
Journal of Information Security, 2017, 8, 362-382
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2017.84023 Oct. 31, 2017 362 Journal of Information Security

Cybersecurity: Time Series Predictive Modeling
of Vulnerabilities of Desktop Operating System
Using Linear and Non-Linear Approach

Nawa Raj Pokhrel1, Hansapani Rodrigo2, Chris P. Tsokos1

1Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
2School of Mathematical and Statistical Sciences, University of Rio Grande Valley, Edinburg, TX, USA

Abstract
Vulnerability forecasting models help us to predict the number of vulnerabili-
ties that may occur in the future for a given Operating System (OS). There ex-
ist few models that focus on quantifying future vulnerabilities without con-
sideration of trend, level, seasonality and non linear components of vulnera-
bilities. Unlike traditional ones, we propose a vulnerability analytic prediction
model based on linear and non-linear approaches via time series analysis. We
have developed the models based on Auto Regressive Moving Average
(ARIMA), Artificial Neural Network (ANN), and Support Vector Machine
(SVM) settings. The best model which provides the minimum error rate is se-
lected for prediction of future vulnerabilities. Utilizing time series approach,
this study has developed a predictive analytic model for three popular Desk-
top Operating Systems, namely, Windows 7, Mac OS X, and Linux Kernel by
using their reported vulnerabilities on the National Vulnerability Database
(NVD). Based on these reported vulnerabilities, we predict ahead their beha-
vior so that the OS companies can make strategic and operational decisions
like secure deployment of OS, facilitate backup provisioning, disaster recov-
ery, diversity planning, maintenance scheduling, etc. Similarly, it also helps in
assessing current security risks along with estimation of resources needed for
handling potential security breaches and to foresee the future releases of secu-
rity patches. The proposed non-linear analytic models produce very good
prediction results in comparison to linear time series models.

Keywords
ARIMA, NVD, ANN, OS, SVM, CVE, SMAPE

How to cite this paper: Pokhrel, N.R.,
Rodrigo, H. and Tsokos, C.P. (2017) Cyber-
security: Time Series Predictive Modeling of
Vulnerabilities of Desktop Operating Sys-
tem Using Linear and Non-Linear Ap-
proach. Journal of Information Security, 8,
362-382.
https://doi.org/10.4236/jis.2017.84023

Received: October 4, 2017
Accepted: October 28, 2017
Published: October 31, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution-NonCommercial
International License (CC BY-NC 4.0).
http://creativecommons.org/licenses/by-nc/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2017.84023
http://www.scirp.org
https://doi.org/10.4236/jis.2017.84023
http://creativecommons.org/licenses/by-nc/4.0/

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 363 Journal of Information Security

1. Introduction

A computer system is a collections of hardware and software components
working together to perform a well defined objective as a unified whole entity.
One of the core software components of the computer system is the Operating
System (OS). An OS is a resource manager or a complex interactive software
system. It enables the higher level application software to communicate with
its hardware and memory. Vulnerabilities always exist on such software and
causes tremendous security risks to software companies, developers, and indi-
vidual users. Once an attacker compromised an Operating System via any vul-
nerability, this implies logically the whole computer system is in control of the
hacker. If the computer system itself is in control of unauthorized people, very
significant consequences occur in tremendous financial loses, among other se-
rious damages.

It is well known that the overall rates of the software vulnerabilities are exten-
sively increasing [1]. According to the Secunia Vulnerability Review 2015, the
number has increased to 55% in the past five years, and an 18% increase from
2013 to 2014 [2]. Similarly, Flexera Software reports that a 39% increase in the
five year trend, and a 2% increase from 2014 to 2015 [3]. A Microsoft vulnerabil-
ities study report in 2015 by Avecto Software Company reported that there is a
significant uplift in the total number of vulnerabilities users are exposed to, ris-
ing 52% a year to year basis [4]. The documented facts and figures from the well
established software institutions reveal the current increasing trend in number of
software vulnerabilities that offer a significant problem to the industry. If these
vulnerabilities are exploited and it is the objective of the hacker, we can realize a
tremendous amount of damages and losses to software developers, government
institutions, giant corporations, educational institutions, end users, and all poss-
ible stakeholders associated with this domain.

Some recent analytical study and modeling of general vulenerabilities can be
found in [5] [6] [7]. It is not possible to develop an OS software free of vulnera-
bilities. On the contrary, we can have a precise estimation of vulnerabilities
along with its trends, level, and seasonality based on the historical data. Once we
have a better estimation of the number of vulnerabilities, as per our demand
with respect to the calender time, it would assist us to be well prepared to man-
age the forthcoming risks. At the same time, we can make diversity planning
such as practical contingency plans, provisioning the backup capabilities, alloca-
tion of human and financial resources effectively and efficiently to achieve our
mission, to be protected from the hackers.

Figure 1, gives a schematic view of the market share of Desktop OS world-
wide, with Microsoft dominating the subject industry. In broad classification
in-terms of the type of OS, two Operating Systems exist in the market as de-
scribed in Figure 2. A proprietary Operating System which in particularly con-
ceptualizes, designs, and is sold by the specific company and does not share the
source code to the public.

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 364 Journal of Information Security

Figure 1. Market share of desktop os based on netmarketshare data.

Figure 2. Classification of desktop OS.

