
Journal of Information Security, 2017, 8, 383-401
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2017.84024 Oct. 31, 2017 383 Journal of Information Security

Ambiguous Multi-Symmetric Scheme and
Applications

Richard Bassous1, Ahmad Mansour1, Roger Bassous1, Huirong Fu1, Ye Zhu2, George Corser3

1Oakland University, Rochester, MI, USA
2Cleveland State University, Cleveland, OH, USA
3Saginaw Valley State University, Saginaw, MI, USA

Abstract
This paper introduces and evaluates the performance of a novel cipher
scheme, Ambiguous Multi-Symmetric Cryptography (AMSC), which conceals
multiple coherent plain-texts in one cipher-text. The cipher-text can be de-
crypted by different keys to produce different plain-texts. Security analysis
showed that AMSC is secure against cipher-text only and known plain-text
attacks. AMSC has the following applications: 1) it can send multiple messag-
es for multiple receivers through one cipher-text; 2) it can send one real mes-
sage and multiple decoys for camouflage; and 3) it can send one real message
to one receiver using parallel processing. Performance comparison with lead-
ing symmetric algorithms (DES, AES and RC6) demonstrated AMSC’s effi-
ciency in execution time.

Keywords
Deniable Encryption, Multi Encryption, Honey Encryption, Steganography,
Symmetric Encryption, Multi Encoding

1. Introduction

Deniable encryption prevents attackers from knowing with certainty whether or
not a particular sender or receiver can be linked to a specific plain-text message.
This paper addresses the deniable encryption problem by proposing a new ci-
pher scheme, Ambiguous Multi-Symmetric Cryptography (AMSC), which con-
ceals multiple plain-texts, each with its own key, in one cipher-text. The deniable
encryption problem is important because most encryption schemes are defense-
less against an attacker once she possesses the key. Deniable encryption provides

How to cite this paper: Bassous, R., Man-
sour, A., Bassous, R., Fu, H., Zhu, Y. and
Corser, G. (2017) Ambiguous Multi-Sym-
metric Scheme and Applications. Journal of
Information Security, 8, 383-401.
https://doi.org/10.4236/jis.2017.84024

Received: September 30, 2017
Accepted: October 28, 2017
Published: October 31, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2017.84024
http://www.scirp.org
https://doi.org/10.4236/jis.2017.84024
http://creativecommons.org/licenses/by/4.0/

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 384 Journal of Information Security

an additional layer of protection. With multiple plain-texts concealed in one ci-
pher-text, an attacker cannot be certain which plain-text is genuine even if she
possesses the cipher-text and one or more of the keys.

Several recent efforts in the area of deniable encryption have demonstrated
the possibility of hiding/protecting the sender or receiver from revealing the de-
cryption key when force is used. Following the early work of Canetti et al. [1], a
variety of methods for “deniable encryption” have already been presented, in-
cluding, Kamouflage [2] and Honey Encryption [3]. These methods can protect
against offline and brute force attacks on the encrypted data, as they provide
multiple decoy coherent messages to fool the adversary. Unfortunately, they
cannot be used for online secure communications.

Ideally, we want a deniable encryption scheme that: 1) Defends both commu-
nication parties against decryption key exposure. 2) Has good performance in
both encryption and decryption. 3) Is secure against different attack models. For
a), AMSC defends both sender and receiver by providing multiple decoy keys.
As for b), AMSC has an initialization phase that speeds up the original encryp-
tion [4] tremendously. For c), we introduce a security operation in the encryp-
tion step that helps secure AMSC against Cipher-text only and Known plain-text
attacks.

This problem is non-trivial due to the complexity of concealing multiple mes-
sages into one message. This problem can simply be solved by encrypting n
messages and concatenating the sub cipher-texts into one cipher-text. However,
this could lead to rubber-hose cryptanalysis [5] on the receiver if the adversary
observes that sub cipher-texts and not the whole cipher-text is being decrypted.
The adversary will continue to use force on the receiver to reveal more possible
messages. Another problem with this approach happens if the adversary inter-
cepts parts of the whole cipher-text. Theoretically, it could reveal one or more
concatenated messages. While a partial cipher-text in AMSC does not reveal any
message.

AMSC’s applications include multicast messaging and broadcast encryption.
One video channel could generate multiple unique channels for different receiv-
ers. A second application is to deny the correct plain-text and key from the ad-
versary by providing decoys. The third application is to use parallel computing
to split one message into chunks and encrypt it using AMSC. This is possible
due to the independent encryption operations that can run on different cores in
parallel. This allows for faster encryption of a single message.

The primary contributions of this paper are as follows. First, compared
with [4], the encryption performance is enhanced by introducing a new algo-
rithm. Second, the security is improved by introducing an extra operation in the
encryption process, without affecting performance. Third, AMSC’s performance
is compared to leading symmetric algorithms like DES, AES and RC6. Fourth,
the security analysis is researched in more detail, notably the security of keys
used, in addition to introducing another probabilistic approach. Fifth, computa-

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 385 Journal of Information Security

tional complexity analysis is performed on the new algorithm.
The remainder of this paper is organized as follows: Section 2 provides back-

ground and related work, and compares our scheme to others. Section 3 defines
the scheme. Section 4 proposes a new algorithm and presents its applications.
Section 5 studies the security and possible attacks and shows a probabilistic solu-
tion. Section 6 examines the time complexity. Section 7 shows the results of our
experiments.

