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Abstract 
Vulnerability forecasting models help us to predict the number of vulnerabili-
ties that may occur in the future for a given Operating System (OS). There ex-
ist few models that focus on quantifying future vulnerabilities without con-
sideration of trend, level, seasonality and non linear components of vulnera-
bilities. Unlike traditional ones, we propose a vulnerability analytic prediction 
model based on linear and non-linear approaches via time series analysis. We 
have developed the models based on Auto Regressive Moving Average 
(ARIMA), Artificial Neural Network (ANN), and Support Vector Machine 
(SVM) settings. The best model which provides the minimum error rate is se-
lected for prediction of future vulnerabilities. Utilizing time series approach, 
this study has developed a predictive analytic model for three popular Desk-
top Operating Systems, namely, Windows 7, Mac OS X, and Linux Kernel by 
using their reported vulnerabilities on the National Vulnerability Database 
(NVD). Based on these reported vulnerabilities, we predict ahead their beha-
vior so that the OS companies can make strategic and operational decisions 
like secure deployment of OS, facilitate backup provisioning, disaster recov-
ery, diversity planning, maintenance scheduling, etc. Similarly, it also helps in 
assessing current security risks along with estimation of resources needed for 
handling potential security breaches and to foresee the future releases of secu-
rity patches. The proposed non-linear analytic models produce very good 
prediction results in comparison to linear time series models. 
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1. Introduction 

A computer system is a collections of hardware and software components 
working together to perform a well defined objective as a unified whole entity. 
One of the core software components of the computer system is the Operating 
System (OS). An OS is a resource manager or a complex interactive software 
system. It enables the higher level application software to communicate with 
its hardware and memory. Vulnerabilities always exist on such software and 
causes tremendous security risks to software companies, developers, and indi-
vidual users. Once an attacker compromised an Operating System via any vul-
nerability, this implies logically the whole computer system is in control of the 
hacker. If the computer system itself is in control of unauthorized people, very 
significant consequences occur in tremendous financial loses, among other se-
rious damages. 

It is well known that the overall rates of the software vulnerabilities are exten-
sively increasing [1]. According to the Secunia Vulnerability Review 2015, the 
number has increased to 55% in the past five years, and an 18% increase from 
2013 to 2014 [2]. Similarly, Flexera Software reports that a 39% increase in the 
five year trend, and a 2% increase from 2014 to 2015 [3]. A Microsoft vulnerabil-
ities study report in 2015 by Avecto Software Company reported that there is a 
significant uplift in the total number of vulnerabilities users are exposed to, ris-
ing 52% a year to year basis [4]. The documented facts and figures from the well 
established software institutions reveal the current increasing trend in number of 
software vulnerabilities that offer a significant problem to the industry. If these 
vulnerabilities are exploited and it is the objective of the hacker, we can realize a 
tremendous amount of damages and losses to software developers, government 
institutions, giant corporations, educational institutions, end users, and all poss-
ible stakeholders associated with this domain. 

Some recent analytical study and modeling of general vulenerabilities can be 
found in [5] [6] [7]. It is not possible to develop an OS software free of vulnera-
bilities. On the contrary, we can have a precise estimation of vulnerabilities 
along with its trends, level, and seasonality based on the historical data. Once we 
have a better estimation of the number of vulnerabilities, as per our demand 
with respect to the calender time, it would assist us to be well prepared to man-
age the forthcoming risks. At the same time, we can make diversity planning 
such as practical contingency plans, provisioning the backup capabilities, alloca-
tion of human and financial resources effectively and efficiently to achieve our 
mission, to be protected from the hackers. 

Figure 1, gives a schematic view of the market share of Desktop OS world-
wide, with Microsoft dominating the subject industry. In broad classification 
in-terms of the type of OS, two Operating Systems exist in the market as de-
scribed in Figure 2. A proprietary Operating System which in particularly con-
ceptualizes, designs, and is sold by the specific company and does not share the 
source code to the public.  
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Figure 1. Market share of desktop os based on netmarketshare data. 
 

 
Figure 2. Classification of desktop OS. 