Microsoft and Apple are the two giant companies developing proprietary

desktop Operating Systems. Similarly, Linux develops one of the non proprietary
desktop Operating System referred as Linux kernel. According to Netmarket-
share up to July 2016, [8] almost 85% of the market share of desktop Operating
System is captured by the Microsoft company. Likewise, 8% of market share is
captured by the Apple company and approximately 5% from Linux kernel which
is graphically illustrated in Figure 1, above. To be more precise, out of 85%
market coverage of all Microsoft’s existing operating system, Windows 7 covers
almost 48%. There is only one Operating System developed by the Apple com-
pany that is Mac OS X. On the other hand Linux develops Linux kernel and is
considered as one of the oldest Operating System. This OS has minimum market
coverage according to Netmarketshare data. From the reported facts and popu-
larity among the users if we aggregate the total market share of three desktop
Operating System, they almost cover most of the market share in the Desktop
Environment. Thus, it is appropriate to select Windows 7, Mac OS X, and Linux

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 365 Journal of Information Security

Kernel for our present study. These Operating Systems are the product of three
industry leaders, Microsoft, Apple, and Linux.

The schematic network of Desktop Operating Systems, given by Figure 2
above, displays a layout of the process that our analytic study will follow. In the
present study, we have developed analytic vulnerability forecasting models using
time series analysis via linear and non-linear approaches. The developed fore-
casting models completely capture the complicated linear and non-linear inter-
relationship between past data points and extrapolate those relationship into the
future. We have implemented Autoregressive Integrated Moving Average
(ARIMA) to incorporate the linear behavior of the signal in conjunction with
trend, level and seasonality. To capture the non-linear characteristics of the sig-
nal, we are using Artificial Neural Network (ANN) and Support Vector Machine
(SVM). Finally, we have compared the final outcomes of linear and non-linear
models that best fit the actual data set. Based on the outcomes of the developed
models, all the stakeholders associated with Operating System will find our pre-
dictive models of significant importance. As a software developer, one can eva-
luate and proceed to be confident with their strategic and operational policies.
They can make the appropriate plans to allocate the human and financial re-
sources effectively and efficiently. Moreover, they can make streamline patch de-
cisions about OS and can utilize the outcomes for security testing procedure of
the Operating System. Additionally, knowing the future vulnerabilities offer
several benefit; one can identify the OS that are in need to be restricted to reduce
its vulnerability, the predictive vulnerability score can be used for competitive
market analysis, monitor the behavior of competing OS using the forecasted
vulnerability etc. But most importantly this information is extremely important
to the IT manager for his/her strategic planning to minimize the risk of chosen
OS that will not be exploited. Finally, our results offer a unique marketing strat-
egy for purchasing the best OS available in the market place that will have the
best (smallest) future vulnerabilities.

In the present research our objective is to develop a high quality analytical fo-
recasting model utilizing both linear and nonlinear methods to predict the
number of vulnerabilities of a given operating system. In addition we will per-
form statistical evaluations of other models that perform the same task the pre-
dicting process of OS. The selected model provides overall trend and behaviour
of the OS ahead of time; OS companies can make strategical and operational de-
cisions such as secure deployment of OS, facilitate backup provisioning, disaster
recovery, diversity planning, and maintenance scheduling. Similarly, all the
stakeholders related to the OS can access the current sercurity risk along with es-
timation of resources needed for handling potential security breaches and for see
the future releases of security patches. Finally, the predictive results can be used
for the competitive analysis of the product which significantly helps to develop
the marketing strategies for the respective OS.

Our research paper is organized as follows: Section 2 introduces and explains

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 366 Journal of Information Security

the literature review. Section 3 explores the datasets and explanation of major
methods employed in our study. In Section 4, the core analysis and predictive
power of the developed models are discussed. Finally, the usefulness of our ana-
lytical model is presented along with our future research goals.

2. Related Research

During the past years, scientists and researchers have given tremendous
amounts of time and effort to develop vulnerability forecasting models to predict
the future vulnerabilities of OS taking into consideration of their historical be-
havior with reported data. One can characterize these proposed developed mod-
els into two categories.

1) Code Characteristics Based Models: These types of models are relying on
finding out the relationship between attributes of the code with its correspond-
ing vulnerabilities. Rahimi and Zargham, [9] proposed a vulnerability scrying
approach, that is, a vulnerability discovery prediction method based on code
properties and quality. S. Riccardo et al. [10] proposed a machine learning ap-
proach to predict which components of the software applications contain secu-
rity vulnerabilities using a text mining approach. This approach identified a se-
ries of vulnerable terms contained in its source code and was used to compute its
frequency. Based on the frequency, they proceeded to forecast its future. Shin et
al. [11] performed an empirical study with traditional metrics of complexity,
code churn, and faulty history using a large open source project to determine
whether fault prediction models can be used for vulnerability prediction models.
Nguyen and Tran, [12] proposed a component dependency graph to predict
vulnerable components using machine learning methodology. All the mentioned
approaches requires source code to built the models, source code of the OS is
dynamic in nature and it is not available to public in case of proprietary OS.

2) Statistical Density Based Models: In this category, vulnerability forecast-
ing models are based on historical data of the Operating System. To fulfill this
objective, various kinds of models have been developed, mainly Alhaz-
mi-Malaiya Logistic (AML) with different versions, [13] Poissons Log Arithmet-
ic Model, [14], Rescorals Exponential Models [15], and Andresons Thermoody-
namics Model [16]. All the developed models are based on their underlying as-
sumptions and defined framework and none of them considers the non linear
behavior of the signal.

