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Abstract 
In this article we explore the kinematics of a point-like charged particle placed 
within the interior plane of a charged ring. Analytically we formulate the elec-
tric field of the ring along a representative diagonal. Graph of the field as a 
function of the distance from the center of the ring assists foreseeing oscillat-
ing movement of the charged particle. We formulate the equation of motion; 
this is a nonlinear differential equation. Applying Computer Algebra System 
(CAS), specifically Mathematica [1] we solve the equation numerically. Uti-
lizing the solution we quantify the kinematic quantities of interest including 
oscillations period. Although the equation of motion is nonlinear its period is 
regulated. For better understanding we take an advantage of Mathematica 
animation features animating the nonlinear oscillations. 
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1. Motivations and Goals 

It is a common practice to derive the electrostatic potential and field of a un-
iformly charged ring in 3D space [2] [3] [4]. A thorough literature search how-
ever reveals the lack of their applied applications; this project fills in the missing 
link. With applications in mind we derive expressions for the electric field within 
the ring’s plane. This downgrades the dimension of the space from three to two. 
The ring splits the space to interior and exterior regions each with distinct elec-
trostatic characteristics. Placing a point-like charged particle in these regions ex-
erts a different type of force making the particle behave accordingly. It is the goal 
of this investigation to objectively explore the nature of the motion in each re-
gion quantifying their kinematics. This report consists of three sections. In addi-
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tion to Motivations and Goals, in Section 2 we present the physics of the prob-
lem and provide detailing to the solution. This section also includes the output 
of the applied CAS. We conclude with closing remarks. 

2. Physics of the Problem and Its Solution 

Figure 1 figuratively shows the problem at hand. A charged ring of radius R is 
placed on a horizontal xy-plane. To derive the electrostatic potential of the ring 
at a point of interest, ( ),p r ϕ  is placed on the plane of the ring first. We eva-
luate the potential of a differential charge dq; for exterior points we add (inte-
grate) over the rest of the charge segments over the rim of the ring. This proce-
dure is not true for interior points; more explanation follows later. Quantitative-
ly this is done according to Equation (1). 

( ) d, qV r kϕ λ=
− ′∫ r r

                         (1) 

here, 9 2 2

0

1 8.99 10 N m C
4π

k = = × ⋅
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 is the electrostatic coupling constant,  

( )2πq Rλ =  is the charge density of the ring and ( ),V r ϕ  is the potential at p 
expressed in polar coordinates. Utilizing Figure 1, we write, 
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Applying Equation (2), the denominator of the integrand of Equation (1) is, 

( )2 2' 2 cosr r rr ϕ ϕ′ ′− = + −′ −r r                  (3) 

For the points exterior to the ring, i.e. r r> ′  Equation (3) is written as, 
 

 
Figure 1. A charged ring of radius R is on a horizontal xy-plane. A segment of the ring 
with differential charge dq located at ′r , a point of interest, ( ),p r ϕ  located at r  are 

also shown. 

https://doi.org/10.4236/jemaa.2017.911013


H. Sarafian 
 

 

DOI: 10.4236/jemaa.2017.911013 149 Journal of Electromagnetic Analysis and Applications 
 

( )
2

1 2 cosr rr
r r

ϕ ϕ
′ ′    ′− = + − −   

   
′r r                (4) 

and therefore the integrand of Equation (1) according to [2] [3] [4] can be re-
placed with 
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where Pℓ is the Legendre polynomial of order ℓ. 
Equation (5) for interior points is, 
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Substituting Equation (5) in Equation (1) and replacing r' with R yields, 
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Equation (7) includes the integral of Legendre polynomials of order ℓ. The 
values of these integrals for the first seven ℓ’s applying Mathematica are tabu-
lated in Table 1. 

