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Abstract 
Pascal’s triangle can be generated in many ways. In this paper, we generate the 
numbers in the Pascal triangle by applying a small perturbation technique in 
matrices. 
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1. Introduction 

The great French mathematician Blaise Pascal introduced the concept of Pascal’s 
triangle during the 17th century and applied it to study the probability theory. 
The Pascal’s triangle is an unending equilateral triangle. The generation of 
numbers in this triangle is obtained by the simplest technique. Each number in 
this triangle is the sum of the two numbers directly above it. Although the crea-
tion of Pascal’s triangle is simple, it has connections throughout many areas of 
mathematics such as algebra, probability, number theory, combinatorics and 
fractals. Pascal’s triangle has many interesting features, however, it is primarily 
applied to write any binomial expansion. 

There are some interesting patterns associated with the Pascal’s triangle. The 
sum of all elements in the nth row is equal to 2n. From the inner diagonals, we 
obtain a sequence of triangular numbers 1, 3, 6, 10, … There is a technique to 
obtain Fibonacci numbers from this triangle.  

There are several methods to obtain numbers in the Pascal’s triangle and re-
lated numbers. V. E. Hoggatt (1967) discussed the binomial coefficients and Fi-
bonacci numbers [1]. Marjorie Bicknell and V. E. Hoggatt, Jr. (1973) discussed 
the multinomial coefficient triangle and the convolution triangle formed from 
sequences [2]. Boris A. Bondarenga (1990) discussed the history of the Pascal 
Triangle and the binomial coefficients, and also described Pascal triangle of sth 

order, Pascal pyramids and Hyper pyramids and triangle associated with the Fi-
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bonacci and other analog of the binomial coefficients [3]. Bing Cheng Li (1992) 
studied the three-dimensional moments that had been widely used in computer 
vision, but until now obtaining 3D moments had always needed much computa-
tion, which has not been resolved well [4]. In this paper, he proposed a fast and 
simple algorithm for calculating 3D moments and Pascal triangle transform 
(PTT) method is used to calculate monomials with one variable. The calculation 
of monomials is extended to those with three variables. Finally, sequential and 
parallel algorithms that need no multiplications are provided for calculating 3D 
moments. We also concluded that the numbers in the Pascal’s triangle could be 
obtained through a pattern of tossing coins. Gragory S. Call and Daniel J. velle-
man (1993) discussed the Pascal’s matrices while working on a probability prob-
lem involving repeated flips of an unfair coin. In this paper, we provide a me-
thod of generating the numbers in the Pascal’s triangle by using the matrices [5]. 

2. Main Result 

As usual, we denote by m nC ×  the set of all m n×  matrices over the field of 
complex numbers C . 

Definition 1. Let ( ) m n
ijA a C ×= ∈ , choose 0ε >  and let { }0,1,2, ,k mn∈ � . 

We define an ( ),kε -perturbations of A to be a matrix ( ) m n
ijB b C ×= ∈ , where k 

distinct entries of B, say 
1 1 2 2

, , ,
k ki j i j i jb b b�  are given by ε+=

kkkk jiji ab , and all 
the remaining entries of B are equal to the corresponding entries of A. we use 
the convention 0ε > -perturbations of A to mean the matrix A itself. 

Lemma 1. Let ( ) m n
ijA a C ×= ∈ , and let 0ε > . Then for each 

{ }0,1, 2, ,k mn∈ �  the number of all possible ( ),kε -perturbations of A is the 
same as the number of ways of selecting k objects from “mn” distinct objects 
without regard to the order. 

The proof of the lemma is straight forward and hence omitted. The lemma 
and the binomial theorem, we get the following result: 

( )
( ) ( )

!
! !

mn mn
k k mn k
 

=  − 
 

Theorem 1. Let ( ) ,m n
ijA a C x C×= ∈ ∈  and 0ε > . Then for each  

{ }0,1, 2, ,k mn∈ � , the number of all possible ( ),kε -perturbation of A is the 
binomial coefficient of the term kx  in the binomial expansion of ( )1 mnx+ . By 
changing the positive integer :p mn=  over the set of positive integers N, we 
generate the Pascal’s triangle.  

Remark 1. Let ( ) m n
ijA a C ×= ∈ , and let 0ε > . Then for every  

{ }0,1, 2, ,k mn∈ � , denote by Ak the number of all possible ( ),kε -perturbation 
of A. It then follows that  

0
2

mn
mn

k
k

A
=

=∑  

Example 1. Let 2 2a b
A C

c d
× 

= ∈ 
 

, and let 0ε > . Then 0 1A = ,  
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And 1 4A =  since the ( ),1ε -perturbations of A are 

, , ,
a b a b a b a b

c d c d c d c d
ε ε

ε ε
+ +       

       + +       
 

Also 2 6A = , since the ( ), 2ε -perturbations of A are 

, , ,

, ,

a b a b a b
c d c d c c

a b a b a b
c d c d c d

ε ε ε ε
ε ε

ε ε
ε ε ε ε

+ + + +     
     + +     

+ +     
     + + + +     

 

Moreover 3 4A = , since the ( ),3ε -perturbations of A are 

, , ,
a b a b a b a b
c d c d c d c d

ε ε ε ε ε ε
ε ε ε ε ε ε

+ + + + + +       
       + + + + + +       

; 

Finally 4 1A = , since the ( ), 4ε -perturbations of A is 
a b
c d

ε ε
ε ε

+ + 
 + + 

. 

