R X M Y
M Mg R X M Y g Rα

α αα −′′ ′′= − >  

That means ( ),Mg Rα  is strictly convex for [ )0,R∈ +∞ . Thus, ( )0
ˆ ,R Mα  is 

the unique positive of Equation (3.8) 
□ 

The proof of Lemma 3 is similar to Lemma 2 and we omit the proof here.  
Lemma 3. If 

{ } { } ( ) ( ) { }( )1 1 1 1essup , essup , 1 max ,0X Y Y X Mα< ∞ < ∞ − > −   

and  

{ } ( )( )1 1max ,0 1 0 0X M Yα− − − > >  

for any ( ), Mα  then there exists the unique ( ) ( )( )0 0, , 0R M R Mα α >   such 
that  

( ) { } ( )( )( )0 1 1, max ,0 1e 1.R M X M Yα α− − − =


                   (3.9) 

The following theorem provides the exponential upper bounds of 
( ) ( )1 , ,u Mψ α  and ( ) ( )2 , ,v Mψ α .  
Theorem 4. Assuming that the surplus processes given in (2.7) and (2.8) 

satisfy assumptions in Lemma 2 and Lemma 3. Then,  

( ) ( ) ( )0ˆ1 ,, , e uR Mu M αψ α −≤                    (3.10) 

and  

( ) ( ) ( )02 ,, , e vR Mv M αψ α −≤


                   (3.11) 

for any ( ), Mα .  
Proof. In order to prove (3.10), we set the stochastic process { } 0n n

Z
≥

: 

( )0ˆ ,
0 e uR MZ α−= ,

( ) { }( ) ( )0
1 0

ˆ , min , ˆ ,e e
n

i i
i n

R M u Y X M
R M U

nZ
α α

α=

 
− + −   − 

∑
= =  for 1, 2,n =   and  

the filtration { } 1n n≥
  where { }0 ,= ∅ Ω ,  

( ) ( )1 2 1 2 1 2, , , , , , , , , ,n n n nZ Z Z X X X Y Y Yσ σ= =   ; 1, 2,n =   
The stochastic process { } 0n n

Z
≥

 is a martingale with respect to the filtration 
{ } 0n n≥
 . 
Indeed  

( ) ( ) { }( )( )
( ) ( ) { }( )( )

( )

0 1 1

0 1 10

0

ˆ , min ,
1 0

ˆˆ , min ,,

ˆ ,
0

e

e e

e .

R M u Y X M

R M X M YuR M

uR M

E Z E

E

Z

α α

α αα

α

− + −

−−

−

=

=

= =



           (3.12) 

We now consider for 1, 2,n =    
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( )
( ) { }( )( )

( )( )
( ) { }( )( )
( ) { }( )( )

0 1 1

0 1 1

0 1 1

0 1 1

1

ˆ , min ,

ˆ , (min{ , } )

ˆ , min ,
1 2 1 2

ˆ , min ,

e

e

e , , , , , , ,

e .

n n

n n

n n

n n

n n

R M Y X M
n n

R M X M Y
n n

R M X M Y
n n n

R M X M Y
n

Z

Z

Z

Z X X X Y Y Y

Z

α α

α α

α α

α α

+ +

+ +

+ +

+ +

+

− −

−

−

−

=

=

=

=

 















      (3.13) 

Moreover  
( ) { }( )( ) ( ) { }( )( )0 1 1 0 1 1ˆ ˆ, min , , min ,e e 1.n nR M X M Y R M X M Yα α α α+ +− −= =        (3.14) 

Combining (3.13) and (3.14), thus  

( )1 for 1,2,n n nZ Z n+ = =                   (3.15) 

Since the stochastic process { } 0n n
Z

≥
 is a martingale with respect to the 

filtration { } 0n n≥
 . Let { }min : 0nn Uτ = ≤ . Then ( )min ,n nτ τ∧ =  is a finite 

stopping time. Thus, using the optional stopping theorem for martingale 
{ } 0n n
Z