 
Microsoft and Apple are the two giant companies developing proprietary 

desktop Operating Systems. Similarly, Linux develops one of the non proprietary 
desktop Operating System referred as Linux kernel. According to Netmarket-
share up to July 2016, [8] almost 85% of the market share of desktop Operating 
System is captured by the Microsoft company. Likewise, 8% of market share is 
captured by the Apple company and approximately 5% from Linux kernel which 
is graphically illustrated in Figure 1, above. To be more precise, out of 85% 
market coverage of all Microsoft’s existing operating system, Windows 7 covers 
almost 48%. There is only one Operating System developed by the Apple com-
pany that is Mac OS X. On the other hand Linux develops Linux kernel and is 
considered as one of the oldest Operating System. This OS has minimum market 
coverage according to Netmarketshare data. From the reported facts and popu-
larity among the users if we aggregate the total market share of three desktop 
Operating System, they almost cover most of the market share in the Desktop 
Environment. Thus, it is appropriate to select Windows 7, Mac OS X, and Linux 
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Kernel for our present study. These Operating Systems are the product of three 
industry leaders, Microsoft, Apple, and Linux. 

The schematic network of Desktop Operating Systems, given by Figure 2 
above, displays a layout of the process that our analytic study will follow. In the 
present study, we have developed analytic vulnerability forecasting models using 
time series analysis via linear and non-linear approaches. The developed fore-
casting models completely capture the complicated linear and non-linear inter-
relationship between past data points and extrapolate those relationship into the 
future. We have implemented Autoregressive Integrated Moving Average 
(ARIMA) to incorporate the linear behavior of the signal in conjunction with 
trend, level and seasonality. To capture the non-linear characteristics of the sig-
nal, we are using Artificial Neural Network (ANN) and Support Vector Machine 
(SVM). Finally, we have compared the final outcomes of linear and non-linear 
models that best fit the actual data set. Based on the outcomes of the developed 
models, all the stakeholders associated with Operating System will find our pre-
dictive models of significant importance. As a software developer, one can eva-
luate and proceed to be confident with their strategic and operational policies. 
They can make the appropriate plans to allocate the human and financial re-
sources effectively and efficiently. Moreover, they can make streamline patch de-
cisions about OS and can utilize the outcomes for security testing procedure of 
the Operating System. Additionally, knowing the future vulnerabilities offer 
several benefit; one can identify the OS that are in need to be restricted to reduce 
its vulnerability, the predictive vulnerability score can be used for competitive 
market analysis, monitor the behavior of competing OS using the forecasted 
vulnerability etc. But most importantly this information is extremely important 
to the IT manager for his/her strategic planning to minimize the risk of chosen 
OS that will not be exploited. Finally, our results offer a unique marketing strat-
egy for purchasing the best OS available in the market place that will have the 
best (smallest) future vulnerabilities. 

In the present research our objective is to develop a high quality analytical fo-
recasting model utilizing both linear and nonlinear methods to predict the 
number of vulnerabilities of a given operating system. In addition we will per-
form statistical evaluations of other models that perform the same task the pre-
dicting process of OS. The selected model provides overall trend and behaviour 
of the OS ahead of time; OS companies can make strategical and operational de-
cisions such as secure deployment of OS, facilitate backup provisioning, disaster 
recovery, diversity planning, and maintenance scheduling. Similarly, all the 
stakeholders related to the OS can access the current sercurity risk along with es-
timation of resources needed for handling potential security breaches and for see 
the future releases of security patches. Finally, the predictive results can be used 
for the competitive analysis of the product which significantly helps to develop 
the marketing strategies for the respective OS. 

Our research paper is organized as follows: Section 2 introduces and explains 
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the literature review. Section 3 explores the datasets and explanation of major 
methods employed in our study. In Section 4, the core analysis and predictive 
power of the developed models are discussed. Finally, the usefulness of our ana-
lytical model is presented along with our future research goals. 

2. Related Research 

During the past years, scientists and researchers have given tremendous 
amounts of time and effort to develop vulnerability forecasting models to predict 
the future vulnerabilities of OS taking into consideration of their historical be-
havior with reported data. One can characterize these proposed developed mod-
els into two categories. 