Finally, Section 8 concludes.

2. Background and Related Work

Canetti et al. [1] proposed a “Deniable Encryption”, which is a theoretical ap-
proach to deny someone the original plain-text when they get hold of the ci-
pher-text and the right decryption key. Assume that Bob sends an encrypted
message to Alice, and later on, Trudy holds Bob hostage until Bob releases the
key. The released key will provide a fake plain-text. Canetti distinguished be-
tween two models:

1) multi-distributional deniability, requires the users to know in advance
which messages they might want to conceal, whereas

2) full deniability, allows the user to decide afterward
Canetti presented a sender deniable scheme, using this first model. They also

constructed a receiver deniable scheme that requires an additional round of in-
teraction, and a sender-receiver-deniable protocol that relies on third parties.

One proposed scheme for denying symmetric encryption by Canetti would be
to give n alternative messages to encrypt, and use n different keys, then construct
the cipher-text as the concatenation of the encryption of all messages as shown
in Figure 1. This is called a plan ahead scheme, where the i-th message is en-
crypted using the i-th key. One disadvantage of concatenation, is dealing with
offsets at the recipient’s side. If the cipher-text size changes, offsets have to
change accordingly. All offsets have to be re-communicated from the sender to
all receivers every time the cipher-text size changes, as changing the number or
size of messages will affect the offsets. On the other hand, AMSC generates a va-
riable cipher-text size without using offsets for sub cipher-texts. The only condi-
tion is that each key has to be bigger than its plain-text. The other advantage of
AMSC over concatenation, is in intercepting the cipher-text. Assume that a
concatenated cipher-text has 3 cipher-texts that are 50 bytes each. If the adver-
sary gets hold of part of the cipher-text, say the last 70 bytes, then at least one
key and one plain-text are exposed. Therefore, partial message eavesdrop could
reveal a plain-text. In AMSC however, if this happens, the cipher-text would be

Figure 1. One scheme for plan ahead symmetric deniable encryption [1].

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 386 Journal of Information Security

incomplete and would not reveal any information about any message. Concate-
nation could also lead to rubber-hose cryptanalysis [5], as the adversary might
notice that a partial cipher-text was decrypted, and continue to use force to re-
veal more possible keys.

Kamouflage system [2] is used to store multiple decoys for each real password
in a local password manager database like Firefox. Also a set of decoy master
passwords (MB) on the database are generated. If the adversary cracks a decoy
MB, they will get hold of decoy password sets. Kamouflage is only used to pro-
tect the local password manager of the stolen device.

Juels and Ristenpart [3] introduced “Honey Encryption” (HE). It’s a method
that creates plausible deniability for low min-entropy keys (like short pass-
words). HE generates a seed using a method called distribution-transforming
encoder (DTE), from a message P, that belongs to a specific message space M
(ex: credit card numbers). This seed is then encrypted by a conventional encryp-
tion algorithm. When an adversary tries to decrypt cipher-text C, plausible fake
honey messages will be decrypted. Each application needs a construction of a
different DTE. Ex: a DTE for RSA secret keys is different from a DTE for credit
card numbers. Furthermore, HE is tightly coupled with password based encryp-
tion (PBE). HE security does not hold when the adversary has side information
about the target message [3] (ex: if the adversary knows the public key in RSA,
HE fails). Both “Kamouflage” and “Honey Encryption” protect against offline or
online attacks by providing decoys. On the other hand, AMSC is used in secure
communications. AMSC can send the same message with different interpreta-
tions to different receivers. In addition, AMSC can encrypt from a natural lan-
guage message space, where HE for example, is focused on certain message
spaces (ex: credit card numbers, RSA secret keys). Moreover, AMSC has the
ability to deny encryption when force is used to reveal the keys, where both pre-
vious systems (Kamouflage and HE) cannot [3].

ONeill et al. [6] provided a public key solution, where both sender and receiv-
er can use deniability without relying on any third party. The solution is based
on Multi-distributional deniability. They defined a new term “bi-deniable en-
cryption” which allows a sender in possession of the receiver’s public key to
communicate a message to the latter, confidentially. Additionally, if the parties
are later coerced to reveal all their secret data namely, the coins used by the
sender to encrypt her message and/or those used by the receiver to generate her
key, bi-deniable encryption allows them to do so as if any desired message (pos-
sibly chosen as late as at the time of coercion) had been encrypted.

Sahai et al. [7] defined an identity based encryption (IBE), which allows
sending an encrypted message to an identity without using a public key
certificate. A user with a secret key K for the identity w is able to decrypt a
cipher-text encrypted with the public key w′ IFF w and w′ are within a
certain distance of each other by some metric. A document for example can be
decrypted by a certain identity or group. They use biometric for IBE to generate

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 387 Journal of Information Security

keys from a trusted authority, afterwords, distribute a master secret key using
Shamir into multiple private components, one for each attribute in the user’s
identity, then only a subset of these private keys are necessary to decrypt the
cipher-text.