≥
, (see [10]) we get  

( ) ( ) ( )0ˆ ,
0 e .uR M

nZ Z α
τ

−
∧ = =   

This deduces that  
( ) ( ) ( )( ) ( )( )0ˆ ,e 1 1 .uR M

n n n nZ Z Zα
τ τ ττ τ

−
∧ ∧ ≤ ≤= ≥ =            (3.16) 

From (3.16) and ( )1Zτ ≥ , we obtain  
( ) ( ) ( ) ( ) ( )0ˆ , 1e 1 , , .uR M

n nn u Mα
τ τ ψ α−
≤≥ = ≤ =           (3.17) 

Therefore, inequality (3.10) is followed by letting n →∞  in (3.17). 
The proof of inequality (3.11) is similar to the one for inequality (3.10).  

□ 
In reinsurance businesses, evaluation the two ruin probabilities of the cedent 

and the reinsurer are crucial. Because the insurers based on the ruin probabilities 
to determine ( ), Mα  so that ( ) ( )1 , ,u Mψ α  and ( ) ( )2 , ,v Mψ α  are decreased. 
However, the issue is a difficult topic. The following theorem shows us how to 
determine ( ), Mα  so that ( ) ( )1

1 , ,u Mψ α  and ( ) ( )2
1 , ,v Mψ α  are less than a 

given value  .  
Theorem 5. Assuming that the surplus processes given in (2.7) and (2.8) 

satisfy the following assumptions:  
1) Random variable , 1, 2,nX n = 

 takes values in a finite set of non-negative 
numbers { }1 2, , ,X NG x x x= 

 where ( )1 20 Nx x x≤ < < <
 and  

( )k n kp X x= = , 0 1kp< ≤ , 
1

1
N

k
k

p
=

=∑ ;  

2) 0.Nx u v− − >  
For any given   satisfies  

( ) ( )1 1
1, : i

N i
i N x u

P Y x u v P X x
= ≥

 
≤ − − = ≤  

 


            (3.18) 
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there exists ( ), Mα  such that  
( ) ( )1
1 , ,u Mψ α ≤                       (3.19) 

and  
( ) ( )2
1 , , .v Mψ α ≤                       (3.20) 

Proof. By 0Nx u v− − > , we imply that there exists ( ),M α  such that  

( ) ( )for all 0,1 .NM u x u vα α= + − − ∈             (3.21) 

Obviously M u> . 
Expression (3.21) is equivalent to  

.N
M u x u v
α
−

= − −  

For any given   satisfies (3.18). We have  

( ) ( )

( )

( ) ( )

( )

1 1
1, :

1 1
1, :

1 1 1
1, : 1, :

1 1
1, :

1

i

i

i i

i

N i
i N x u

i
i N x u

i i
i N M x u i N x M

i
i N M x u

Y x u v X x

M uY X x

M uY X x X x

M uY X x

MY

α

α

α

= ≥

= ≥

= ≥ ≥ = >

= ≥ ≥

 
≥ ≤ − − =  

 
 − = ≤ =       
    − = ≤ = =                
 − = ≤ =       

+ ≤







 



 

 

 

 





( )1
1, : i

i
i N x M

u X x
α = >

 −  =       




 

( )

( )

( )

( )

1 1
1, :

1 1
1, :

1
1 1

1, :

1 1
1, :

i

i

i

i

i
i N M x u

i
i N x M

i
i N M x u

i
i N x M

M uY X x

M uY X x

X uY X x

M uY X x

α

α

α

α

= ≥ ≥

= >

= ≥ ≥

= >

  − = ≤ =         
  − + ≤ =         
  − ≥ ≤ =         
  − + ≤ =         

























 

[ ] ( )

[ ] ( )

{ } ( )

{ }( ) ( ) ( )

1 1 1
1, :

1 1
1, :

1 1 1
1, :

1
1 1 1

0

0

min , 0

min , 0 , , .

i

i

i

i
i N M x u

i
i N x M

i
i N x u

u Y X X x

u Y M X x

u Y X M X x

u Y X M u M

α

α

α

α ψ α

= ≥ ≥

= >

= ≥

  
= + − ≤ =      

  
+ + − ≤ =      
  

= + − ≤ =        

= + − ≤ =
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Since, ( ) ( )1
1 , ,u Mψ α ≤  . 