1) Code Characteristics Based Models: These types of models are relying on 
finding out the relationship between attributes of the code with its correspond-
ing vulnerabilities. Rahimi and Zargham, [9] proposed a vulnerability scrying 
approach, that is, a vulnerability discovery prediction method based on code 
properties and quality. S. Riccardo et al. [10] proposed a machine learning ap-
proach to predict which components of the software applications contain secu-
rity vulnerabilities using a text mining approach. This approach identified a se-
ries of vulnerable terms contained in its source code and was used to compute its 
frequency. Based on the frequency, they proceeded to forecast its future. Shin et 
al. [11] performed an empirical study with traditional metrics of complexity, 
code churn, and faulty history using a large open source project to determine 
whether fault prediction models can be used for vulnerability prediction models. 
Nguyen and Tran, [12] proposed a component dependency graph to predict 
vulnerable components using machine learning methodology. All the mentioned 
approaches requires source code to built the models, source code of the OS is 
dynamic in nature and it is not available to public in case of proprietary OS. 

2) Statistical Density Based Models: In this category, vulnerability forecast-
ing models are based on historical data of the Operating System. To fulfill this 
objective, various kinds of models have been developed, mainly Alhaz-
mi-Malaiya Logistic (AML) with different versions, [13] Poissons Log Arithmet-
ic Model, [14], Rescorals Exponential Models [15], and Andresons Thermoody-
namics Model [16]. All the developed models are based on their underlying as-
sumptions and defined framework and none of them considers the non linear 
behavior of the signal. 

For code characteristics based models, we need a source code of the given 
software to develop statistical models. In reality, source code of the commercial 
OS is not available to the public. Each and every day new vulnerability comes 
into existence and we need to handle new vulnerabilities, thus the software 
should be continuously updated which implies that the source code changes with 
respect to the life cycle of the software. A company always updates its software 
so as to fulfill the demands of current or potential customers and hence we need 
to update the source code regularly. Thus, process of making source code is al-
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ways dynamic in nature. One of the prominent question that arises here is “how 
can we forecast the future vulnerabilities by utilizing static source code?”. 
Knowing very well that no OS is with zero or no vulnerability at all and this will 
continue in the future. On the other hand, considering statistic density based 
models, that have been developed are based on a series of underlying assump-
tions and criteria that may or may not be applicable. For instance, Rescola Li-
near Model (RL) attempts to fit vulnerability finding rates linearly with time but 
in reality situations are different for nonlinear behaviours. Because of such limi-
tations that exist on both categories, we should identify an alternative approach 
to forecast the future vulnerability of an OS by using time series analysis. Our 
model considers trend, level, and seasonality components if they exist. Similarly, 
to analyze the non-linear behavior of the number of vulnerabilities, we imple-
mented ANN and SVM methodology. 

3. Data and Methodology   

We have directly extracted the vulnerability data from the National Vulnerability 
Database (NVD). It is the U.S. governments repository that integrates publicly 
available vulnerability resources and provides the common references to the in-
dustry resources. NVD is a product of the National Institute of Standards and 
Technology (NIST), Computer Security Division and is sponsored by the De-
partment of Homeland Security’s National Cyber Security Division. It contains 
reported vulnerabilities based on their Common Vulnerabilities and Exposures 
(CVE) identifier. The total number of vulnerabilities with respect to time in 
monthly basis is the fundamental quantitative values for our analysis and mod-
eling. The schematic diagram in Figure 3 describes the holistic idea about the 
datasets and methods employed in our study. 

We have collected the vulnerabilities for each Operating System, the earliest 
available data from NVD to December 2015 as training data, however, the whole  
 

 
Figure 3. Bird’s eye view of data collection and method selection via flow chart. 
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one year, 2016 data is considered as testing data to validate our model. We 
summed the total vulnerabilities over a monthly period. Linear and non-linear 
time series methods are implemented to select the best model with minimum 
forecasting error for each OS.  

The following Table 1, shows the summary of descriptive analysis of the 
training data. It includes the total number of vulnerabilities on monthly basis, 
collection period, and monthly average. From the table below, we can conclude 
that average number of vulnerabilities was highest in Mac OS X followed by Li-
nux kernel and Windows 7. 