A secret sharing scheme [8] follows a similar scheme as AMSC. It defines
(),A k n -threshold scheme as a method of sharing a secret S among a set of n

participants in such a way that any k participants can compute the value of the
secret, but no group of k − 1 or fewer can do so. The Chinese remainder theorem
can be used to construct the secret S like in Mignotte’s [9] and Asmuth-Bloom’s
Schemes [10]. However, it differs, as the secret points to one message, and k
shares are needed to solve it using CRT.

3. AMSC Scheme

Our scheme conceals various plain-texts into one cipher-text, hence the name
“Multi-Symmetric”. Figure 2 shows the system model. The scheme can be
defined in three steps: Let 1 2, , , nP P P be plain-texts, 1 2, , , nK K K be keys
accordingly, then:

1) Alice exchanges a number of AMSC co-prime keys with Bob. For added
security, Alice can also exchange X which is the multiplication of all keys.1

2) Alice generates cipher-text:

[] []()1 2 1 2= , , , , , , ,AMSC n nC E K K K P P P  .

3) Bob decrypts C using key iK and gets iP .
Table 1 shows a glossary of symbols used in this paper.

4. AMSC Algorithm

In this section, we present a new algorithm (AMSC v3) that satisfies the previous
scheme. This algorithm enhances the performance of the two algorithms
presented in [4] by introducing an initialization phase. This speeds up AMSC
tremendously. Furthermore, the security is enhanced by adding an XOR
operation to the encryption as a final step between the cipher-text and the
multiplication of all keys. This strengthens the AMSC algorithm against the
known plain-text attacks as explained in more detail in Section 5.1.2. The
security and performance will be further discussed in Sections 5 and 7.

The AMSC algorithm is based on the Chinese Remainder theorem (CRT) [11]
that is used to calculate the cipher-text.

Figure 2. Ambiguous multi-symmetric scheme.

1Keys exchanges are out of scope of this paper.

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 388 Journal of Information Security

Table 1. Glossary of symbols.

Symbol Description

C Cipher-text

iK Encryption key i

Ka Average size of all keys (1, ···, n) in bits

iP Plain-text block i

aP Average size of all plain-texts (1, ···, n) in bits

E Encryption algorithm

D Decryption algorithm

ia
Unknown variable that is used in the formula to

calculate cipher-text, i i iC K a P= +

n Number of plain-text(s) to be encrypted

v Minimum number of steps to find all possible keys
(if iK s are primes), ()lnv C C=

X The multiplications of all keys (1, ···, n)

ir , is
The roots of the extended-GCD algorithm such that

1i i i irK s X K+ = .

 is is the modular multiplicative inverse of iX K modulo iK

GCD The greatest common denominator

CRT The Chinese remainder theorem

AES The advanced encryption standard

DES The data encryption standard

RC6 The Rivest cipher 6 algorithm

CRT Theorem: Suppose that 1 2, , , nK K K are pairwise relatively prime

positive integers, and let 1 2, , , nP P P be integers. Then the system of
congruences, ()modi iC P K≡ for 1 i n≤ ≤ , has a unique solution modulo

1 2 nX K K K= ∗ ∗ ∗ , which is given by:
()1 1 2 2 2 moda n n nC P X s P X s P X s X≡ + + + , where i iX X K= and

() ()1 modi i is X K−≡ for 1 i n≤ ≤ .
The AMSC algorithm prepares , 1, ,i iX s i n∗ =  from above in the

initialization step (calculated once). Afterwords, the encryption multiplies all
plain-texts 1, , nP P with the initialization values and calculates the cipher.

4.1. Initialization

The first part initializes AMSC values that are used in encryption. We calculate
X (the multiplication of all keys) and a set of numbers i is X K∗ for each key

, = 1, ,iK i n .
These values are calculated only once and not per encryption. These are the

steps needed to initialize:
1) Multiply keys , ,i nK



 to get a number X.
2) Use the extended Euclidean algorithm to find the roots ,r s for every key

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 389 Journal of Information Security

iK such that:

() () 1i i i ir K s X K+ = (1)

Algorithm 1 shows AMSC v3 Initialization.

4.2. Encryption

After initialization, subsequent cipher-texts are calculated by:

1

n

i i i
i

C Ps X K
=

= ∑ (2)

where i is X K is calculated in the initialization step. There is an option to
XOR the final cipher-text C to X. This will make AMSC secure against known
plain-text attacks as discussed in detail in Section 5.

1

n

i i i
i

C Ps X K X
=

 = ⊕ 
 
∑ (3)

Algorithm 2 shows the steps for AMSC v3 Encryption.

4.3. Decryption

The decryption simply takes the cipher-text C and mods it with the
corresponding key iK . If the XOR operation is used in the encryption to

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 390 Journal of Information Security

strengthens the cipher, then the input for decryption needs X besides the
cipher-text. One important note: If all keys are primes, and the receiver knows X
and her key iK , it is not possible to know the rest of the keys as this is a
factorization problem. Algorithm 3 shows the steps for AMSC v3 Decryption.

4.4. Example

Let 4n = , 64Pa = bits and 65Ka = bits.
Assume we use prime keys (we can use co-primes as well):

1 36893488147419103183K = , 2 36893488147419103153K = ,

3 36893488147419103117K = , 4 36893488147419103091K = and plain-texts

1 5407036729192671602P = , 2 12217864333306969557P = ,

3 9169178348075514855P = , 4 8659079797496077286P = .
Using AMSC with no XOR operations, we calculate cipher-text

16394186300320500502435771192868738239953
 75900079267888735899798043807086216329
C =

−
.