Moreover, Expression (3.21) can be written  

.
1

N
N

x M v x u v
α

− −
= − −

−
 

Hence  

( ) ( )

( )

1 1
1, :

1 1
1, :1

i

i

N i
i N x u

N
i

i N x u

Y x u v X x

x M vY X x
α

= ≥

= ≥

 
≥ ≤ − − =  

 
 − − = ≤ =    −   





 

 



          (3.22) 

Using (3.22) and M v u+ > , thus  

( )

( )

( )

( ) ( ) ( )

1 1
1, :

1 1
1, :

1
1 1

1, :

1 1 1
1, :

1

1

1

1 0

i

i

i

i

N
i

i N x M v

N
i

i N x M v

i
i N x M v

i
i N x M v

x M v
Y X x

x M v
Y X x

X M vY X x

v Y X M X x

α

α

α

α

= ≥ +

= ≥ +

= ≥ +

= ≥ +

 − − ≥ ≤ =    −   

  − − = ≤ =    −     

  − − ≥ ≤ =    −     


= + − − − ≤ =   

















  






 
    

 

( ) { } ( )

( ) { }( )
( ) ( )

1 1 1
1, :

1 1

2
1

1 max ,0 0

1 max ,0 0

, , .

i

i
i N x M v

v Y X M X x

v Y X M

v M

α

α

ψ α

= ≥ +

  
= + − − − ≤ =        

= + − − − ≤

=







  

□ 
Li [9] investigated the optimal M to maximize the joint survival probability 

for the cedent and the reinsurer in one period insurance. If both companies 
don’t occur ruin at certain period 1n − , 1nU −  and 1nV −  will be initial surpluses 
of the insurance companies before period n, respectively. Therefore, we apply 
Theorem 5 to estimate the probabilities of the insurance companies to period 

1n −  from period n.  

4. The Ruin Probabilities in the Risk Model with  
Interest Rate  

In the section, we consider surplus processes (2.15) and (2.16). The proofs of 
Lemma 6 and Lemma 7 are similar to the one for Lemma 2.  

Lemma 6. If 

{ }1essup X < +∞ , { }1essup Y < +∞ , ( ) { }( )1 1min ,Y X Mα >   and  
{ }( )1 1min , 0 0X M Yα− > >  for any ( ), Mα  then there exists the unique 

( ) ( )( )ˆ ˆ, , 0
s si iR M R Mα α >  such that  
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( ) { }( ) ( )( ) ( )
11

1 1 1
ˆ , min , 1 1

0e 1isR M X M Y I

sI i
α α

−
− + 

 = =
 
 

              (4.1) 

for any 1, 0,1, ,s s M= 
.  

Proof. For any ( ), Mα  and 1, 0,1, ,s s M= 
, we set  

( )
{ }( ) ( )( ) ( )

11
1 1 1min , 1 1

, , 0e 1
R X M Y I

M s sf R I i
α

α

−
− + 

 = = −
 
 

           (4.2) 

for [ )0,R∈ ∞ . 
Similarly, we show the expectation value existence in (4.1). In particular  

( ), , 0 0,M sfα =                          (4.3) 

( ) { }( ) ( )( ) ( )

{ }( )
( )( ) ( )( )

11 1
, , 1 1 1 0

1 1

1 1
1 0

0 min , 1

min ,
0,

1

M s s

s

f X M Y I I i

X M Y

I I i

α α

α

− ′ = − + = 
 

−
= <

+ =







         (4.4) 

( ) { }( ) ( )( ) { }( ) ( )
( )

11
1 1 1

21 min , 11 1
, , 1 1 1 0min , 1 e 0.

R X M Y I

M s sf R X M Y I I i
α

α α
−

 − − + 
 

   ′′ = − + = >    
 (4.5) 

Moreover  

( ), ,lim .M sR
f Rα→+∞

= +∞                        (4.6) 

Combining assertions to (4.3) from (4.6), we deduce that function ( ), ,M sf Rα  
must intersect the x-axis. Let’s denote it ( ) ( )( )ˆ ˆ, , 0

s si iR M R Mα α > . Apparently, 
( )ˆ ,

si
R Mα  is the unique intersection. 