Our analysis begins by investigating the total number of vulnerabilities accu-
mulated by month for three OS, Figure 4, below reveals the overall variation in 
total number of vulnerabilities of Mac OS X.  

Inspecting Figure 4, the trend of the number of vulnerabilities of MAC OS X 
Operating System, it is clearly visible that initially the number of vulnerabilities 
are low and fairly stable, as a function of time. There is a high spike at the end of 
year 2015. In 2015 the number of vulnerabilities is almost four times greater  
 
Table 1. Descriptive statistics of vulnerability datasets: mac os x, windows 7, and linux 
kernel os. 

Operating System Collection Period 
Total  

Vulnerabilities 
Monthly Averages 

Mac OS X Jan. 2002-Dec. 2015 1441 102.93 

Windows 7 Jan. 2009-Dec. 2015 508 72.57 

Linux Kernel Jan. 2001-Dec. 2015 1292 86.13 

Total Jan. 2001-Dec. 2015 3241 261.68 

 

 
Figure 4. Time series pattern of mac os x. 
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than in previous years. One of the prominent reasons is due to the rapid market 
share gains of Mac OS X which leads to growing attack surface for sensitive data. 
There are several malicious malware introduced in 2015, for instance, XcodeG-
host which inserts malicious components in to the applications made with 
Xcode [17] (Apple’s official tool for developing IOS and OS Apps). 

Figure 5, shows the overall trend of the number of vulnerabilities of Windows 
7 OS having a very nonlinear behavior. Initially number of vulnerabilities seems 
low but after a short period of time, we can see a significance increase and de-
crease of the number of vulnerabilities as a function of time. There is a very 
sharp increase in the number of vulnerabilities in 2012, 2014 and 2015 for win-
dows 7. “Secunia Vulnerability Review 2014”, reported that the majority of the 
vulnerabilities on Windows 7 come from the non-Microsoft software like Google 
Chrome, Adobe Flash Player and others rather than the major defect in OS it-
self.  

To incorporate the sharp random fluctuations of the number of vulnerabilities 
in each year, we initially believe that non linear time series methods are the 
suitable method to build the analytical forecasting model. If the IT manager had 
a good forecast of the large number of vulnerabilities, the subject of our study, 
he/she would have taken appropriate action to address this critical issue.  

The overall trend of the number of vulnerabilities of Linux Kernel OS is 
demonstrated by Figure 6 from 2001 to 2015. Even though there is an increasing 
and decreasing trend, it would be fair to say that there is a significant variation 
in the number of vulnerabilities especially in 2014 and 2015, with more than  
 

 
Figure 5. Time series pattern of windows 7 os. 
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Figure 6. Time series pattern of linux kernel os. 
 
double the number of vulnerabilities for the previous year. Years 2014 and 2015 
were difficult years for Linux OS in terms of security perspective, for example 
“Heartbleed” is the severe vulnerability detected in OpenSSL that left large 
number of cryptographic keys and private data from important sites and services 
in the Internet that were open to the hackers. Similarly, Shellshock is the vulne-
rability that is dominantly used in Linux OS command line Shell, also called 
Bash or GNU Bourne Again Shell left the door open for a hacker to lunch mali-
cious attack. 

All three graphs mentioned above, Figures 4-6, provides a pictorial view 
comparison of the number of vulnerabilities of the three OS, MAC OS X, Win-
dows 7 OS, and Linux Kernel OS from respective calender time, on monthly ba-
sis. It does not seem obvious seasonality components exist but random fluctua-
tions have a significant influence on each case. It is clear that each of the OS has 
some sort of increasing or decreasing trend for a specific period of time and all 
of sudden some spikes come and changes the behavior of the signal. To incor-
porate all the mentioned facts, we have employed linear and non linear tech-
niques to build the best analytic forecasting model. The following section pro-
vides a brief explanation of the techniques employed in this study. 