5. Security Analysis

In this section, we evaluate our algorithm under a variety of security attack
models, including a thorough study on prime and co-prime keys. Then, we
present a probabilistic solution for the encryption process.

5.1. Security Attack Models
5.1.1. Cipher-Text only Attack [12]
When one cipher-text is intercepted, a brute force attack [13] is one way to crack
the encryption. AMSC can use prime or co-prime keys. Both will be analyzed.

1) Primes: The prime number theorem states that there are approximately
()ln primesC C C<= . The size of the cipher-text depends on three factors: the

average block size Pa, the number of blocks n, and the average key size Ka. Table
2 shows how the three factors n, Pa, Ka affect the cipher-text size, along side the
number of steps needed to find all prime keys.

2) Co-primes: For any cipher-text C, the number of sets of positive integers ≤
C in which two elements are co-primes lies between

() ()() () ()()1 2 1 2 12 e and 2 eO C O CC C+ ∗ + ∗Π Π∗ ∗ (4)

by Theorem 3.3 of Cameron and Erdos [14]. ()CΠ is defined as the prime

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 391 Journal of Information Security

Table 2. Three factors n, Pa, Ka that affect cipher-text size.

of blocks (n)
average block

size in bits (Pa)
Average key size

in bits (Ka)
Cipher-text

(C)

Min # of steps to find
all prime keys
(C/In(C)) (v)

16 8 9 2130 2123

8 16 17 2127 2120

4 32 33 2129 2123

counting function of C.

Nathanson [15] improved this in Theorem 2 as follows:

()2 3 22 2 2 2 2C C CC CC F C          − − ∗ <= <= − (5)

where ()F C is the number of relatively prime subsets of { }1,2, ,n .
Furthermore, Nathanson derived an approximation ()nF C for the number

of n-elements sets of positive integers ≤ C in which two elements are co-primes:

()

2 3
*

2
n

C C C
C

n n n

C C
F C

n n

           − −    
     

     <= <= −   
   

 (6)

Using Equation (6), we construct Table 3 to approximate the number of
co-prime sets based on the size of cipher-text C and the number of plain-text(s)
n. Table 4 shows the number of all co-prime subsets ≤ cipher-text C. It also
shows the number of co-prime subsets if C X⊕ is used.

To find all elements of the co-prime sets we can use different methods:
• n = 2: if we want to find all pair sets that are co-primes ≤ C, we can use the

Farey sequence [16]. There exists an algorithm [17] to find all sets ≤ C in

()2O C time complexity.
• n = 3: if we want to find all triplet sets that are co-primes ≤ C, we can use the

primitive Pythagorean triples [18]. One formula for finding all primitive
triplets ≤ C is the Euclid’s Formula. The Time complexity of this formula is

()()logO C C∗ [19].
• n > 3: In this case we can examine all subsets where n = 2 and chain them

together to generate the subsets with the required n.
3) The XOR operation has been widely used in cryptography, especially in

symmetric key cryptography [20] [21] [22]. The security of XOR mainly depends
on the key strength, where it must be extremely difficult for the adversary to
predict the key. In addition, the key and the message should have the same
length to avoid repetition. With these two conditions, the brute force attack is
the only possible attack that can be used to break the cipher-text [23] [24]. To
break an encrypted message of size n bits, the adversary needs 2n steps. This
process is computationally infeasible even for small values of n.

In this work, we introduce an XOR between the cipher-text C with X (The
multiplication of all keys). This is done to break the mathematical pattern. In

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 392 Journal of Information Security

Table 3. The number of relatively prime subsets of { }1,2, ,C of cardinality n, where C

is the AMSC cipher-text.

Cipher-text size n = 2 n = 3 n = 10 n = 20

264 2127 2190 2619 21219

2128 2255 2382 21259 22499

2256 2511 2766 22539 22059

Table 4. The number of all relatively prime subsets of { }1,2, ,C

 of any cardinality.

Cipher-text size
Lower bound for the number

of co-prime subsets [15]

Lower bound for the number of
co-prime subsets when C is XORed

with X

264 174.16 102 × 1764 4.16 102 2 ××

2128 363.835 102 × 36128 3.835 102 2 ××

2256 746.525 102 × 74256 6.525 102 2 ××

other words, if there is any kind of attacks that uses mathematical operations to
break the cipher-text C and extract the keys, then it will be of no use after the
XOR operation. Moreover, XOR defends against the known plain-text attacks as
discussed in Section 5.1.2.

5.1.2. Known Plain-Text Attack [25]
In a classical attack, the adversary can examine one plain-text to its cipher-text
and tries to reveal the key. In AMSC, however, the adversary has multiple inputs
and one output. We will study two cases. One, where the adversary only knows
one plain-text and the rest are unknown, and the second, we assume that all
plain-texts are known going into the oracle.

1) one plain-text is known: The adversary does not know the total number of
plain-texts n or their contents. The oracle generates the final cipher-text C. The
adversary has to solve the equation: modi iP C K= , where iP and C are
known. No one solution is possible. If keys are primes, then a possible prime
factorization (computationally infeasible) of iC P− might reveal one possible
key iK .