□ 
For any ( ), Mα . We set  

( ) ( ) ( )( ){ }1 , ,
ˆ ˆ ˆ, min , 0 : , 1 .

s s
s

i M s ii E
R M R M f R Mαα α α

∈
= > =          (4.7) 

The function ( ), ,M sf Rα  is strictly convex for [ )0,R∈ ∞ , ( )1
ˆ0 ,

si
R M Rα< ≤ . 

Since, ( )( ), , 1
ˆ , 0M sf R Mα α ≤  this is equivalent to  

( ) { }( ) ( )( ) ( )
11

1 1 1 1
ˆ , min , 1 1

0e 1
R M X M Y I

sI i
α α

−
− + 

 = ≤
 
 

                (4.8) 

for all 10,1, ,s M= 
. 

We have  

( ) { }( ) ( )( ) ( )

( ) { }( ) ( )( ) ( )
( )( )

( )( )

11
1 1 1 1

111 1 1 1 1
1

0

1

1
0

ˆ , min , 1 1
0

ˆ , min , 1 1
0

0

0

e

e 1

1 1.

s

s

R M X M Y I

M R M X M Y I

s I is

M

I is

I

I i

α α

α α

−

−

− +

− +

==

==

 
 
 
 

 
 = =
 
 

≤ =

∑

∑



             (4.9) 

Hence  
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( ) { }( ) ( )( ) ( )
11

1 1 1 1
ˆ , min , 1 1

0e 1.
R M X M Y I

I
α α

−
− + 

  ≤
 
 

               (4.10) 

Lemma 7. If 

{ } { } ( ) ( ) { }( )1 1 1 1essup , essup , 1 max ,0X Y Y X Mα< +∞ < +∞ − > −   

and  

{ } ( )( )1 1max ,0 1 0 0X M Yα− − − > >  

for any ( ), Mα  then there exists the unique ( ) ( )( ), , 0
t tj jR M R Mα α >   such 

that  

( ) { } ( )( ) ( )( ) ( )
12

1 1 1, max ,0 1 1 2
0e 1jtR M X M Y I

tI j
α α

−
− − − + 

 = =
 
 



          (4.11) 

for any 2, 0,1, ,t t M= 
.  

Proof. The proof of Lemma 7 is similar to the one for Lemma 2.          □ 
If  

( ) ( ) ( )( ){ }1 , ,, min , 0 : , 1
t t

s
j M t jj F

R M R M g R Mαα α α
∈

= > =        (4.12) 

then  

( ) { } ( )( ) ( )( ) ( )
12

1 1 1 1, max ,0 1 1 2
0e 1

R M X M Y I
I

α α
−

− − − + 
  ≤
 
 



           (4.13) 

where  

( )
{ } ( )( ) ( )( ) ( )

12
1 1 1max ,0 1 1 2

, , 0e
R X M Y I

M t tg R I j
α

α

−
− − − + 

 = =
 
 

  

Using martingale method, we present the exponential upper bounds of 
( ) ( )1 , , , su M iφ α  and ( ) ( )2 , , , tv M jφ α .  
Theorem 8. Assuming that the surplus processes given in (2.15) and (2.16) 

satisfy assumptions in Lemma 6 and Lemma 7. For any ( ), Mα  then  
( ) ( ) ( )1ˆ1 ,, , , e uR M

su M i αφ α −≤                    (4.14) 

and  
( ) ( ) ( )12 ,, , , e vR M

tv M j αφ α −≤


                   (4.15) 

for all 10,1, ,s M= 
 and 20,1, ,t M= 

.  
Proof. We first consider the stochastic process { } 0n n

H
≥

 and the filtration 
{ } 0n n≥
  where  

( )
( ) { }( ) ( )( ) 11

1
1 11

ˆ , min , 1
ˆ ,

0 e , e

kn
k k j

k j
R M u Y X M I

uR M
nH H

α α
α

−

= =

 
− + − + 

 −  
∑ ∏

= =  

and  
( )( ) ( ) ( ) ( )( )1 1 1 1

0 0 1 2 1 2 0 1, , , , , , , , , , , , , 1, 2, .n n n nI X X X Y Y Y I I I nσ σ= = =      