For code characteristics based models, we need a source code of the given
software to develop statistical models. In reality, source code of the commercial
OS is not available to the public. Each and every day new vulnerability comes
into existence and we need to handle new vulnerabilities, thus the software
should be continuously updated which implies that the source code changes with
respect to the life cycle of the software. A company always updates its software
so as to fulfill the demands of current or potential customers and hence we need
to update the source code regularly. Thus, process of making source code is al-

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 367 Journal of Information Security

ways dynamic in nature. One of the prominent question that arises here is “how
can we forecast the future vulnerabilities by utilizing static source code?”.
Knowing very well that no OS is with zero or no vulnerability at all and this will
continue in the future. On the other hand, considering statistic density based
models, that have been developed are based on a series of underlying assump-
tions and criteria that may or may not be applicable. For instance, Rescola Li-
near Model (RL) attempts to fit vulnerability finding rates linearly with time but
in reality situations are different for nonlinear behaviours. Because of such limi-
tations that exist on both categories, we should identify an alternative approach
to forecast the future vulnerability of an OS by using time series analysis. Our
model considers trend, level, and seasonality components if they exist. Similarly,
to analyze the non-linear behavior of the number of vulnerabilities, we imple-
mented ANN and SVM methodology.

3. Data and Methodology

We have directly extracted the vulnerability data from the National Vulnerability
Database (NVD). It is the U.S. governments repository that integrates publicly
available vulnerability resources and provides the common references to the in-
dustry resources. NVD is a product of the National Institute of Standards and
Technology (NIST), Computer Security Division and is sponsored by the De-
partment of Homeland Security’s National Cyber Security Division. It contains
reported vulnerabilities based on their Common Vulnerabilities and Exposures
(CVE) identifier. The total number of vulnerabilities with respect to time in
monthly basis is the fundamental quantitative values for our analysis and mod-
eling. The schematic diagram in Figure 3 describes the holistic idea about the
datasets and methods employed in our study.

We have collected the vulnerabilities for each Operating System, the earliest
available data from NVD to December 2015 as training data, however, the whole

Figure 3. Bird’s eye view of data collection and method selection via flow chart.

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 368 Journal of Information Security

one year, 2016 data is considered as testing data to validate our model. We
summed the total vulnerabilities over a monthly period. Linear and non-linear
time series methods are implemented to select the best model with minimum
forecasting error for each OS.

The following Table 1, shows the summary of descriptive analysis of the
training data. It includes the total number of vulnerabilities on monthly basis,
collection period, and monthly average. From the table below, we can conclude
that average number of vulnerabilities was highest in Mac OS X followed by Li-
nux kernel and Windows 7.

Our analysis begins by investigating the total number of vulnerabilities accu-
mulated by month for three OS, Figure 4, below reveals the overall variation in
total number of vulnerabilities of Mac OS X.

Inspecting Figure 4, the trend of the number of vulnerabilities of MAC OS X
Operating System, it is clearly visible that initially the number of vulnerabilities
are low and fairly stable, as a function of time. There is a high spike at the end of
year 2015. In 2015 the number of vulnerabilities is almost four times greater

Table 1. Descriptive statistics of vulnerability datasets: mac os x, windows 7, and linux
kernel os.

Operating System Collection Period
Total

Vulnerabilities
Monthly Averages

Mac OS X Jan. 2002-Dec. 2015 1441 102.93

Windows 7 Jan. 2009-Dec. 2015 508 72.57

Linux Kernel Jan. 2001-Dec. 2015 1292 86.13

Total Jan. 2001-Dec. 2015 3241 261.68

Figure 4. Time series pattern of mac os x.

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 369 Journal of Information Security

than in previous years. One of the prominent reasons is due to the rapid market
share gains of Mac OS X which leads to growing attack surface for sensitive data.
There are several malicious malware introduced in 2015, for instance, XcodeG-
host which inserts malicious components in to the applications made with
Xcode [17] (Apple’s official tool for developing IOS and OS Apps).

Figure 5, shows the overall trend of the number of vulnerabilities of Windows
7 OS having a very nonlinear behavior. Initially number of vulnerabilities seems
low but after a short period of time, we can see a significance increase and de-
crease of the number of vulnerabilities as a function of time. There is a very
sharp increase in the number of vulnerabilities in 2012, 2014 and 2015 for win-
dows 7. “Secunia Vulnerability Review 2014”, reported that the majority of the
vulnerabilities on Windows 7 come from the non-Microsoft software like Google
Chrome, Adobe Flash Player and others rather than the major defect in OS it-
self.

To incorporate the sharp random fluctuations of the number of vulnerabilities
in each year, we initially believe that non linear time series methods are the
suitable method to build the analytical forecasting model. If the IT manager had
a good forecast of the large number of vulnerabilities, the subject of our study,
he/she would have taken appropriate action to address this critical issue.

The overall trend of the number of vulnerabilities of Linux Kernel OS is
demonstrated by Figure 6 from 2001 to 2015. Even though there is an increasing
and decreasing trend, it would be fair to say that there is a significant variation
in the number of vulnerabilities especially in 2014 and 2015, with more than

Figure 5. Time series pattern of windows 7 os.

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 370 Journal of Information Security

Figure 6. Time series pattern of linux kernel os.

double the number of vulnerabilities for the previous year. Years 2014 and 2015
were difficult years for Linux OS in terms of security perspective, for example
“Heartbleed” is the severe vulnerability detected in OpenSSL that left large
number of cryptographic keys and private data from important sites and services
in the Internet that were open to the hackers. Similarly, Shellshock is the vulne-
rability that is dominantly used in Linux OS command line Shell, also called
Bash or GNU Bourne Again Shell left the door open for a hacker to lunch mali-
cious attack.