2) n plain-texts are known: The adversary examines n plain-texts and their
cipher-texts for each encryption. We end up with n equations for each cipher:

()
()

()

1 1

2 2

mod , 1, ,

mod , 1, ,

mod , 1, ,

i i

i i

z iz i

C P K i n

C P K i n

C P K i n

≡ =

≡ =

≡ =









We know that:

iK is a divisor of ()1 1 2 2, , ,i i z izC P C P C P− − −
therefore:

()1 1 2 2, , ,i i i z izK GCD C P C P C P− − − (7)

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 393 Journal of Information Security

where GCD is the greater common denominator. We have to find the GCD of z −
1 numbers which has a computational complexity of ()()()1 11 log iO z C P− ∗ − .

As more ciphers are calculated and z approaches ∞ , the GCD gets close to

iK . To mitigate this issue, we do C X⊕ in the last step of encryption.

5.1.3. Chosen Plain-Text Attack (CPA) [26]
This case is very similar to Section 5.1.2. However, XOR can not help in this case
because the adversary can feed their own plain-texts. The adversary can reveal X
in such a simple way:

Let all plain-texts 1, , 0nP =


, then

0C X X X⊕ = ⊕ =

Once X is known, subsequent oracle cipher-texts can be XORed with X to
produce the original cipher-texts. Afterwords, the GCD can be used to reveal the
keys as stated previously. We conclude that AMSC is not secure against this
attack if the adversary chooses all plain-texts. We know that chosen plain-text
attack and chosen cipher-text attack fail with all deterministic algorithms. Hence
we have to use probabilistic approaches as discussed in Section 5.2.

5.1.4. Chosen Cipher-Text Attack (CCA) [27]
This attack happens when the adversary has access to the decryption oracle.

AMSC is not CCA immune in the current form. We can start with 1C =
(Table 5) and keep doubling the cipher-text input until the output plain-text
becomes smaller than the previous value. Example: Let 75iK = . When output

53P = , we stop and calculate 128 53 75iK C P= − = − = .
To mitigate this, when we can add the XOR operation C X⊕ at the end of

encryption, then we would have two cases for X:
1) X is odd: The adversary can find the key by feeding the oracle 1C = . The

reason is:
() = 1C X X⊕ − . This is due to the add without carry in the XOR operation.

Ex:
if ()29 1001X = = and 1C = then () ()21000 1C X X⊕ = = − .

We also know that:
()1mod 1i iX K K− = − , since iK is a divisor of X. Therefore:

Table 5. Example of chosen cipher-text attack, where 75iK = .

Cipher-text Plain-text (C mod Ki)

1 1

2 2

4 4

8 8

16 16

32 32

64 64

128 53

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 394 Journal of Information Security

()modi iP C X K= ⊕

()1mod 1i i iP X K K= − = −

1i iK P= +

2) X is even: The previous case will not work. We can choose X to be even by
having only one of the keys iK as even. This will strengthens the security of
AMSC against CCA attacks.

5.2. Deterministic vs. Probabilistic

AMSC is deterministic. We present two approaches to make AMSC probabilistic
[28]:
• First approach: We construct:

()0 1 2, , , nC C t LCM K K K= + ∗  (8)

where 0C is a base solution using CRT, t is any random integer and LCM is the
least common multiplier of all keys. Note that

() ()1 2 1 2 1 2 1 2, , , , , ,n n n nLCM K K K K K K GCD K K K K K K= ∗ ∗ ∗ = ∗ ∗ ∗   
We can use variable t as a random Initialization vector (IV) to yield different

cipher-texts:

[] []()1 AMSC 1 2 1 2, , , , , , ,n NC E K K K P P P=  

[] []()2 AMSC 1 2 1 2, , , , , , ,n NC E K K K P P P=  

[] []()AMSC 1 2 1 2, , , , , , ,i n NC E K K K P P P=  

where 1 2 1 ,iC C C i n≠ ≠ ≠ = , .
• Second approach: We define another probabilistic solution. Let rK , rP be

a random key and a random plain-text accordingly. The cipher-text will
become:

1

n

i i i r r r
i

P s X K P s X K
=

 ∗ ∗ + ∗ ∗ 
 
∑ (9)

The random key and plain-text can be re-generated for every encryption. In
the encryption phase, we only need to calculate r r rP s X K∗ ∗ once, and then
add it to the cipher-text as a final step. This random key will make the
cipher-text probabilistic with a small increase in size. Ex: for n = 4, where
average block size 32aP = and average key size 33aK = . For a deterministic
cipher-text, the average size is about 129 bits. For a probabilistic cipher-text
using approach 2 by adding a random key, the size grows to about 163 bits, a
difference of about 34 bits. For a probabilistic cipher-text using approach 1 by
setting the random IV 150t = , the cipher-text grows to about 139 bits. For

1500t = the cipher-text grows to about 143 bits.
We compare Equations (8) and (9), and examine the cipher-text size. When

n z= , we calculate
1

z

z i
i

X K
=

= ∑ . When we add a random key rK , n becomes

1z + . Thus we have:

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 395 Journal of Information Security

1z r zX K X+ = . Therefore, Equation (9) will have a smaller cipher-text size
than the Equation (8) iff Pr Sr t∗ < .