3.1. Autoregressive Integrated Moving Average Process (ARIMA)  
Model 

Autoregressive Integrated Moving Average (ARIMA) models, are commonly 
used for linear models for univariate time series analysis. To construct the 
ARIMA model to forecast the vulnerabilities requires three steps. Before going to 
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the first step, it is necessary to check if the vulnerability data is stationary, this 
implies that the number of vulnerabilities associated with each operating system 
shows no trend over monthly observations. We have implemented Dicky-Fuller 
and Philips-Perron [18] unit root test to examine the stationarity of the ARIMA 
models. Whenever stationarity of the ARIMA models is established, the first 
steps to build the ARIMA model requires to identify the appropriate structure 
and order of the model. The ARIMA model includes autoregressive terms (AR), 
moving average terms (MA), and differencing operations. An ARIMA model 
structure is represented by (p, d, q) where p is AR process, d is number of dif-
ferences (filtering) and q is MA process. An AR(n) specifies number of imme-
diately preceding vulnerabilities in the series that are used to forecast vulnerabil-
ities at present. For example, AR(1) means the number of vulnerabilities at time 
t = 1 rely on the numbers of vulnerabilities at t − 1. Differencing term d is the 
degree of differencing (the number of times the vulnerability data have had past 
value subtracted) required to achieve the stationarity condition of the process. 
The MA(n) shows that present vulnerabilities have a relationship with past vul-
nerabilities, white noise error terms or random shocks. The random shocks are 
assumed to be independent and come from the same probability distribution. 
For example, MA(1), AR(1) means that the number of vulnerabilities at time t = 
1 relies on numbers of past prediction errors at t − 1. The general equation of the 
model ARIMA(p, d, q) is given by:  

( ) ( )1 1 1 1t t p t p t q t q ty c y yα α β ε β ε ε− − − −= + + + + + + +          (1) 

where,  

ty  = differenced in series 
c = a constant 

,α β  =coefficients or weights 
p = order of the AR term 
q = order of MA term 

te  = residuals at time t 
The second step is to construct the ARIMA model is to identify the number 

of parameters that are necessary to be included in the model which is a function 
of the order of the model. Furthermore we need to obtain estimates of the 
parameter that drive the model. We have implemented a graphical and statistical 
approach to find out the parameters used to forecast the vulnerabilities. For the 
graphical method, autocorrelation function (ACF) and partial autocorrelation 
function (PACF) is implemented. On the other hand, estimation of the required 
parameters requires complicated iteration procedure using maximum likelihood 
or non linear least square estimation methods. The final step of ARIMA is a 
diagnostic checking and forecasting vulnerabilities of the OS. The complete 
model fitting process is based on the law of principle of parsimony where the 
best possible model is the simplest with respect to accurately forecast the 
vulnerability of a given OS. 

Utilizing the model building procedure of ARIMA model namely model 
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formulation, model estimation, and model checking or model verification, we 
have developed three models for Mac OS X, Windows 7, and Linux as shown by 
the following Equations (2), (3), and (4) respectively: 

Mac OS X (ARIMA(1,1,3)):  

1 1 2 30.0203 0.8190 0.3626 0.8124 0.4432t t t t t ty y e e e e− − − −= − − − + +     (2) 

Windows 7 (ARIMA(2,1,1)):  

1 2 10.0197 0.1956 0.3350 0.8533t t t t ty y y e e− − −= − − − +          (3) 

Linux Kernel (ARIMA(2,0,3)):  

1 2 1 1 11.3367 0.0217 0.7517 0.0648 0.6713 0.3317t t t t t t ty y y e e e e− − − − −= + + − − + +  (4) 

3.2. Artificial Neural Network (ANN)  

Artificial Neural Networks (ANN) is one of the useful and popular method, 
which have been used in forecasting using time series data. A wide variety of 
applications can be found in market predictions, meteorological and network 
traffic forecasting [19] [20] [21] [22], where most of them have used feed-forward 
ANN models in a sliding window format over the input sequence. The major 
advantage of neural networks is that they are data driven and does not require 
restrictive assumptions about the form of the basic model. Any feed forward 
ANN model consists of three or more layers called input, hidden, and output. 
The operational structure of the ANN model for the subject study are 
demonstrated below by Figure 7, and the final outcome of the ANN with one 
hidden node would be expressed analytically by:  