All three graphs mentioned above, Figures 4-6, provides a pictorial view
comparison of the number of vulnerabilities of the three OS, MAC OS X, Win-
dows 7 OS, and Linux Kernel OS from respective calender time, on monthly ba-
sis. It does not seem obvious seasonality components exist but random fluctua-
tions have a significant influence on each case. It is clear that each of the OS has
some sort of increasing or decreasing trend for a specific period of time and all
of sudden some spikes come and changes the behavior of the signal. To incor-
porate all the mentioned facts, we have employed linear and non linear tech-
niques to build the best analytic forecasting model. The following section pro-
vides a brief explanation of the techniques employed in this study.

3.1. Autoregressive Integrated Moving Average Process (ARIMA)
Model

Autoregressive Integrated Moving Average (ARIMA) models, are commonly
used for linear models for univariate time series analysis. To construct the
ARIMA model to forecast the vulnerabilities requires three steps. Before going to

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 371 Journal of Information Security

the first step, it is necessary to check if the vulnerability data is stationary, this
implies that the number of vulnerabilities associated with each operating system
shows no trend over monthly observations. We have implemented Dicky-Fuller
and Philips-Perron [18] unit root test to examine the stationarity of the ARIMA
models. Whenever stationarity of the ARIMA models is established, the first
steps to build the ARIMA model requires to identify the appropriate structure
and order of the model. The ARIMA model includes autoregressive terms (AR),
moving average terms (MA), and differencing operations. An ARIMA model
structure is represented by (p, d, q) where p is AR process, d is number of dif-
ferences (filtering) and q is MA process. An AR(n) specifies number of imme-
diately preceding vulnerabilities in the series that are used to forecast vulnerabil-
ities at present. For example, AR(1) means the number of vulnerabilities at time
t = 1 rely on the numbers of vulnerabilities at t − 1. Differencing term d is the
degree of differencing (the number of times the vulnerability data have had past
value subtracted) required to achieve the stationarity condition of the process.
The MA(n) shows that present vulnerabilities have a relationship with past vul-
nerabilities, white noise error terms or random shocks. The random shocks are
assumed to be independent and come from the same probability distribution.
For example, MA(1), AR(1) means that the number of vulnerabilities at time t =
1 relies on numbers of past prediction errors at t − 1. The general equation of the
model ARIMA(p, d, q) is given by:

() ()1 1 1 1t t p t p t q t q ty c y yα α β ε β ε ε− − − −= + + + + + + +  (1)

where,

ty = differenced in series
c = a constant

,α β =coefficients or weights
p = order of the AR term
q = order of MA term

te = residuals at time t
The second step is to construct the ARIMA model is to identify the number

of parameters that are necessary to be included in the model which is a function
of the order of the model. Furthermore we need to obtain estimates of the
parameter that drive the model. We have implemented a graphical and statistical
approach to find out the parameters used to forecast the vulnerabilities. For the
graphical method, autocorrelation function (ACF) and partial autocorrelation
function (PACF) is implemented. On the other hand, estimation of the required
parameters requires complicated iteration procedure using maximum likelihood
or non linear least square estimation methods. The final step of ARIMA is a
diagnostic checking and forecasting vulnerabilities of the OS. The complete
model fitting process is based on the law of principle of parsimony where the
best possible model is the simplest with respect to accurately forecast the
vulnerability of a given OS.

Utilizing the model building procedure of ARIMA model namely model

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 372 Journal of Information Security

formulation, model estimation, and model checking or model verification, we
have developed three models for Mac OS X, Windows 7, and Linux as shown by
the following Equations (2), (3), and (4) respectively:

Mac OS X (ARIMA(1,1,3)):

1 1 2 30.0203 0.8190 0.3626 0.8124 0.4432t t t t t ty y e e e e− − − −= − − − + + (2)

Windows 7 (ARIMA(2,1,1)):

1 2 10.0197 0.1956 0.3350 0.8533t t t t ty y y e e− − −= − − − + (3)

Linux Kernel (ARIMA(2,0,3)):

1 2 1 1 11.3367 0.0217 0.7517 0.0648 0.6713 0.3317t t t t t t ty y y e e e e− − − − −= + + − − + + (4)

3.2. Artificial Neural Network (ANN)

Artificial Neural Networks (ANN) is one of the useful and popular method,
which have been used in forecasting using time series data. A wide variety of
applications can be found in market predictions, meteorological and network
traffic forecasting [19] [20] [21] [22], where most of them have used feed-forward
ANN models in a sliding window format over the input sequence. The major
advantage of neural networks is that they are data driven and does not require
restrictive assumptions about the form of the basic model. Any feed forward
ANN model consists of three or more layers called input, hidden, and output.
The operational structure of the ANN model for the subject study are
demonstrated below by Figure 7, and the final outcome of the ANN with one
hidden node would be expressed analytically by:

() () () ()2 2 1 1
01 0

1 1
,

H P

t kj k lk t l
k l

y f w w g w w y −
= =

  = + +  
  

∑ ∑ (5)

where ty is the total number of vulnerabilities reported in month t, p is the
number of lags (number of vulnerabilities reported in the past p months) and
the H is the number of hidden nodes, g and f are the activation functions

Figure 7. The architecture of the ann model used for os.

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 373 Journal of Information Security

associated with the hidden and the output nodes. In order to have a better
generalization with the ANN model, we need to develop new procedures. Here,
in our analysis, we have used different number of lags and select the model with
minimum Mean Absolute Error. In addition to that we have used time series
cross validation (forecast evaluation with a rolling origin) methods to identify
the optimal number of hidden nodes, which refelects on the quality of the
forecast of a given OS.