We have  
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( ) ( ) ( ) { }( ) ( )( ) ( )

( ) ( ) { }( ) ( )( ) ( )

( )

11
1 1 1 1 1

11
1 1 1 11

1

ˆ ˆ, , min , 1 1
1 0 0

ˆ , min , 1ˆ , 1
0

ˆ ,
0

e

e e

e .

uR M R M X M Y I

R M X M Y IuR M

uR M

H I

I

H

α α α

α αα

α

−

−

− + − +

− +−

−

 
 =
 
 

 
 =
 
 

≤ =

 





        (4.16) 

For 1, 2,n =  , we get  

( )
( ) { }( ) ( )( ) ( ) ( ) ( )

( ) { }( ) ( )( ) ( ) ( ) ( )

11 1
1 1 1

1

11 1
1 1 1

1

1

ˆ , min , 1
1 1 1

1 2 1 2 0 1

ˆ , min , 1
1 1 1

0 1

e , , , , , , , , , , ,

e , , , .

n
n n j

j

n
n n j

j

n n

R M X M Y I

n n n n

R M X M Y I

n n

H

H X X X Y Y Y I I I

H I I I

α α

α α

−+
+ +

=

−+
+ +

=

+

− +

− +

∏

∏

 
 =
 
 
 
 =
 
 

  











 (4.17) 

We set ( )( ) ( )
11

1
1 , 0 1

n

j
j

r I r
−

=

= + < ≤∏ . According to Jensen’s Inequality, it  

implies that  

( ) { }( ) ( )( ) ( ) ( ) ( )

( ) { }( ) ( )( ) ( )

( ) { }( ) ( )( ) ( )

11
1 1 1 1

11
1 1 1 1

11
1 1 1 1

1
ˆ , min , 1 1 1 1

0 1

ˆ , min , 1 1

ˆ , min , 1 1
0

e , , ,

e

e 1.

n n n

n n n

r
R M X M Y I r

n

R M X M Y I

n

R M X M Y I

I I I

I

I

α α

α α

α α

−
+ + +

−
+ + +

−

− +

− +

− +

  
  

    
 
 ≤
 
 
 
 = ≤
 
 







        (4.18) 

Combining (4.17) and (4.18), we obtain  

( )1 for 1,2,n n nH H n+ ≤ =    

Hence, the stochastic process { } 0n n
H

≥
 is a supermartingale with respect to 

the filtration { } 0n n≥
 . 

Let { }( ) ( )( ) ( )11 1
0

1 1
min : min , 1 0

kn

s k k j s
k j

n u Y X M I I iτ α
−

= =

 
= + − + ≤ = 

 
∑ ∏ . Then  

{ }min ,s sn nτ τ∧ =  is a finite stopping time. Thus, by the optional stopping 
theorem for supermartingale { } 0n n

H
≥

, (see [10]), we get  

( ) ( ) ( )1ˆ ,
0 e .

s

uR M
nH H α
τ

−
∧ ≤ =   

This implies that  

( ) ( ) ( )( ) ( )( )1ˆ ,e 1 1 .
s s ss s

uR M
n n n nH H Hα
τ τ ττ τ

−
∧ ∧ ≤ ≤≥ ≥ =          (4.19) 

By ( )1
s

Hτ ≥  and (4.19), we have  
( ) ( ) ( ) ( ) ( )1ˆ , 1e 1 , , , .

s

uR M
n s n sn u M iα

τ τ φ α−
≤≥ = ≤ =          (4.20) 

By letting n →∞  in (4.20), we obtain inequality (4.14). 
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The proof of inequality (4.15) is similar to the one for inequality (4.14).    □ 

5. Numerical Illustrations  
5.1. Example 5.1 

Suppose that sequences { } 1n n
Y Y

≥
=  and { } 1n n

X X
≥

=  satisfy the conditions in 
Theorem 5. Initial surpluses 2.1u =  and 1.5v = . The distribution functions of 

