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Abstract

To understand dynamical characters of neutrophil dynamical behavior, the
sensitivity of delay factors which has effects on system dynamic behavior is
ubiquitous due to system’s highly nonlinearity. Here we prove that delay
supports a subcritical Hopf bifurcation, underlying a feedback mechanism
during stem cells proliferation process while changing its coefficient of ampli-
fication. The given cell model reproduces a bistable dynamic regime of blood
cells and hysteresis. Applying multiple scale method, oscillation motion near
Hopf point is discussed. The stability limit of steady state to be abruptly peri-
odic solution is detected.
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1. Introduction

Within its scope of dynamical discussion and biomedical discipline, stem cells
are of great interest to give insight in understanding research work in its tissue
organization. As a mathematical work, people devotes to use different methods
to investigate both its spatial and temporal dynamics based on the understanding
of stem cell proliferation and differentiation. Mathematical model which
originates from hematopoietic stem cell compartment to periodic neutrophil
blood diseases [1] [2] [3] [4], also the production and regulation of blood cells
are governed by delay differential equations. Account for the variable success of
granulocyte-colony stimulating factor, reduce of the amplification coefficient in
neutrophil line for the treatment of cyclical neutropenia in reducing oscillation
is proposed [5]. Recently, physiologically and mathematically, the dependence of

neutrophil response on the period of simulated chemotherapy and the secondary
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response to G-CSF administration is reported [6] [7] [8] [9].

To support its function on tissue coupling, a clear link between the stem cell
compartment and the differentiated mature cell lineages are motivated by
delayed items to develop into fully hematopoietic system. The differentiation of
hematopoietic stem cells take place in G, phase. Quiescent phase HSCs
(hematopoietic stem cells) can enter into its proliferative phase with the
assumption of undergoing mitosis during time 7. After a cell division, the total
duration of both proliferative phase and maturation phase of neutropenia are
experienced to release into circulation through the body. In general, considering
tissue system composed of stem cells and cyclical neutrophils population, the
mathematical model is formed by two equations with time delays which beyond
illustration with schematic picture tools as shown in Figure 1.

The simple version related to DDEs (delay differential equations) to govern
the system dynamics with above description have been reported as the following

(6] [8] [9]:
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Figure 1. A cartoon representation of hematopoietic system response
to stem cell population and neutrophil population.
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HSCs (hematopoietic stem cells) enter into the proliferative phase with rate

" +N(t-7y)"

B (days™), and differentiate into the committed neutrophil compartment at a
rate k, (days™). The physiological meaning of other parameters and the
corresponding values are explained as the following:

1) The hematopoiesis process consists of mechanism of triggering
differentiation and maturation. HSCs produce differentiated cells via cell
division to form into all kinds of cell types(white cells, red blood cells and
platelets) and capable of self-renewal. r, denotes the apoptosis rate (days™') and
the duration of the proliferation phase is taken to be 7, (days).

2) Different to the committed neutrophil line, cells in HSC proliferative phase
are assumed to enter into the combined megaryocyte/erythrocyte lines at a rate
Ks.

3) The time delay considered in neutrophil coupling is 7, , which denotes the
total duration of the proliferation and maturation phases of a neutrophil
precursor, that is, 7y =7\, + 7y - The proliferation rate is assumed as 7,
whilst the death rate during maturation phase is p, . Therefore, the

amplification coefficient in neutrophil combined phases is listed as formula
AN — e”NPTNP_}/OTNM (3)

Notice that the rates r,,7,5,7, and maturation time r,,, are dependent on
the effects of chemotherapy and G-CSF administration. The estimated parameter
values are listed in Table 1.

From point view of dynamics, stable equilibrium solution can enter into
instability regime to bifurcate into oscillation mode periodically via
super-critical Hopf/sub-critical Hopf bifurcation [10]-[15]. Commonly, people
use method of linearization model near the steady states to get the exponential
polynomial characteristic equation to analyze its asymptotic stability via roots
attribution to such polynomials [4] [5]. Mathematically, the difficulty resides in
the presence of two independent delays and the fact that some coefficients in the
model equations depend upon these delays [16] [17]. Therefore, there is very

Table 1. The values of parameters used in system (1).