Table 1 shows only the even values of ℓ give non-vanishing values for Equa-
tion (7). More importantly the output of the integration, i.e. the second column 
of Table 1, as expected is independent of φ. Meaning, because of the circular 
symmetry of the ring the derived potential, Equation (7) is independent of the 
angular position of point p i.e. ( ),V r ϕ  is the function of r only. Utilizing the 
relationship between the potential and electric field, namely, 

( ) ˆr rV r r= −∂E                           (8) 

We arrive at Er, 
 
Table 1. The first column is the order of the Legendre polynomial, the second column is 
the associated integration. 
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Now a point-like charged particle, Q, placed in this field would experience a 
force according to Q=F E . The applied force would put the particle of mass m 
in motion, m=F r . Utilizing Equation (9) the equation of motion is, 

( )
( ) ( ) ( )

2 4

2 4 6

1 1 3 45 0
4 64

R Rx t kqQ
m x t x t x t

   − + + + =    


         (10) 

Here, for the sake of clarity we labeled the radial direction as x. Equation (10) 
is a second order nonlinear differential equation. Nonlinearity stems from the 
electric field. The field has a diminishing distance dependence character. There-
fore its impact diminishes as the particle gets pushed away from the ring. With 
the exception of the first term of the second parentheses the rest of the terms 
depend on the ring size, R. Rather than assigning numeric values to the needed 
parameters, {k, q, Q, m}, we set the grouped coefficient, (1/m kqQ) = 1. This 
helps focusing on the generic feature of the motion. We set the ring size to unity, 
R = 1.0. Applying Mathematica with a set of meaningful initial conditions e.g. 
[ ]0 1.2x =  and [ ]0 0x′ = , we solve the equation numerically. The solution is 

shown in Figure 2. 
Plot (a) shows the impact of the force vs. time. The impact of the force is li-

mited, meaning, because the particle gets pushed away from the ring and be-
cause the field diminishes for large distances, after the initial push the particle 
cruises at constant speed, this is depicted in plot (b). The time axis of plot (b) 
intentionally is stretched to 20, so that the plateau shows the cruising character. 
Plot (c) shows the small value of the acceleration for time beyond 10. For t > 10 
the particle has no acceleration. 

Figure 3 is the animation profile of the problem. If the manuscript was pre-
pared utilizing Mathematica sliding the slider would have put the charge in mo-
tion, thus enhancing the understanding of the impact of the nonlinear force on 
the rectilinear movement of the particle; MSW is incapable of animation. How-
ever, an interested reader may contact the author to receive a free copy of Ma-
thematica animation code. 

 

 
(a)                                          (b)                                           (c) 

Figure 2. Plots (a), (b), (c) are the distance, speed and acceleration of the particle vs. time, respectively. 
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For interior points as mentioned in the beginning of the section differential 
fields algebraically are additive. This is in contrast to exterior points where the 
fields arithmetically are additive. For the former, the algebraic sum of the diffe-
rential fields results a net field with alternating orientation. For instance, if the 
loose particle is placed along the horizontal axis close to the right rim of the ring, 
the field would orient to the left, when it passes the center of the ring it reverses 
direction. Intuitively these reversal fields are the cause of the oscillations. There-
fore, kinematics of the particle as it moves within the ring is quite different from 
those at the exterior. 

Applying Equation (6)-(9) and Table 1 we arrive at interior field, 

3
3 5

1 9
2 16rE kq r r

R R
 = − + + 
 

                  (11) 

its plot is shown in Figure 4. 
As discussed, the electric field for points along the x-axis close to the rim of 

the ring is the strongest, orienting toward the origin. At the center of the ring 
due to circular symmetry of the ring and cancellation of the fields its value is ze-
ro. On the other side of the origin the field gradually becomes stronger orienting 
along the opposite direction. 

 

 
Figure 3. This figure shows the animation profile of the problem at hand. A loose 
point-like charged particle is placed outside the charged ring. 

 

 
Figure 4. Electric field E(V/m) along the horizontal diagonal of the ring vs. distance is 
shown. Ring size is R = 1.0 m. 
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Utilizing Equation (11) the equation of motion is, 

( ) ( ) ( )3
3 5

1 1 9 0
2 16

x t kqQ x t x t
m R R

  + + + =  
  


           (12) 

As in the previous case for a ring size of one, we set the composite coefficient 
of the first parentheses to unit value. Applying Mathematica ND Solve we solve 
the equation numerically. We set a meaningful initial conditions, namely, 
[ ]0 0.7x = , with [ ]0 0x′ = . Utilizing the solution its associated kinematics are 

shown in Figure 5. 
As intuitively predicted plot (a) shows the oscillating particle. Plot (b) is the 

speed of the particle. A trained eye recognizes the impact of the nonlinearity of 
the force on the acceleration, plot (c). 