Figure 7, shows the basic architecture of an ANN and it represents a
multivariate non-linear function mapping between a set of inputs and outputs
variables (Bishop, 1995). These networks are organized as several interconnected
layers. Each layer is a collection of artificial neurons (nodes) where the
connections are governed by the corresponding weights. Data have been fed
through the input layer, and then they pass through the one or more hidden layers,
and the final outcome is given by the output layer.

One of the challenges that we face when we use ANN in time series prediction
in identifying the number of inputs which is not fixed. We used a procedure to
identify the best possible number of lags.

3.3. Support Vector Machine (SVM)

Traditionally SVMs are used for classification in pattern recognition applications.
These learning algorithms have also been applied to general regression analysis,
the estimation of a function by fitting a curve to a set of data points. The
application of SVMs to general regression analysis case is called Support Vector
Regression (SVR) and is vital for many of the time series prediction applications.
SVMs used for time series prediction span many practical application areas from
financial market prediction to electric utility load forecasting to medical and other
scientific fields. One of the advantage in SVM is that it just correspond to a convex
optimization problem when determining the model parameters and hence easily
can be implemented. In using Support Vector (SV) regression, our goal is to find a
function ()f x that has at most  deviation from the actually obtained targets

iy for all the training data, and will not accept any deviation larger than that.
Anything beyond the specified  -will be penalized in proportion to C, which is
the regularization parameter. This can be explained with a linear function of the
form

() ()Tf x w x bφ= + (6)

where our goal is to minimize

()T *

1

1 ,
2

L

i i
i

w w C ε ε
=

+ +∑ (7)

with respect to the constraints

() ()
() () *

*

,

,

and , 0

i i i

i i i

i i

y x f x

f x y x

ε

ε

ε ε

− ≤ +

− ≤ +

≥



 (8)

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 374 Journal of Information Security

The constant 0C > , determines the trade-off between the flatness off and the
amount up to which deviations larger than  are tolerated. Support vector
machine can be generalized to deal with a nolinear function ()f x , and
minimize the weights with respect to the constraint

() () () ()*

T* * * *

, 1 1

1min
2

l l

i i i i i
i i

Q y
α α

α α α α α α α α
= =

− − + + + −∑ ∑ (9)

such that *0 ,i i Cα α≤ ≤ , and ()*
1 0l

i ii α α
=

− =∑ where, *,i iα α are the Lagrange
multipliers, Q is a l by l positive semidefinite matrix with, ()K ,ij i j i jQ y y x x≡
and () () ()TK ,i j i ix x x xφ φ≡ is the kernel. However, in SVR we have no control
on how many data vectors from the dataset become support vectors and the
correct choice of kernel parameters is crucial for obtaining desirable results [23].
Our objective is to conduct extensive analytical driven search procedure on the
parameter space to obtain the optimal set of parameters that drive the model.

3.4. Analysis with ANN and є SV Regression

We began our analysis by dividing the vulnerability dataset into two groups;
Training and Testing. The testing data set consists of vulnerabilities reported in
year 2016. We then normalized the data by applying the min-max normalization
method. Our analysis with ANN and SV regression makes the assumption that
the number of future vulnerabilities depends on the vulnerabilities identified in
the present and past months (lags). The number of significant lags in the partial
auto correlation function has been used initially to determine the optimal
number of lags. We proceeded by carring out further analysis by changing the
number of lags from 2 to 10.

The radial basis functional kernel is used to develop the SV regression models
with fine-tuning the two set of parameters; gamma and the regularization
parameter C. In developing the ANN model we used 10-fold cross validation
method for time series. When using this techniques we incremented the training
sets data, gradually shifting the training data set window one by one. This was
repeated for different number of hidden nodes. The optimal analytical model is
selected based on the average mean absolute error (MAE). Finally, the selected
analytical model is used to make the prediction in the testing data set.

4. Analysis

Our statistical analysis follows the process that we have introduced in Section 3,
where we described the overall time series trend of each OS. We need further
investigation on each signal to see if any trend, cycles, and seasonality exists.
Usually time series data consist of a specific trend, cycles, and seasonality. To
identify the best analytical forecasting model, we will first proceed to identify the
time series pattern in the data, and then select an appropriate method that will
capture the patterns effectively. Figure 8 is structured in two columns; which
consist of six individual graphs. In Figure 8, Figure 8(a), Figure 8(c), and

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 375 Journal of Information Security

Figure 8. (a): Overall monthly deviation of mac os x os. (b): Overall yearly pattern of mac os x os. (c): Overall
monthly deviation of windows 7 os. (d): Overall yearly pattern of windows 7 os. (e): Overall monthly deviation of
linux kernel os. (f): Overall yearly pattern of linux kernel os.

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 376 Journal of Information Security

Figure 8(e) descriebes the monthly behaviour of Mac OS X, Windows 7, and
Linux Kernel OS respectively. These sub-series plots are inspected as a
preliminary screening tool, that allow us for a visual inferences to be drawn from
the data before proceeding to modeling and forecasting.

In Figure 8 first columns’ sub-series plots emphasize monthly patterns where
the data for each month is collected together in separate mini time plots. The
horizontal lines indicate the means for each month. This plot helps to find the
monthly pattern over time. In each plot, none of the graph specifically are
revealing any seasonal and cyclical pattern. Likewise there is not a significant
variation in the means for each month.

Figure 8, confirms that there is no seasonal and cyclical pattern present on
any of the OS monthly basis. We need to identify weather any seasonality or
cyclic pattern exist over the year. We proceeded to plot the vulnerability data
against individual “year” in which the data was observed. Figure 8, Figure 8(b),
Figure 8(d), and Figure 8(f) illustrate the yearly pattern of the vulnerability of
Mac OS X, Windows 7, and Linux Kernel OS respectively.