Parameter Value Unit Parameter Value Unit
k, 2.0 days™ Ix 2.4 days™
f, 0.4 days™ Ty 5 days
k, 0.01 days™ Mo 2.5379 days™
0, 0.36 x10° cells/kg 7 0.27 days™!
0, 0.3 x10° cells/kg Ty >6 days
r, 0.03-0.2 days™ I 24 days™
7, 2.8 days 7y 211 days™
DOI: 10.4236/ijmnta.2017.64011 121 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2017.64011

S.Q. Ma

few studies on this topic theoretically. With the fast development of
computation methods in all kinds of mathematical questions, authors detect the
different dynamic regime corresponding to stable steady states/periodic
oscillating modes/bistable periodic oscillating modes and phase-locked
resonance phenomena, etc. [5] [18] [19] [20] [21].

The observation of bistability regime of steady state and periodic solution is
found in Model (1). To understand the dynamics of the hematopoietic system,
we take regard the amplification coefficient in stem cells as bifurcation
parameter. Hopf bifurcation is tracked at its unique critical value. By means of
the perturbation procedure such as the method of multiple scales, a
codimension-2 bifurcation of periodic motion is theoretically discussed. Finally,
varying maturation time delay simultaneously, dynamical bifurcations respond
to periodic solutions is discovered and verified near condimension-2 bifurcation

point by applying numerical simulation methods.

2. Linear Stability Analysis

Assume system (1) has an equilibrium solution E (Q*, N*) which is assumed to
be positive. Notice coefficients as f,k, are expressed by Hilling function
which has obvious different analytical characters when varying n,m . Hereafter
n=2,m=1 are assumed. By simple calculation, it is proved the formula

" 7uN°

Q= @'INPTNP~707NM kN (N*) (4)

Do transformation of phase variables x -Q-Q",y - N —N", Equation (1)

can be rewritten and truncated into its three order form as

X'=a;X+a,y+bx_+f (x, xrsy)+o||x, Xeos X ¥ Yoy 3"

(5)
Y =—yuY+0,x(zy ) +by(zy )+ g(xTN AN )+o||x,xrs,xrN AN 3"

where
8, ==A(Q")~ky (N)—k; A (Q)Q'
a, =k (N")Q",
b =27 (B(Q")+#(Q)Q), (6)
b, =emene Tk (N°),
b, = e (N°)Q°

and

f(xx,,y)=2¢"p(Q)x2 +B(Q")e™*x] —%ﬂ"(Q*)Q*xz

S2(Q)Q - (N)Q'Y -2k (N)QY
e (Q)Q 5o Q)R -4 Q)
L@k, (N i (v,
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g (XrN Y, er ) — eTNP’INP—VoTNM k"\‘ (N
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+ l eTNP"NP*yOTNM k r

)
+ %eTNP’?NP’}’OTNM k"\; ( N

(

(

X
We introduce variable vector z by assuming z :( , and parameter vector
y

U oas pu= (z‘s, rs) . Equation (1) is written as its vector form

Z'(t): L(,u)Z(t)+ Rl(y)z(t—z's)—i- Rz(y)z(t—z',\,)

+F(2(t),2(t-1,),2(t-1), ) ®)
where
a; ay b O 0 0
L:(O —7NJ' Rl:[O oj’ Rzz(bz bJ ©)
and
F(z(t) z(t-z,). z(t—7y). 1) = f(vars:Y) w0

9(% Ve )

The hematopoietic model (1) has two delays in its dynamical description. As a
common point view, we use the related linear system to analyze its asymptotic

stability.
X'=a,X+a,y+hx

(11)
y’:_7Ny+b2X(TN)+b3y(TN)