( ) ( ) ( ) ( )2 2 1 1
01 0

1 1
,

H P

t kj k lk t l
k l

y f w w g w w y −
= =

  = + +  
  

∑ ∑               (5) 

where ty  is the total number of vulnerabilities reported in month t, p is the 
number of lags (number of vulnerabilities reported in the past p months) and 
the H is the number of hidden nodes, g and f are the activation functions  
 

 
Figure 7. The architecture of the ann model used for os. 
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associated with the hidden and the output nodes. In order to have a better 
generalization with the ANN model, we need to develop new procedures. Here, 
in our analysis, we have used different number of lags and select the model with 
minimum Mean Absolute Error. In addition to that we have used time series 
cross validation (forecast evaluation with a rolling origin) methods to identify 
the optimal number of hidden nodes, which refelects on the quality of the 
forecast of a given OS.  

Figure 7, shows the basic architecture of an ANN and it represents a 
multivariate non-linear function mapping between a set of inputs and outputs 
variables (Bishop, 1995). These networks are organized as several interconnected 
layers. Each layer is a collection of artificial neurons (nodes) where the 
connections are governed by the corresponding weights. Data have been fed 
through the input layer, and then they pass through the one or more hidden layers, 
and the final outcome is given by the output layer. 

One of the challenges that we face when we use ANN in time series prediction 
in identifying the number of inputs which is not fixed. We used a procedure to 
identify the best possible number of lags. 

3.3. Support Vector Machine (SVM) 

Traditionally SVMs are used for classification in pattern recognition applications. 
These learning algorithms have also been applied to general regression analysis, 
the estimation of a function by fitting a curve to a set of data points. The 
application of SVMs to general regression analysis case is called Support Vector 
Regression (SVR) and is vital for many of the time series prediction applications. 
SVMs used for time series prediction span many practical application areas from 
financial market prediction to electric utility load forecasting to medical and other 
scientific fields. One of the advantage in SVM is that it just correspond to a convex 
optimization problem when determining the model parameters and hence easily 
can be implemented. In using Support Vector (SV) regression, our goal is to find a 
function ( )f x  that has at most   deviation from the actually obtained targets 

iy  for all the training data, and will not accept any deviation larger than that. 
Anything beyond the specified  -will be penalized in proportion to C, which is 
the regularization parameter. This can be explained with a linear function of the 
form  

( ) ( )Tf x w x bφ= +                        (6) 

where our goal is to minimize  

( )T *

1

1 ,
2

L

i i
i

w w C ε ε
=

+ +∑                      (7) 

with respect to the constraints  

( ) ( )
( ) ( ) *

*

,

,

and , 0

i i i

i i i

i i

y x f x

f x y x

ε

ε

ε ε

− ≤ +

− ≤ +

≥



                      (8) 
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The constant 0C > , determines the trade-off between the flatness off and the 
amount up to which deviations larger than   are tolerated. Support vector 
machine can be generalized to deal with a nolinear function ( )f x , and 
minimize the weights with respect to the constraint  

( ) ( ) ( ) ( )*

T* * * *

, 1 1

1min
2

l l

i i i i i
i i

Q y
α α

α α α α α α α α
= =

− − + + + −∑ ∑       (9) 

such that *0 ,i i Cα α≤ ≤ , and ( )*
1 0l

i ii α α
=

− =∑  where, *,i iα α  are the Lagrange 
multipliers, Q is a l by l positive semidefinite matrix with, ( )K ,ij i j i jQ y y x x≡  
and ( ) ( ) ( )TK ,i j i ix x x xφ φ≡  is the kernel. However, in SVR we have no control 
on how many data vectors from the dataset become support vectors and the 
correct choice of kernel parameters is crucial for obtaining desirable results [23]. 
Our objective is to conduct extensive analytical driven search procedure on the 
parameter space to obtain the optimal set of parameters that drive the model. 