Utilizing the solution of Equation (12) Figure 6 displays the animation profile 
of the nonlinear oscillation of the particle. 

 

 
(a)                                          (b)                                           (c) 

Figure 5. Plots (a), (b), (c) are the distance, speed and acceleration of the particle vs. time, respectively. 
 

 
Figure 6. This figure shows the animation profile of the problem at hand. A loose 
point-like charged particle is placed inside the charged ring. 
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Figure 6 is the animation profile of the problem. Similar to the previous 
statement if the manuscript was prepared utilizing Mathematica sliding the slid-
er would have put the charge in an oscillatory mode. The static mode of the os-
cillations is shown in Figure 5. The interested reader may contact the author to 
receive a free copy of Mathematica animation code. Animation runtime is 10 s; 
the program recycles automatically. 

3. Conclusions 

It is the objective of this investigation to explore applications of the electric field 
of a charged ring. Two scenarios are considered. First we derived expressions for 
the fields at points exterior to the ring, and then for the interior points. Intui-
tively we expect the field at exterior points to die off at distances longer than the 
size of the ring. For the interior points, the field should flip-flop direction. 
Quantitatively we confirm both characteristics. As shown for both cases, charac-
teristics of the field keenly relate to Legendre polynomial. Most interesting is the 
application of this analysis for the interior region. Flipping-flopping field makes 
the charge to oscillate. The plot of the oscillations enables determining the pe-
riod. The equation of motion of each region is a nonlinear ODE requiring nu-
meric solution. This report underlines the need of a CAS. Mathematica is ap-
plied obtaining numeric solutions and the needed plots. Our analysis also in-
cludes animation profiles of the oscillations assisting visual understanding about 
the impact of the nonlinearity of the forces. Our possible future investigation 
will include applications of fields of a charged ellipse. The interested reader may 
contact the author for free copies of the Mathematica animation code. Useful 
plotting techniques are available in [5] as well as in a newly published reference 
[6]. 

A Word about the References 

The literature search reveals numerous articles on derivation of electric field of a 
charged ring—none with applications in mind. The majority of the articles for-
mulate the simplest cases, such as the field along the symmetry axis perpendicu-
lar to the plane of the ring through the center. The author listed classic refer-
ences [2] [3] [4]; an additional Google search returns references that are not di-
rectly pertain to the objective of this paper. 

Acknowledgements 

The author thanks Nenette S. Hickey for carefully reading over the manuscript 
making valuable editorial comments. 

References 
[1] Mathematica V11.2 (2017) Is Symbolic Computation Software. Wolfram Research 

Inc. 

[2] Jackson, J.D. (1973) Classical Electrodynamics. 2nd Edition, John Wiley & Sons, 

https://doi.org/10.4236/jemaa.2017.911013


H. Sarafian   
 

 

DOI: 10.4236/jemaa.2017.911013 154 Journal of Electromagnetic Analysis and Applications 
 

Inc., New York.  

[3] Arfken, G. (1968) Mathematical Methods for Physicists. Academic Express, New 
York. 

[4] Reitz, J.R. and Milford, F.J. (1960) Foundations of Electromagnetic Theory. Addi-
son-Wesley Publishing Company, Inc., Reading Massachusetts. 

[5] Wolfram, S. (1996) Mathematica Book. 3rd Edition, Cambridge University Press.   

[6] Sarafian, H. (2015) Mathematica Graphics Example Book for Beginners. Scientific 
Research Publishing. http://www.scirp.org 

 

https://doi.org/10.4236/jemaa.2017.911013
http://www.scirp.org/

	Legendre Polynomial and Nonlinear Oscillating Point-Like Charged Particle
	Abstract
	Keywords
	1. Motivations and Goals
	2. Physics of the Problem and Its Solution
	3. Conclusions
	A Word about the References
	Acknowledgements
	References