The corresponding characteristic equation is derived from Equation (11) as

a,—A+be’™ a,

A(l,75,70)= bze—ArN 7 _//l’+b3efi‘rN =0

(12)

At critical values of parameters, the onset of instability of linear system (11)
may lead to oscillation solutions of nonlinear system. Hopf bifurcation can be
tracked via the change of direction of characteristic root distribution which
determined by Equation (12). Herein we solve possible values of Hopf
bifurcation by software DDE-Biftool. The imaginary roots in complex plane are
plotted in Figure 2(a) which shows Hopf bifurcation occurs since a pair of pure
imaginary roots with zero real part appears in characteristic equation. If denote

critical value of time delay as 7, =7, , the direction of imaginary roots

sc 2
transverse in complex plane is shown in Figure 2(b). As time delay 7, decrease

through 7, the head imaginary root(which is complex) transverse from right

d/l(,ucr)

T,

sc

plane to left plane and R #0 is satisfied. Therefore, periodic

S

solutions may appear near the Hopf point.

DOI: 10.4236/ijmnta.2017.64011

123 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2017.64011

S.Q. Ma

6 : . : :
| N
i 04 r : 1
Al ] :
{ 03 - — b
i N
: 02 : 1
5k : E Toc
1 0.1Ff : 1
—_ | — :
~ L o ~< -
Z o0 [ = L : |
& i 5 0 :
} 0.1} : 1
2k i 1 :
i -02 1 : T 1
! s
4r I —oéé ]
i :
i 04 : 1
-6 : : : : . ‘ ; ‘
-0.08 0.06 -0.04 0.02 0 -15 -10 _5 0 5 10

(®)

Figure 2. The characteristic roots of Equation (12) are plotted in complex plane: (a) While 7, =2.9310; (b) Varying time delay,

head imaginary roots are observed to transverse through the vertical axis from right plane to left plane.

Figure 3 depicts a branch diagram of periodic solution emanating from the
Hopf point as a function of 7z, and r,, respectively. Variation of solutions
along the branch is characterized by their maximal and minimal values over the
period for each computed point on the branch. As z_,r, grows from its Hopf
point value, an instable periodic solution emanates which designates Hopf point

as a subcritical Hopf point which brings bi-stability of system and hysteresis.

3. Multiple Scales Analysis

We consider the related vector form (8) in this section to discuss periodic
solutions of system (1). Variable vector z depends on control vector parameter
u and has subcritical Hopf bifurcation point at critical value x4, =(r,,,7,). In
the following, the multiple scale method is used to investigate system dynamical
behavior around subcritical Hopf point.

Without loss of generality, set characteristic matrix M +iN to satisfy

M +iN =iwl — L (g, )— R (1, )67 =R, (4, )™ (13)
then the corresponding critical eigenvectors are governed by
Mp=Ng, Mg=-NP (14)
and
rM =sN, sM =-rN (15)

with the assumption T +is = (1, +is,,I, +is,), p+iq = (p, +iq, p, +iq,) .
Subsequently, we introduce two time scales T,=t, T,=et, T,=€’t in

Equation(8) to rewrite it into the following formula

dz oz oz oz
— = te—4e— (16)
at o1, o1, JT,
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Figure 3. Branch of periodic solutions is seen to emanate from its subcritical Hopf point to form hysteresis which give rise to a

stable and an unstable periodic solutions simultaneously: (a) Subcritical Hopf bifurcation occurs at critical value 7, =2.9310; (b)

Subcritical Hopf bifurcation occurs at critical value r, =0.1982 .

of Equation (16) may expand into its two scale form

2(t)=2(Ty, T, T,) =2, (T, T, T, ) + ez, (Ty, T, T, ) + €72, (T, 0, T,

and correspondingly,

where Z (To,Tl,TZ) = [

oz
Z(t—rs): z, (T0 _Tsc’Tlsz)_GZTeaTO(TO —rSC,Tl,Tz)

2(t-7.)=2(T, -

=17,(Ty -7,

+ez, (Ty -1,

+€°2,(Ty -7

sc!?