6. Computational Complexity Analysis

We know that multiplication, division and modular operations take ()2O d
[29], addition takes ()O d [29], where d is the number of decimal digits of the
largest operands. For base 10 number X, that would be ()()()2

log 1O X +  
and ()()log 1O X +   respectively.
• In initialization, the first loop takes ()()2

log 1n X +   steps. In the second
loop, the GCD takes () ()()log logi iK X K∗ [30], then a multiplications and
a division. Overall, () () ()()()2

log log 2 log 1i in K X K X∗ + +   . Therefore
the time complexity is: ()()()2

log 1O n X +   , where n is the number of keys
and X is the multiplication of keys.

• In encryption, we loop n times and do an addition and a multiplication of
numbers close to X. Therefore, the overall time complexity for encryption is

()()()2
log 1O n X +   .

• To decrypt cipher-text C using key iK , we have a time complexity of
()()()2

log 1O C +   , as the operation is modi iP C K= .
Table 6 shows the time complexity for all versions of AMSC.2

7. Experimental Study Analysis

In this section, we evaluate the new algorithm AMSC v3 against different
symmetric algorithms with different key sizes.

7.1. Experimental Setup

All experiments were done on an Intel Core i7 3610QM CPU with 8 GB
memory. The AMSC core library and the symmetric algorithms comparison
were implemented in .NET 4.0 using C# programming language. Each
symmetric algorithm is measured in three different phases. The first, is
initializing n cipher-text classes and creating n random keys that will be used for
encryption/decryption. The second is encrypting n different random plain-texts
using the previous keys accordingly, and then concatenating the sub
cipher-texts. This gives us a fair comparison to AMSC. On the decryption side,

Table 6. Time complexity analysis of AMSC 1, 2 [4], and 3.

 Initialization Encryption Decryption

AMSC 1 NA ()()()2
2log 1iO nz K nz+ +   ()()()2

log 1O C +  

AMSC 2 NA ()()()2
log 1O n X +   ()()()2

log 1O C +  

AMSC 3 ()()()2
log 1O n X +   ()()()2

log 1O n X +   ()()()2
log 1O C +  

2z is the number of solutions that has to be intersected using AMSC v1.

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 396 Journal of Information Security

we decrypt each sub-cipher-text by the its key to get back the original plain-text.
We run each operation a total of 100,000 times and take the average. The total
time for each operation is measured. For AES and DES, we used the built in .Net
crypto libraries AESCryptoServiceProvider and DESCryptoServiceProvider
respectively which are both Fips certified [31] libraries. As for RC6, we used
Bouncy Castle’s [32] crytpo library v1.7. Table 7 defines the legends that are
used in the results.

7.2. Experimental Results
7.2.1. Initialization: AMSC, DES, AES and RC6
Figure 3 compares the execution time of AMSC’s initialization to that of DES,
AES and RC6. The initialization time for the symmetric algorithm includes
initializing n cipher-texts objects with n random keys, and getting them ready
for encryption or decryption.

Table 7. Experiment definitions.

Legend Definition

AMSC number AMSC with key size in bits

AMSC number ⊕ X AMSC, where final cipher-text is XORed with X

DES 64
DES symmetric algorithm with 64-bit key

(56-bit + 8-bit for parity)

AES number AES symmetric algorithm with number-bit key

RC6 number RC6 symmetric algorithm with number-bit key

Figure 3. Initialization: AMSC with keys 129 and 257 bits, DES with key 64-bit, AES
and RC6 with keys 128 and 256 bits.

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 397 Journal of Information Security

DES uses 64-bit keys. AES and RC6 use both 128-bit and 256-bit keys. AS for
AMSC, we pick 129-bit and 257-bit keys. These keys are very close to their
counter part AES and RC6. Furthermore, they will be used in the encryption and
decryption experiments. Recall that every AMSC key has to be greater than its
plain-text block. In the case of DES, the plain-text block is 64-bit. AES and RC6,
both use 128-bit plain-text block. Note that AMSC’s initialization time grows
linearly as n increases. Nonetheless, it still has smaller initialization time than
DES.

7.2.2. Encryption: AMSC, DES, AES and RC6
For symmetric algorithms we encrypt n plain-texts using n keys for the n
cipher-text objects that were initialized, and then concatenate all the sub
cipher-texts into one final cipher-text. This makes it fair to compare against
AMSC. Figure 4(a) compares the execution time of AMSC encryption to that of

Figure 4. Encryption execution time. (a) AMSC and DES with 64-bit plain-text block and
different key sizes. (b) AMSC, AES and RC6 with 128-bit plain-text block and different
key sizes.

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 398 Journal of Information Security

DES using a 64-bit block size with three different size keys for AMSC. Note that
AMSC’s encryption time is significantly less than that of DES. Furthermore,
Figure 4(b) uses 128-bit block size to compare AMSC with AES and RC6. For
AES, AMSC 129-bit beats AES 128-bit keys. AMSC 257-bit has better performance
until about 4 plain-texts. This is due to the multiplication of large numbers as n
increases. As for RC6, AMSC is slower.