In Figure 8, Figure 8(b) shows no seasonality or cyclic behavior is present
over a year. It is clearly visible that there is sharp increase of vulnerabilities in
year 2015 in comparison to the other year, 2002 to 2014. However, the Mac OS X
system shows a significant random variation of the number of vulnerabilities.
Similiarly, in Figure 8(d) each individual year shows random fluctuations of the
number of vulnerabilities over a twelve month period. We also concluded that
there is no specific pattern of the behavior of the signals on a yearly basis of
Windows 7 OS. Year 2009 and 2013 show the largest number of vulnerabilities
followed by a significant reduction for year 2015 by a factor of 10. Lastly, Figure
8(f), the signal of each individual year shows random variation of a number of
vulnerabilities for a twelve month period. Year 2010, and 2013 show the largest
number of vulnerabilities followed by a significant reduction for year 2010.

We plotted vulnerabilities against the individual months in which data are
observed. Similarly, plots have been developed where data from each month is
overlapped. These graphs allow us to make a decision that there is no specific
seasonal or cyclical pattern seen in terms of monthly or yearly basis. We have
found there is a large jump of vulnerability in specific years. The remaining years
exhibit fluctuations on the number of vulnerabilities but no obvious seasonal or
cyclic patterns. Inspecting the signal of the number of venerability in each OS,
we have found that trend, level and random fluctuations are the major
ingredients to build the forecasting model. Incorporating these facts, we have
utilized ANN, SVM, and ARIMA models to forecast the future level of
vulnerabilities for the three OS.

Predictive Capability of Models

One of the most important criteria for evaluating forecasting accuracy is to
evaluate the error (residuals) generated by the testing data sets. An optimal

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 377 Journal of Information Security

model is selected based on how accurately it forecast our testing data sets. We
have computed Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Symmetric Mean Absolute Percentage Error(SMAPE), for each model to
assist in the selection process of the best model. For each forecast error
estimation lower values are preferred.

Prediction accuracy of the analytic model is one of the most important criteria
to evaluate the model performance and reliability. In addition to RMSE and
MAE, we utilized an error analysis based on Symmetric Mean Absolute Percent
Error (SMAPE) rather than Mean Absolute Percent Error (MAPE) to
convinence the validity of our model. Even though SAMPE is based on MAPE, it
does consider data containing zeros and non zero values that may skew the error
rate. It consist of 0% of lower bound and 200% of upper bound, thus it reduces
the impact of zeros and non zero values on our data sets. The error is computed
based on the analytical form defined by the equation below:

1

2SMAPE ,
N

i i

i i i

P A
N P A=

−
=

+∑ (10)

where, N is the total number of prediction intervals, iP is the predicted number
of vulnerabilities, and iA is the actual number of vulnerabilities. Once we
employed ANN, SVM and ARIMA model on our testing data set following
optimal model are selected based on our error measurement criteria in Table 2.

Our ANN model evaluation results were quite good despite the fact that we
did not have enough data to improve the training of our model. However, we
believe that as more information of the subject matter becomes available the
ANN model will be easier to implement and with higher accuracy in
predicting the number of vulnerabilities of the present OS in the market place.
For Windows 7 and Linux kernel is the analytical model, SVM driven by the
final Equation (9). With reference to the Table 2, the best models are selected
for each OS based on the low error rate and the law of parsimony are listed in
Table 3.

From Table 3 ARIMA(1,1,3) with drift, SVM with lag 5, and SVM with lag 5
models are selected for Mac OS X OS, Windows 7 OS, and Linux Kernel OS
respectively. To be more specific, the forecasting model for Windows 7 OS had
the lowest SMAPE of (12.45%) which implies it is a good forecasting model. The
developed model provides good fit to the vulnerability data for Mac OS X and

Table 2. Output measurement criteria on testing data sets for each os.

Criteria
MAC OS X Windows 7

Linux
Kernel

ARIMA ANN SVM ARIMA ANN SVM ARIMA ANN SVM

RMSE 19.6456 28.5637 24.6749 21.5971 9.5533 3.5819 22.9 4.08 3.99

MAE 16.1739 22.0606 19.9257 21.2726 8.9114 3.1504 24.2 3.41 3.28

SMAPE 0.3125 1.2257 0.9509 0.9926 1.2842 0.1245 1.57 0.73 0.141

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 378 Journal of Information Security

Table 3. List of best model selected for each os.

OS Best Model SAMPE

Mac OS X ARIMA 0.3125

Windows 7 SVM 0.1245

Linux Kernel SVM 0.141

Linux Kernel but prediction accuracy is varied. In terms of forecasting, Linux
kernel has a convincing SMAPE of (14.1%) but MAC OS X is reasonably
accurate with a SMAPE (31.25%). One possible reason for high percentage error
may be due to missing components in our analysis such as OS development
process, patch cycles, difference in security enforcement criteria, as well as
market share and popularity of the OS.

After the selection of the best model with minimum error rate, our study
revealed the fact that the developed model provides a good fit for the OS datasets
and can be used to forecast the future vulnerabilities. Fitting time series models
to the vulnerability database is demonstrated via the graph as shown below.

Figure 9 shows the original vulnerability plot against fitted vulnerabilities of
MAC OS X Operating System. Even though having random fluctuations that is
increasing and decreasing behavior present in each year, our model accurately
captures the holistic attributes of the signal with reasonable accuracy.