So,  
4

4

1
1 4 6 4 1 16 2i

i
A

=

= + + + + = =∑  

Example 2. Let 2 3a b c
A C

d e f
× 

= ∈ 
 

, and let 0ε >  then, 0 1A = , 

And 1 6A =  since the ( ),1ε -perturbations of A are 

, , ,

, , .

a b c a b c a b c
d e f d e f d e f

a b c a b c a b c
d e f d e f d e f

ε ε ε

ε ε ε

+ + +     
     
     
     
     + + +     

 

Also 2 15A =  since the ( ), 2ε -perturbations of A are 

, , , ,

, , , ,

, , ,

a b c a b c a b c a b c
d e f d e f d e f d e f

a b c a b c a b c a b c
d e f d e f d e f d e f

a b c a b c a b c a b c
d e f d e f d e f d e f

ε ε ε ε ε ε
ε ε

ε ε ε ε ε
ε ε ε

ε ε ε ε
ε ε ε ε

+ + + + + +       
       + +       

+ + + + +       
       + + +       

+ + + +      
      + + + +      

,

, ,
a b c a b c a b c

d e f d e f d e fε ε ε ε ε ε





     
     + + + + + +     

 

Moreover 3 20A =  since the ( ),3ε -perturbations of A are 

, , ,

, , ,

, , ,

a b c a b c a b c
d e f d e f d e f

a b c a b c a b c
d e f d e f d e f

a b c a b c a b c
d e f d e f d e f

ε ε ε ε ε ε ε
ε ε

ε ε ε ε ε ε
ε ε ε

ε ε ε ε
ε ε ε ε ε

+ + + + + + +     
     + +     

+ + + + + +     
     + + +     

+ + + +     
     + + + + +     
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, , ,

, , ,

, , ,

,

a b c a b c a b c
d e f d e f d e f

a b c a b c a b c
d e f d e f d e f

a b c a b c a b c
d e f d e f d e f

a b c a b c
d e f d e f

ε ε ε ε ε
ε ε ε ε

ε ε ε ε
ε ε ε ε ε

ε ε ε
ε ε ε ε ε ε

ε
ε ε ε ε

+ + + + +     
     + + + +     

+ + + +     
     + + + + +     

+ + +     
     + + + + + +     

+ 
 + + + + 

.
ε

 
 + 

 

Moreover also 4 15A =  since the ( ), 4ε -perturbations of A are 

, , ,

, , ,

, , ,

a b c a b c a b c
d e f d e f d e f

a b c a b c a b c
d e f d e f d e f

a b c a b c a b c
d e f d e f d e f

a b c
d e

ε ε ε ε ε ε ε ε ε
ε ε ε

ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε ε ε ε
ε ε ε ε ε ε

ε
ε ε

+ + + + + + + + +     
     + + +     

+ + + + + +     
     + + + + + +     

+ + + + + +     
     + + + + + +     

+
+ +

, , ,

, , .

a b c a b c
f d e f d e f

a b c a b c a b c
d e f d e f d e f

ε ε ε ε
ε ε ε ε ε

ε ε ε ε
ε ε ε ε ε ε ε ε

+ + + +     
     + + + + +     

+ + + +     
     + + + + + + + +     

 

Moreover also then 5 6A =  since the ( ),5ε -perturbations of A are 

, , ,

, , .

a b c a b c a b c
d e f d e f d e f

a b c a b c a b c
d e f d e f d e f

ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε

+ + + + + +     
     + + + + + + + + +     

+ + + + + + + + +     
     + + + + + +     

 

Finally 6 1A =  since the ( ),6ε -perturbations of A is 
a b c
d e f

ε ε ε
ε ε ε

+ + + 
 + + + 

. 

So,  
6

6

1
1 6 15 20 15 6 1 64 2i

i
A

=

= + + + + + + = =∑ . 

Acknowledgements 

The author is grateful to an anonymous referee for some helpful comments. We 
indebted to Dr. A. Sugumaran, Associate Professor of Mathematics, Govern-
ment Arts College, Tiruvannamalai, India, for very helpful discussions concern-
ing this work. 

References 
[1] Hoggatt, V.E. (1967) Fibonacci Numbers and Generalized Binomial Coefficients. 

San Jose State College, San Jose, CA, 383-400. 

[2] Bicknell, M. and Hoggatt Jr., V.E. (1973) Unit Determinants in Generalized Pascal 
Triangles. San Jose State University, San Jose, CA, 131-144. 

RETRACTED

https://doi.org/10.4236/alamt.2017.74008


P. R. Balasubramani 
 

 

DOI: 10.4236/alamt.2017.74008 83 Advances in Linear Algebra & Matrix Theory 
 

[3] Bondarenko, B.A. (1990) Generalized Pascal Triangle and pyramids. Translated by 
Richard C. Bollinger, The Behrand College, Erie, Penn State, 1-45. 

[4] Li, B.-C. (1992) Pascal Triangle Transform Approach to the Calculation of 3D Mo-
ments. CVGIP: Graphical Models and Image Processing, 54, 301-307. 

[5] Call, G.S. and Velleman, D.J. (1993) Pascal’s Matrices. The American Mathematical 
Monthly, 100, 372-376. 

 
 

RETRACTED

https://doi.org/10.4236/alamt.2017.74008

	Retraction Notice
	1-2230137
	Generation of Pascal Triangle Using Matrices
	Abstract
	Keywords
	1. Introduction
	2. Main Result
	Acknowledgements
	References