7.2.3. Decryption: AMSC, DES, AES and RC6
The total AMSC time to decrypt the same cipher-text into n plain-text messages
using n keys is measured. For the symmetric algorithms, n sub cipher-texts are
decrypted and time is measured. Figure 5(a) shows that AMSC is faster than
DES. Figure 5(b) shows that AMSC 129-bit beats both AES 128-bit and AES
256-bit. However, AMSC 257-bit is slower than AES due to the time it takes to
divide the large cipher-text by each key.

Figure 5. Decryption execution time. (a) AMSC and DES with 64-bit plain-text block and
different key sizes. (b) AMSC, AES and RC6 with 128-bit plain-text block and different
key sizes.

https://doi.org/10.4236/jis.2017.84024

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 399 Journal of Information Security

8. Conclusions

Deniable encryption offers an additional layer of protection for senders and
receivers, who may be forced to give up encryption keys, or who may find it
advantageous to have multiple plain-texts in one cipher-text. This paper showed
that a novel system, ASMC, conceals multiple plain-texts in one cipher-text and
performs competitively with more mainstream encryption techniques.

This paper showed that AMSC is a method for multi-key encoding and
deniable encryption that withstands COA and KPA security attacks. AMSC’s
performance in initialization is faster than DES 64-bit but a little slower than
AES. In Encryption, however, AMSC 129-bit is about 42% faster than AES
128-bit. On the decryption side, AMSC 129-bit is about 110% faster than DES
64-bit and 16% faster than AES 128-bit for 5 plain-texts.

Our future work in this area includes applying parallel computing to AMSC.
We also like to explore different applications of AMSC in TV and other
broadcasts.

Acknowledgements

The authors would like to thank Dr. Kruk for giving feedback. This research
work is partially supported by the National Science Foundation under Grants
CNS-1338105, CNS-1343141, CNS-1460897, DGE-1623713. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References
[1] Canetti, R., Dwork, C., Naor, M. and Ostrovsky, R. (1997) Deniable Encryption. In:

Advances in Cryptology CRYPTO’97, Springer, Berlin, 90-104.
https://doi.org/10.1007/BFb0052229

[2] Bojinov, H., Bursztein, E., Boyen, X. and Boneh, D. (2010) Kamouage:
Loss-Resistant Password Management. In: Computer Security-ESORICS 2010,
Springer, Berlin, 286-302.

[3] Juels, A. and Ristenpart, T. (2014) Honey Encryption: Security beyond the
Brute-Force Bound. In: Advances in Cryptology-EUROCRYPT 2014, Springer, Ber-
lin, 293-310. https://doi.org/10.1007/978-3-642-55220-5_17

[4] Bassous, R., Bassous, R., Fu, H. and Zhu, Y. (2015) Ambiguous Multi-Symmetric
Cryptography. In: Communications (ICC), 2015 IEEE International Conference on,
7394-7399.

[5] Schneier, B. (1996) Applied Cryptography. 2nd Edition, John Wiley & Sons, Hobo-
ken, New Jersey.

[6] ONeill, A., Peikert, C. and Waters, B. (2011) Bi-Deniable Public-Key Encryption. In:
Annual Cryptology Conference, Springer, Berlin, 525-542.

[7] Sahai, A. and Waters, B. (2005) Fuzzy identity-based encryption. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Springer, Berlin, 457-473. https://doi.org/10.1007/11426639_27

[8] Shamir, A. (1979) How to Share a Secret. Communications of the ACM, 22,

https://doi.org/10.4236/jis.2017.84024
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/978-3-642-55220-5_17
https://doi.org/10.1007/11426639_27

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 400 Journal of Information Security

612-613. https://doi.org/10.1145/359168.359176

[9] Mignotte, M. (1983) How to Share a Secret. In: Cryptography, Springer, Berlin,
371-375. https://doi.org/10.1007/3-540-39466-4_27

[10] Asmuth, C. and Bloom, J. (1983) A Modular Approach to Key Safe-Guarding. IEEE
Transactions on Information Theory, 29, 208-210.
https://doi.org/10.1109/TIT.1983.1056651

[11] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001) Introduction to Al-
gorithms. 2nd Edition, MIT Press and McGraw-Hill.

[12] Biryukov, A. and Kushilevitz, E. (1998) From Differential Cryptanalysis to Cipher-
text-Only Attacks. In: Advances in Cryptology CRYPTO’98, Springer, Berlin, 72-88.
https://doi.org/10.1007/BFb0055721

[13] Reynard, R. (1997) Secret Code Breaker II: A Cryptanalyst’s Handbook. Vol. 2,
Smith & Daniel.

[14] Mollin, R.A. (1990) Number Theory. Proceedings of the 1st Conference of the Ca-
nadian Number Theory Association, Banff, 17-27 April 1988, Vol. 1.

[15] Nathanson, M.B. (2007) Affne Invariants, Relatively Prime Sets, and a Phi Function
for Subsets of {1, 2,..., n}. Integers, 7, A1.

[16] Norman Routledge (2008) Computing Farey Series. The Mathematical Gazette,
55-62.