T -

sc!

sc!?

sc?

Tl _TSC’TZ _Tsc)
T,-7
Tl _Tsc’TZ _Tsc)
Tl _Tsc'TZ _Tsc)

SC)

2(t-7y)=2(Ty-7.T,— 7. T, = 7y)
:ZO(TO_TN'Tl_TN’TZ_TN)

+e, (Ty—7y, T, -7y, T, -7y )

+6222 (T0 =T =Ty, T, =Ty )
Zy (TO’Tl’TZ)
Zjp (TO'TllTZ)

above delay terms can both expand into their Taylor’s series as

o
oT,

sc’

(TO _Tsc'T17T2)

0

oz
_e[rsca—_I_O(To —TS,Tl,TZ)— Zl(T0 -7
1

2
o

+e’2,(Ty -7

oz

SC

2
Tl,T2)+%6212 0z

+ %4
T

(TO -7

sc!

sc'Tl’TZ)]

(TO T 'T17T2 )]

Tl’TZ)

According to multiple scale analysis, the mono-parameter family of solutions

(17)

(18)

j for i=0,1,2. We set 7, =1, +¢’r_, the
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Z(t—TN): Z, (TO —TN,TI,TZ)

0z
_{TN G_'I'O(TO 10, T) -2 (T — 7y T T, )J

1

o oz (19)
—€’r (—O(T0 1, T T) +—=(Ty — 7. T, ,Tz)j
N aTZ N 1 aTl N 1
2
+é’z, (To—7, Ty -7y, T, — 7 )+%ezr§ 8_23
1

(To Y ’Tl'TZ)

We substitute Equation (17) and Equation (19) into the vector differential
equation (16), and equating separately coefficients of € to obtain the
perturbation equation

o4
a—_l_‘(’)(To,Tl,Tz) =L(1) 20 (Ty, Tou T, ) + Ript 2 (To — 7, T, ) o)

+ Rz(ﬂc)zo (T —TN,Tl,TZ)

Therefore, we have

oz
a_.l?l(Tolesz) =a,Zy (T01T11T2)+ P (TO’TI'TZ) (21)
0
oz
a_.l(.);(To’TliTz) ==VnZo (TO'Tl’T2)+ b2201 (To Y 'TllTZ) (22)

+b,2,, (To — Ty :T11Tz)

The sequence of perturbation equations can be obtained by equating

separately coefficients of e, e? too.

0z oz
e :a—_l‘fll(To,Tl,Tz)Jra—_lfol(To,Tl,Tz)

oz
=ayZ; (TO’T17T2)+ a7, (TO’T17T2)_b1TSC a_.l?l(To _TsvaTz)
1
+bz, (To _Tsc’T11T2)+ Zeirsrscﬁ,(Q*) Zgl (To _Tsc’Tl’TZ) (23)
N 1o, i)
_Eﬂ (Q )Q 251(T0!T1’T2)_EkN (N )Q Zgz (Tolesz)

4 e—rscfscﬂ"(Q*)Q*zgl (T0 —Tsc,Tl,Tz)—,B'(Q*) Zg) (TO’TI’TZ)
- k,'\‘ (N*)Z()l(TO,Tl,Tz)Zoz (TOITl’TZ)’

oz oz
e 1‘312(T0,T1,T2)+a—1{§(T0,T1,T2)

oz
==Vnlo (TO'Tl’TZ)_ b7y a_.l(zl(To — 7y ’T1-T2)+ bz, (To —Tn ’Tl’TZ)

1

oz
-b,z, a—_l?z(T0 —rN,Tl,T2)+b3212 (TO—rN,Tl,Tz) (24)

1

+ e (NT) 20y (Ty = 7y, T, T,) 26, (Ty = 70, T, T, )