Figure 10, demonstrates results of fitted time series model and the actual
vulnerabilities of the Windows 7 OS. Eventhough Windows 7 OS have limited
amount of data comparing to other OS, it has lowest approximately 12%
prediction error which attends to the high qualitiy of forecasting future
vulnerabilities.

Figure 11 shows the fitting time series of the SVM model and the actual
vulnerability data of Linux Kernel OS. Graphically our model shows a perfect fit
with a prediction accuracy of 14% little bit higher than Windows 7 OS. This is
probably due to very sharp increase of vulnerabilities in 2014 and a sudden
decrease of in 2015.

All of the above plots 9, 10, and 11 a good fit for each OS but different degrees
of prediction accuracy. From a careful reading of the fitted plots, we can
conclude that best fitted model may not produce the best forecasting accuracy
and vice versa. In case of Mac OS X, forecasted vulnerabilities is not that much
better to the fit of data. Unlike Mac OS X, windows 7 has quite good fit but
forecasted vulnerabilities are a way better than Mac OS X. We eventually used
our models to forecast the future vulnerabilities of these OS and recommended
choice for predicting monthly vulnerabilities is summarized by Table 4. As an
example, the following Table 4 highlights the fore-casted values for the 12
months of the year 2016. From the table we can say that predicted number of
vulnerabilities for 2016 for Mac OS X is highest followed by Linux kernel and
Windows 7.

Initially, we split our data sets in terms of training and testing data sets. The

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 379 Journal of Information Security

Figure 9. Original vulnerability vs. fitted vulnerabilities for mac os x os.

Figure 10. Original vulnerability vs. fitted vulnerabilities for windows 7 os.

collection period of training data set of each OS is mentioned in Table 1.
Similarly, 2016 is considered as testing data sets to validate our model for all OS.
Utilizing our best developed model, we forecasted 2016 vulnerabilities which are
given in Table 5. Now the following Table 5 compares the total true
vulnerabilities and forecasted vulnerabilities for each OS. This comparison table
shows the accuracy and reliability of our developed analytical models.

Our study revealed the fact that seasonality and trends are not the major

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 380 Journal of Information Security

Figure 11. Original vulnerability vs. fitted vulnerabilities for linux kernel os.

Table 4. Forecasted vulnerabilities of mac os x, windows 7, and linux kernel os.

OS
Forecasted Vulnerabilities

Total
Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Mac OS X 28 24 32 26 32 34 31 26 27 36 38 37 371

Windows
7

11 10 9 11 9 11 11 10 10 11 11 13 127

Linux
Kernel

7 16 7 18 34 8 7 24 7 7 12 18 165

Table 5. Actual and forecasted vulnerability comparison of the os.

OS
2016 Total Vulnerabilities

Actual Forecasted

Mac OS X 396 371

Windows 7 134 127

Linux Kernel 230 165

components of the forecasting models. Nevertheless, the level of the time series
is only the significant component to build the model. This suggests that it is
difficult to predict vulnerabilities based on monthly seasonal patterns or trends.
Further investigation is needed whether weekly, quarterly, or annual patterns
might produce remarkable trends or seasonal components but such data is not
publically availiable to improve the quality of the model.

The ANN model did not perform well in forecasting the vulnerabilities
because we did not have enough data to improve the training process so as to

https://doi.org/10.4236/jis.2017.84023

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 381 Journal of Information Security

improve its forecasting accuracy. With more vulnerability data we believe that
the ANN model will be very competitive in forecasting vulnerabilities of the OS.

5. Conclusions

We have developed effective linear and non linear analytic models to forecast
future vulnerabilities by utilizing the vulnerability datasets of three major OS
namely, Windows 7, Linux Kernel, and Mac OS X. We have not found any
influential trend and seasonality components from the time series data. The
proposed forecasting models reveal the fact that non linear time series models
predict quite well with minimum level of error rate. The developed models can
be used by the developers, the user community, and individual organization to
predict the vulnerability level of their OS. Developers can examine the OS
readiness by predicting the future vulnerability trend. Based on the projected
vulnerabilities, they can allocate the security maintenance resources to detect the
upcoming vulnerabilities. At the same time, they can implement the proper
software security patch plan. The users can obtain useful information to
compare different OS in terms of the risk associated with their vulnerability.
They also can access the risk before patches are applied. Similarly, every
organization has their own customized security policies that requires allocation
of time and resources. The predictive vulnerability models we have developed
can be used to quantitatively guide such policies.

Finally, the developed forecasting models of the three OS that dominate the
global market can be used to predict their future vulenerabilities. The predictive
vulnerabilities can be used to identify the risks associated with the forecast for
each of the three OS. IT manager can implement the forecasting vulnerabilities
in their operating strategies and contingency plans. Based on their predictions,
each of the three manufacturing companies can make one of the decision: they
are willing to live with it, make minor research and development design or
major modifications. The predictive results can be used for competitive analysis
of the three OS companies that are essential to their marketing strategies.