1Y  and 1X  are defined in Table 1 and Table 2, respectively: 
Inequality (3.18) implies for all 0.028643≥  there exists ( ), Mα  such that 
( ) ( )1
1 , ,u Mψ α ≤   and ( ) ( )2

1 , ,v Mψ α ≤  . E.g. from (3.21) we chose  
0.758614α =  this follows 2.403446M =  then couple  

( )0.758614, 2.403446Mα = =  is the solution of Theorem 5. 
If ( )0.758614, 2.403446Mα = =  then ( )1 2.500000Y = ,  
( )1min , 1.274934X M =  and { }( )1max ,0 0.222952X M− = . Hence, couple 

( )0.758614, 2.403446Mα = =  also satisfy Proposition 1.  

5.2. Example 5.2 

In this example, let 1Y  and 1X  take the same structure and values as the ones 
in Example 5.1. Initial surpluses 12.1u =  and 10.5v = . 

The interest rate sequence of the cedent ( ) ( ){ }1 1

0n n
I I

≥
=  is a homogeneous 

Markov chain, ( )1
nI  takes values: 0 6%i = , 1 8%i =  and 2 10%i = . The 

transition probability matrix of the process ( )1I  is  

0.3 0.6 0.1
0.3 0.4 0.3 .
0.2 0.7 0.1

 
 
 
 
 

 

Similarly, the interest rate sequence of the reinsurer ( ) ( ){ }2 1

0n n
I I

≥
=  is a 

homogeneous Markov chain, ( )1
nI  takes values: 0 5.5%j = , 1 8%j =  and 

2 12%j = . The transition probability matrix of the process ( )2I  is  

0.2 0.8 0
0.15 0.7 0.15 .

0 0.8 0.2

 
 
 
 
 

 

Let 0.350000α =  and 1.103245M = , we have Table 3 and Table 4. 
We denote the moment-generating functions of { }1 1 1min ,W X M Yα= −  and 

{ } ( )2 1 1max ,0 1W X M Yα= − − −  are  
 
Table 1. Distribution function of 1Y . 

1Y  0 1 5 

P  0.205112 0.366128 0.42876 

 
Table 2. Distribution function of 1X . 

1X  0 2 4 

P  0.390703 0.469651 0.139646 

https://doi.org/10.4236/jmf.2017.74053


N. Q. Chung 
 

 

DOI: 10.4236/jmf.2017.74053 972 Journal of Mathematical Finance 
 

Table 3. Distribution function of { }1 1min ,X M Yα− . 

{ }1 1min ,X M Yα−  −1.750000 −0.646760 

P  0.167518 0.261242 

 
−0.350000 0.000000 0.753245 1.103245 

0.143047 0.080138 0.223081 0.124974 

 
Table 4. Distribution function of { } ( )1 1max , 0 1X M Yα− − − . 

{ } ( )1 1max ,0 1X M Yα− − −  −3.250000 

P  0.167518 

 
−2.353250 −0.650000 −0.353250 0.000000 

0.201368 0.143047 0.059875 0.080138 

 
0.246755 0.896755 2.246755 2.896755 

0.171952 0.096331 0.051128 0.028643 

 

( ) { }( )( )1 1
1

min ,

1.750000 0.646760 0.350000

0.753245 1.103245

e

0.167518e 0.261242e 0.143047e

0.080138 0.223081e 0.124974e

R X M Y
W

R R R

R R

M R α−

− − −

=

= + +

+ + +



  (5.1) 

and  

( ) { } ( )( )( )1 1
2

max ,0 1

3.250000 2.353250 0.650000

0.353250 0.246755

0.896755 2.246755 2.896755

e

0.167518e 0.201368e 0.143047e

0.059875e 0.080138 0.171952e

0.096331e 0.051128e 0.028643e

R X M Y
W

R R R

R R

R R R

M R α− − −

− − −

−

=

= + +

+ + +

+ + +



  (5.2) 

for ( )0,R∈ ∞ .  
Using Matlab software, we obtain ( )0

ˆ 0.035000, 1.103245 0.493945R Mα = = =  
and ( )0 0.035000, 1.103245 0.571825R Mα = = =  which are the solutions of 
equations ( )

1
1WM R =  and ( )

2
1WM R = , respectively. 