" %ez‘NpﬂNP*VDTNM k,'\’l ( N *)Q*Zgz (TO =Ty ,Tlsz )v
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0z oz 0z
€ :6—T021(T0,T1,T2)+6—T111(T0,T1,T2)+6—T2:(T0,T1,T2)

oz
=ay;Zy (T01T11T2)+ Ay (TO’Tl’TZ)_blrsc 6_1?1(1-0 - Tsc’Tl’TZ)

2

+br %(To - TsclTl’T2)+ bz, (To - Tsc’T17T2)

1

1 0’z oz
+§b1752c a?lozl(-ro - Tsc'Tl’TZ)_ by, 8TT(TO _Tsc'Tl’TZ)
1

+4'(Q)e =25 (Ty - 7., T, T,) -5 B"(Q)QZ5(Ty T, T,)

1 m * * 1 — I T m * *
_gkN(N )Q Zgz(To’Tl’Tz)"'ge * SC,B (Q )Q Zgl(TO_Tsc’TllTZ) (25)

1,/ 1.,
_Eﬂ (Q )Zgl(TO'Tl’TZ)_EkN(N )201(T01T1-T2)Z§2(TOlesz)

_IB”(Q*)q*Zm(TO’Tl’TZ)le(TO’Tl’TZ)_ kl’\; (N*)Q*ZOZ (TO’Tl’T2)212 (TO’Tl’TZ)
+2e7% 8" (Q)Q 20y (Ty ~ 7, T T,) 2 (T, 7., T T,)
—ky (N*)(Zn(Tole’Tz)Zoz (To’Tl’Tz)"' 201(T0'T11T2)212 (TO'Tl'Tz))’

0z oz 0z
€ :a—_l‘_’zz(To,Tl,Tz)+a—_|1_12(T0,T1,T2)+8—_|fj(T0,T1,T2)
=2 (T, ,Tl,Tz)—ber%(T —rN,Tl,T2)+ber%(T —0 T T,)
0 aT, " ° ot ’
1, , 0%,
+b2221(TO_TN’Tl’T2)+EbZTN F(TO_TN’TSL‘TZ)
1
0z 0z
-b,z, G_-I(-JZZ(TO_TN’Tl’TZ)+b3TN a—_ll_lz(To—rN,Tl,Tz)

1 0%z
+b,2,, (T, — 7 ,Tl,T2)+Eb32',i a?OZ(TO -7, T, T,)

2
1

+ @TNPINPTTOTNM | ( N *> 20y (To =20, Tu 1) 25, (To — 70 T T ) 26
GO (N )Q 2 (T )

+eneme okl (N)z,, (Ty =7y, T, ) 2, (To = 7, T T )

1 o o ( N*) 2o (To =7, T T0) 2, (Ty =7, T T, )

e (V) 2T 5 T2 T T

Further, we suppose Equation (8) has the following general solution

2, (T, T,, T
Zo(ToleiTz):[ Ol( . 2)

. (TO’TllTZ)J: B(T,.T,)exp(io,T,)(p+iq)+cc  (27)

where cc isassumed to be the complex conjugate terms of the preceding terms
in equation and frequency a, satisfies characteristic Equation (12) by root
A=tia,.

Substitute z,(T,,T,,T,) into Equation (21) and Equation (22), we have
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%(TO,TI,TZ)—(L( )+ RE™™ + R,gh o )zl (T, T, T,)=ST,+NST,  (28)

0

where

o (p,+ iql)(1+ bz e )
1= A —ioyry R —imgry
(P +igy )b,y e +(p2+|q2)(1+b31Ne K ) (29)

%(TPT Yexp(iwpTy)(p+ig)+cc
1

and

ST, =(7/1j82e2‘“’°T° +(}/QIJB§+CC (30)
7/2 7/92

71:_11)7’,(Q*)Q*(p1+iq1)2_%kﬁ(N*)Q*(pzﬂqﬂz
A Q)P+ i) +ﬂ"( Q')Q"(py +igy) e e

+2ﬂ( ) (pu+ia) =k (N)(py +igy) (p, +id,)
( )(p12+ ) ( )(p1+'q1)(p2_iQZ)