[17] Stack Exchange (2013) Generating All Co-Prime Pairs within Limits.
http://math.stackexchange.com/questions/422830/generating-all-coprime-pairs-wit
hin-limits

[18] Berggren, B. (1934) Pytagoreiska trianglar. Elementa: Tidskrift för elementär mate-
matik, fysik och kemi, 17, 129-139. (in Swedish)

[19] Stackoverflow (2013) Proof: Pythagorean Triple Algorithm Is Faster by Euclid’s
Formula?
http://stackoverflow.com/questions/18294496/proof-pythagorean-triple-algorithm-i
s-faster-by-euclids-formula

[20] Bellare, M., Krovetz, T. and Rogaway, P. (1998) Luby-Rackoff Back-Wards: In-
creasing Security by Making Block Ciphers Non-Invertible. In: Advances in Cryp-
tology Eurocrypt’98, Springer, Berlin, 266-280.
https://doi.org/10.1007/BFb0054132

[21] Hall, C., Wagner, D., Kelsey, J. and Schneier, B. (1998) Building Prfs from Prps. In:
Advances in Cryptology Crypto’98, Springer, Berlin, 370-389.
https://doi.org/10.1007/BFb0055742

[22] Lucks, S. (2000) The Sum of Prps Is a Secure Prf. In: Advances in Cryptology Euro-
crypt 2000, Springer, Berlin, 470-484. https://doi.org/10.1007/3-540-45539-6_34

[23] Paar, C. and Pelzl, J. (2009) Understanding Cryptography: A Textbook for Students
and Practitioners. Springer Science & Business Media, Berlin.

[24] Menezes, A.J., Van Oorschot, P.C. and Vanstone, S.A. (1996) Handbook of Applied
Cryptography. CRC Press.

[25] Singh, S. (2000) The Code Book: The Secret History of Codes and Codebreaking.
Fourth Estate, London.

[26] Matsui, M. (1994) Linear Cryptanalysis Method for Des Cipher. In: Advances in
Cryptology Eurocrypt’93, Springer, Berlin, 386-397.
https://doi.org/10.1007/3-540-48285-7_33

[27] Cramer, R. and Shoup, V. (1998) A Practical Public Key Cryptosystem Provably

https://doi.org/10.4236/jis.2017.84024
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-39466-4_27
https://doi.org/10.1109/TIT.1983.1056651
https://doi.org/10.1007/BFb0055721
http://math.stackexchange.com/questions/422830/generating-all-coprime-pairs-within-limits
http://math.stackexchange.com/questions/422830/generating-all-coprime-pairs-within-limits
http://stackoverflow.com/questions/18294496/proof-pythagorean-triple-algorithm-is-faster-by-euclids-formula
http://stackoverflow.com/questions/18294496/proof-pythagorean-triple-algorithm-is-faster-by-euclids-formula
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/BFb0055742
https://doi.org/10.1007/3-540-45539-6_34
https://doi.org/10.1007/3-540-48285-7_33

R. Bassous et al.

DOI: 10.4236/jis.2017.84024 401 Journal of Information Security

Secure against Adaptive Chosen Ciphertext Attack. In: Advances in Cryptology
CRYPTO’98, Springer, Berlin, 13-25. https://doi.org/10.1007/BFb0055717

[28] Goldwasser, S. and Micali, S. (1984) Probabilistic Encryption. Journal of Computer
and System Sciences, 28, 270-299.

[29] Wikipedia. Computational Complexity of Mathematical Operations.

[30] Math Stack Exchange (2014) What Is the Time Complexity of Euclid’s Algorithm?
http://math.stackexchange.com/questions/258596/what-is-the-time-complexity-of-e
uclids-algorithm-upper-bound-lower-bound-and-a

[31] National Institute of Standards and Technology (2002) Security Requirements for
Cryptographic Modules.

[32] Bouncy Castle (2011) The Legion of the Bouncy Castle.
http://www.bouncycastle.org/csharp/

https://doi.org/10.4236/jis.2017.84024
https://doi.org/10.1007/BFb0055717
http://math.stackexchange.com/questions/258596/what-is-the-time-complexity-of-euclids-algorithm-upper-bound-lower-bound-and-a
http://math.stackexchange.com/questions/258596/what-is-the-time-complexity-of-euclids-algorithm-upper-bound-lower-bound-and-a
http://www.bouncycastle.org/csharp/

	Ambiguous Multi-Symmetric Scheme and Applications
	Abstract
	Keywords
	1. Introduction
	2. Background and Related Work
	3. AMSC Scheme
	4. AMSC Algorithm
	4.1. Initialization
	4.2. Encryption
	4.3. Decryption
	4.4. Example

	5. Security Analysis
	5.1. Security Attack Models
	5.1.1. Cipher-Text only Attack [12]
	5.1.2. Known Plain-Text Attack [25]
	5.1.3. Chosen Plain-Text Attack (CPA) [26]
	5.1.4. Chosen Cipher-Text Attack (CCA) [27]

	5.2. Deterministic vs. Probabilistic

	6. Computational Complexity Analysis
	7. Experimental Study Analysis
	7.1. Experimental Setup
	7.2. Experimental Results
	7.2.1. Initialization: AMSC, DES, AES and RC6
	7.2.2. Encryption: AMSC, DES, AES and RC6
	7.2.3. Decryption: AMSC, DES, AES and RC6

	8. Conclusions
	Acknowledgements
	References