References
[1] National Institute of Standard and Technology (NIST) Report 2014.

http://www.nist.gov/

[2] Secunia Vulnerability Review (2015).
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_p
df.pdf

[3] Vulnerability Review (2016).
http://www.flexerasoftware.com/enterprise/resources/research/vulnerability-review/

[4] 2015 Microsoft Vulnerabilities Study: Mitigating Risk by Removing User Privileges.
http://learn.avecto.com/2015-microsoft-vulnerabilities-report

[5] Pokhrel, N.R. and Tsokos, C.P. (2017) Cybersecurity: A Stochastic Predictive Model
to Determine Overall Network Security Risk using Markovian Process. Journal of
Information Security, 8, 91-105. https://doi.org/10.4236/jis.2017.82007

https://doi.org/10.4236/jis.2017.84023
http://www.nist.gov/
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf.pdf
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf.pdf
http://www.flexerasoftware.com/enterprise/resources/research/vulnerability-review/
http://learn.avecto.com/2015-microsoft-vulnerabilities-report
https://doi.org/10.4236/jis.2017.82007

N. R. Pokhrel et al.

DOI: 10.4236/jis.2017.84023 382 Journal of Information Security

[6] Rajasooriya, S.M., Tsokos, C.P. and Kaluarachchi, P.K. (2017) Cyber Security: Non-
linear Stochastic Models for Predicting the Exploitability. Journal of Information
Security, 8, 125-140. https://doi.org/10.4236/jis.2017.82009

[7] Othmane, L.B., Chehrazi, G., Bodden, E., Tsalovski, P. and Brucker, A.D. (2017)
Time for Addressing Software Security Issues: Prediction Models and Impacting
Factors. Data Science and Engineering, 2, 107-124.
https://doi.org/10.1007/s41019-016-0019-8

[8] Desktop Operating System Market Share. https://www.netmarketshare.com/

[9] Rahimi, S. and Zargham, M. (2013) Vulnerability Scrying Method for Software
Vulnerability Discovery Prediction without a Vulnerability Database. IEEE Trans-
actions on Reliability, 62, 395-407. https://doi.org/10.1109/TR.2013.2257052

[10] Scandariato, R., Walden, J., Hovsepyan, A. and Joosen, W. (2014) Predicting Vul-
nerable Software Components via Text Mining. IEEE Transactions on Software En-
gineering, 40, 993-1006. https://doi.org/10.1109/TSE.2014.2340398

[11] Shin, Y. and Williams, L. (2013) Can Traditional Fault Prediction Models Be Used
for Vulnerability Prediction? Empirical Software Engineering, 18, 25-59.
https://doi.org/10.1007/s10664-011-9190-8

[12] Nguyen, V.H. and Tran, L.M.S. (2010) Predicting Vulnerable Software Components
with Dependency Graphs. Proceedings of the 6th International Workshop on Secu-
rity Measurements and Metrics, ACM. https://doi.org/10.1145/1853919.1853923

[13] Alhazmi, O.H. and Malaiya, Y.K. (2006) Prediction Capabilities of Vulnerability
Discovery Models. Reliability and Maintainability Symposium, 86-91.
https://doi.org/10.1109/RAMS.2006.1677355

[14] Musa, J.D. and Okumoto, K. (1984) A Logarithmic Poisson Execution Time Model
for Software Reliability Measurement. Proceedings of the 7th International Confe-
rence on Software Engineering, 230-238.

[15] Rescorla, E. (2005) Is Finding Security Holes a Good Idea? IEEE Security & Privacy,
3, 14-19. https://doi.org/10.1109/MSP.2005.17

[16] Anderson, R. (2002) Security in Open versus Closed Systems the Dance of
Boltzmann, Coase and Moore. Technical Report, Cambridge University.

[17] https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-res
earch-report-2015.pdf

[18] Phillips, P.C. and Perron, P. (1998) Testing for a Unit Root in Time Series Regres-
sion. Biometrika, 2, 335-346.

[19] Frank, R.J., Davey, N. and Hunt, S.P. (2001) Time Series Prediction and Neural
Networks. Journal of Intelligent & Robotic Systems, 31, 91-103.
https://uhra.herts.ac.uk/bitstream/handle/2299/593/102081.pdf?sequence=1

[20] Edwards, T., ansley, D., Frank, R. and Davey, N. (1997) Traffic Trends Analysis us-
ing Neural Networks. Procs of the Int Workshop on Applications of Neural Net-
works to Telecommunications. http://hdl.handle.net/2299/7171

[21] Patterson, D.W., Chan, K.H. and Tan, C.M. (1993) Time Series Forecasting with
Neural Nets: A Comparative Study. Procs the International Conference on Neural
Network Applications to Signal Processing, 269-274.

[22] Bengio, S., Fessant, F. and Collobert, D. (1995) A Connectionist System for Me-
dium-Term Horizon Time Series Prediction. Proc. Intl. Workshop Application
Neural Networks to Telecoms, 308-315.

[23] Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 20,
273-297. https://doi.org/10.1007/BF00994018

https://doi.org/10.4236/jis.2017.84023
https://doi.org/10.4236/jis.2017.82009
https://doi.org/10.1007/s41019-016-0019-8
https://www.netmarketshare.com/
https://doi.org/10.1109/TR.2013.2257052
https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1007/s10664-011-9190-8
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1109/RAMS.2006.1677355
https://doi.org/10.1109/MSP.2005.17
https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-research-report-2015.pdf
https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-research-report-2015.pdf
https://uhra.herts.ac.uk/bitstream/handle/2299/593/102081.pdf?sequence=1
http://hdl.handle.net/2299/7171
https://doi.org/10.1007/BF00994018

	Cybersecurity: Time Series Predictive Modeling of Vulnerabilities of Desktop Operating System Using Linear and Non-Linear Approach
	Abstract
	Keywords
	1. Introduction
	2. Related Research
	3. Data and Methodology
	3.1. Autoregressive Integrated Moving Average Process (ARIMA) Model
	3.2. Artificial Neural Network (ANN)
	3.3. Support Vector Machine (SVM)
	3.4. Analysis with ANN and є SV Regression

	4. Analysis
	Predictive Capability of Models

	5. Conclusions
	References