_Eﬂ (Q)Q(pf+af)+B"(Q7)Q (pf +a7 Je ™
‘%"ﬁ('\‘ )Q" (P +)+25'(Q") b+ Je
o= i () 0 5,

1 * * H —2imgt,
+Ekﬁ,(N )Q (p2+|q2)zje Ao
(31)
792 — @/INPTNP707NM (kNr(N*)(pl_i_iql)(pz_iqz)

+%kﬁ(N*)Q*(p§+Q§)j-

ST, and NST, respectively represent the resonance terms and
non-resonance terms. It is well known that resonance terms can produce the

secular terms and it satisfy the solvability condition

(r+is)ST, =0 (32)

A particular solution of Equation (27) is given by

; . T.T,))
T T T,)=®(T,T,)e™" = A(TTe) ) g
o o
which satisfies
(M +iN)z; (T, T,,T,) = ST, (34)

Therefore, solution is calculated as
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. r =
2 (T, TT,)=| 7 |82 (1T, )em 4|79 & |B(T, T,)B(T,T, ) +ee (39)
1(0 1 2) 172 vz v

AP 7gzrgz

with

) (2iwyy, + 1, + 7,80 ) — €20 by,

7

_— eZimOrs}/lbz + e2|(z)0(1'5+TN )7/2 (2|CUO _ ail) _ e2iworN 7/2b1

2 )

A
7/2 1 (36)

1_, _}/N}/gl+a12y92_b3}/g1

gl — ’

7/glA2

r. - Q1742 +b1ng _b27gl

92 =

}/QZAZ

A = (—Zia)O;/N +2ia, 0 +ay,yy + 4w§)62i("°(TS+TN)
+(2iwgh; —ayb, +ay,b, ) €7 +(byyy + 2ibay, )e? ™ —bib, (37)
A, =—a,b, —(ay +b)yy +ayb; +bb,
The above process is repeated in the following analysis. Considering Equation
(23) and Equation (24), we have
a—_zl_z(TO,Tl,Tz)—(L( 1)+ R + R, )z, (T, T, T,) = ST, + NST,  (38)

0

where
o —-(p+ iql)(1+ bz e s )
2= H —ianr - —iwyt,
(P, +ig,)b,rye ™ —(p, +ig, ) (1+byzye o )
oB .
—(T,, T, )exp(iaw,T,
aTz( vT2)xp(ienTy) (39)
—icoo(pl+iql)(gl}ee‘i”’“sB(Tl,Tz)exp(ionO)
A, . 2 5
—{A jEXp('ono)B (Tl’TZ)B(TllTZ)
4
with

A= (( P, — iql)( p, + iql)2 (ﬂ”’(Q*)Q* +3ﬁ”(Q*))
+24"(Q")Q" (;/11“1 + ZER{;/gll“gl})( b+ iql)>e—rerei(gofs

1 . . . . .
+[5( D, +i0,) (10, Py 30,0 — 3P, P, — i, D, )~ 2Q"R {7,,T g, } (P, +i0, )
. . a1 . . .
+Q 72F2(_p2+|q2)jkl,\'l(N )+EQ (qu—pz)(p2+|q2)zk,'\]’(N )
1 _.,. L \2 . 3,. . \2
+EQ (Iql_pl)(pl+|ql) ﬁm(Q )+[E(|q1_p1)(p1+|q1)

-Qyly(p —ig)-2Q°R {7g1Fgl}( P+ iql)],B"(Q*)
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A, = @MeeTom gTIovT (%( p, +id, ) (60,0, —2iq, p, +6p, p, +2ig, p, )

+Q*(2‘R{792ng}( p, +ia,)+(p, —iqz);le"z)k(, (N)