If ( )1
0 0I i=  then Equation (4.1) can be written  

1 1 1
0.3 0.6 0.1 1.

1.06 1.08 1.1W W W
R R RM M M     + + =     

     
          (5.3) 

Similarly, for ( )1
0 1I i=  and ( )1

0 2I i=  Equation (4.1) is equivalent to, 
respectively,  

1 1 1
0.3 0.4 0.3 1

1.06 1.08 1.1W W W
R R RM M M     + + =     

     
          (5.4) 

and  

1 1 1
0.2 0.7 0.1 1.

1.06 1.08 1.1W W W
R R RM M M     + + =     

     
          (5.5) 

https://doi.org/10.4236/jmf.2017.74053


N. Q. Chung 
 

 

DOI: 10.4236/jmf.2017.74053 973 Journal of Mathematical Finance 
 

Combining the solutions of Equations (5.3), (5.4) and (5.5), we have 

( )1
ˆ 0.350000, 1.103245 0.531355R Mα = = =  

Similarly, for ( ) ( )2 2
0 0 0 1,I j I j= =  and ( )2

0 2I j=  Equation (4.11) can be 
written, respectively,  

2 2 2
0.2 0.8 0 1,

1.055 1.08 1.12W W W
R R RM M M     + + =     

     
          (5.6) 

2 2 2
0.15 0.7 0.15 1

1.055 1.08 1.12W W W
R R RM M M     + + =     

     
         (5.7) 

and  

2 2 2
0 0.8 0.2 1.

1.055 1.08 1.12W W W
R R RM M M     + + =     

     
          (5.8) 

From the solutions of Equations (5.6), (5.7) and (5.8), this implies 

( )1 0.350000, 1.103245 0.614597R Mα = = = . 
Other couples ( ), Mα  then ( )0

ˆ ,R Mα , ( )0 ,R Mα , ( )1
ˆ ,R Mα  and 

( )1 ,R Mα  are defined as the ones above. Table 5 gives some numerical results 
of the upper bounds of ( ) ( )1 , ,u Mψ α , ( ) ( )2 , ,v Mψ α , ( ) ( )1 , , , su M iφ α  and 

( ) ( )2 , , , tv M jφ α  for all 0,1,2s =  and 0,1,2t = . Note couples ( ), Mα  in 
Table 5 satisfy Proposition 1.  

In Table 5, the upper bounds of (4.14) and (4.15) are tighter than the ones 
(3.10) and (3.11), respectively. This is in a good accordance with [1] [2]. If α  
and M  increase then the cedent’s upper bounds of the ruin probabilities 
increase while the reinsurer’s upper bounds of the ruin probabilities decrease.  

6. Conclusions and Suggestions  

• The surplus processes given by (2.7) and (2.13) can be viewed as an extension 
of the ones (1.1) and (1.2); 

• By martingale method, the author obtains the upper bounds of the ultimate 
ruin probabilities of the cedent and the reinsurer in the risk models under 
excess of loss reinsurance; 

 
Table 5. The upper bounds of the ruin probabilities for other couples ( ), Mα . 

 
Upper bound of  

( ) ( )1 , ,n u Mψ α  

( )0.350000, 1.103245Mα = =  0.002537 

( )0.508604, 1.903245Mα = =  0.005140 

( )0.758614, 2.403446Mα = =  0.006472 

 
Upper bound of 

( ) ( )1 , , ,n su M iφ α  
Upper bound of 

( ) ( )2 , ,n v Mψ α  
Upper bound of 

( ) ( )2 , , ,n tv M jφ α  

0.001577 0.003103 0.001872 

0.003448 0.000015 0.000006 

0.004417 0.000010 0.000004 
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• There remain many open issues, e.g. 
- building the upper bounds of the ultimate ruin probabilities in the risk model 

under combination of quota share and excess of loss reinsurance; 
- investigating the joint ruin probability of the cedent and the reinsurer in the 

risk model under excess of loss reinsurance; 
- establishing the optimality problems under ruin-related optimization criteria. 

Further research in some of these directions is in progress.  
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