+Q (29%{;/911"91}( D, +i0,)+ 2R {74,Tg, }( Py +i0,) + 71T (P, —ic) 0
+7:05 (i) ki (N*)%Q*(pz +ia,)(P3 -+ )k (N *)j
There is also a solvability condition for Equation (37) as
(r+is)-ST,=0 (41)
and one obtain the complex valued norm form as
' P +iP, B+A1+iA2 B%B (42)

A +iA, A +iA,
where
P, =R{ioybyz, (1, +is,)exp(—iemyr, )},
P, = 3{iaphyr, (1, + |sl)exp( iwy7, )}
=R{—(n +is,) Ay — (1, +is,) A, |,
Ay =3{=(r+is;) Ay — (1, +is,) A, }

4
Ay =—1p, — iz, cos(wyry ) — b,z 1, Py cos(worN )=, .07y oS (@, )
—1, P, — 007 Sin (@7, ) — S, Py, SiN (9,7, ) + S,04by 7, €OS (9,7, )
—b, 7 1,0, 5in (@7 ) —by7y S, Py SIN (@y7y ) +b,7 5,0, C0S (@y7y )
—L,0,b,7y Sin(@yzy ) =S, P07y SIN (@7 ) + S,0,b57 COS(@,7y )
+ 38,0, + 5,0,
A, =1 pbzsin(wyr, ) - nobz, cos(wyz, ) — s, pibyz, €0s( w7, )
+b,7 1, P, Sin(@y7y ) = 0,7 1,0, COS(, 7y ) — b,y S, P, COS (@7, )
+ 1, by SIN (@7 ) — L,0,b,7y COS( @7y ) — S, P,bs7y COS(@e7y ) (43)
— 1,0, =S, P, — S,04by 7, Sin (@y7, ) — b,y 8,0, Sin (@7 )
—s,0,b,7 sin(wyzy ) - 1,0, — S, Py

Finally, doing the nonlinear transform
1 .
B(Tl,TZ):Ea(Tl,Tz)exp(lﬁ(Tl,Tz)) (44)

The first Lyapunov coefficient of the normal form is calculated [11] [13] [14]
as

AA,+A A
Ay tAdh, )
A +A;

4. Bautin Bifurcation

Bautin bifurcation occurs if |;=0, as shown in Figure 4, near Bautin point,
Super-critical Hopf bifurcation occurs at point 2 and subcritical Hopf

bifurcation occurs at Point 1 respectively. As shown in Figure 5, in region (1),

DOI: 10.4236/ijmnta.2017.64011

130 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2017.64011

S.Q.Ma

Bautin
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0 1 1 1 L J
0 0.2 04 0.6 0.8 1

Figure 4. Bautin bifurcation of periodic solutions determined
by its first Lyapunov coefficient.
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Figure 5. System dynamics near Bautin point.

periodic solution with big amplitude appears due to Hopf bifurcation which
switches the stability character of the positive steady state. In region (2), the
coexistence of both stable and unstable periodic solutions is inspired due to the
Bautin bifurcation which further form the bistable dynamic regime and
hysteresis. The long time evolution dynamical behavior jumps to oscillating
periodic limit cycle and the steady state is stable as shown in region (3). Choose
parameters in system (1) with values as shown in Table 1, We calculate
lyapunov coefficient which is referred above to be vicinity at Bautin point with
codimension 2. The suitable values of parameter r, and delay r, are chosen
and the corresponding eigenvector are given as listed in Table 2.
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Table 2. Parameters, eigenvalues and eigenvectors at Bautin point.

Parameters Values Parameters Values Parameters Values
r 0.2035 n, 1 r, 1
, 2.8666 q, 0 5, 0
o, 0.2824 D, -278.501 r, ~0.388e—4
q, 2451.922 s, ~0.284e-3

5. Discussion

In this work, we discussed the subcritical Hopf bifurcation of a hematopoiesis

system which models two compartments of cell lines. The bistable regimes and

hysteresis which are well known produced by subcritical Hopf bifurcation were

detected near codimesion-2 bifurcation point (Bautin point).
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