3.4. Analysis with ANN and є SV Regression  

We began our analysis by dividing the vulnerability dataset into two groups; 
Training and Testing. The testing data set consists of vulnerabilities reported in 
year 2016. We then normalized the data by applying the min-max normalization 
method. Our analysis with ANN and SV regression makes the assumption that 
the number of future vulnerabilities depends on the vulnerabilities identified in 
the present and past months (lags). The number of significant lags in the partial 
auto correlation function has been used initially to determine the optimal 
number of lags. We proceeded by carring out further analysis by changing the 
number of lags from 2 to 10. 

The radial basis functional kernel is used to develop the SV regression models 
with fine-tuning the two set of parameters; gamma and the regularization 
parameter C. In developing the ANN model we used 10-fold cross validation 
method for time series. When using this techniques we incremented the training 
sets data, gradually shifting the training data set window one by one. This was 
repeated for different number of hidden nodes. The optimal analytical model is 
selected based on the average mean absolute error (MAE). Finally, the selected 
analytical model is used to make the prediction in the testing data set.  

4. Analysis  

Our statistical analysis follows the process that we have introduced in Section 3, 
where we described the overall time series trend of each OS. We need further 
investigation on each signal to see if any trend, cycles, and seasonality exists. 
Usually time series data consist of a specific trend, cycles, and seasonality. To 
identify the best analytical forecasting model, we will first proceed to identify the 
time series pattern in the data, and then select an appropriate method that will 
capture the patterns effectively. Figure 8 is structured in two columns; which 
consist of six individual graphs. In Figure 8, Figure 8(a), Figure 8(c), and  
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Figure 8. (a): Overall monthly deviation of mac os x os. (b): Overall yearly pattern of mac os x os. (c): Overall 
monthly deviation of windows 7 os. (d): Overall yearly pattern of windows 7 os. (e): Overall monthly deviation of 
linux kernel os. (f): Overall yearly pattern of linux kernel os. 

https://doi.org/10.4236/jis.2017.84023


N. R. Pokhrel et al. 
 

 

DOI: 10.4236/jis.2017.84023 376 Journal of Information Security 
 

Figure 8(e) descriebes the monthly behaviour of Mac OS X, Windows 7, and 
Linux Kernel OS respectively. These sub-series plots are inspected as a 
preliminary screening tool, that allow us for a visual inferences to be drawn from 
the data before proceeding to modeling and forecasting. 

In Figure 8 first columns’ sub-series plots emphasize monthly patterns where 
the data for each month is collected together in separate mini time plots. The 
horizontal lines indicate the means for each month. This plot helps to find the 
monthly pattern over time. In each plot, none of the graph specifically are 
revealing any seasonal and cyclical pattern. Likewise there is not a significant 
variation in the means for each month. 

Figure 8, confirms that there is no seasonal and cyclical pattern present on 
any of the OS monthly basis. We need to identify weather any seasonality or 
cyclic pattern exist over the year. We proceeded to plot the vulnerability data 
against individual “year” in which the data was observed. Figure 8, Figure 8(b), 
Figure 8(d), and Figure 8(f) illustrate the yearly pattern of the vulnerability of 
Mac OS X, Windows 7, and Linux Kernel OS respectively. 

In Figure 8, Figure 8(b) shows no seasonality or cyclic behavior is present 
over a year. It is clearly visible that there is sharp increase of vulnerabilities in 
year 2015 in comparison to the other year, 2002 to 2014. However, the Mac OS X 
system shows a significant random variation of the number of vulnerabilities. 
Similiarly, in Figure 8(d) each individual year shows random fluctuations of the 
number of vulnerabilities over a twelve month period. We also concluded that 
there is no specific pattern of the behavior of the signals on a yearly basis of 
Windows 7 OS. Year 2009 and 2013 show the largest number of vulnerabilities 
followed by a significant reduction for year 2015 by a factor of 10. Lastly, Figure 
8(f), the signal of each individual year shows random variation of a number of 
vulnerabilities for a twelve month period. Year 2010, and 2013 show the largest 
number of vulnerabilities followed by a significant reduction for year 2010.  

We plotted vulnerabilities against the individual months in which data are 
observed. Similarly, plots have been developed where data from each month is 
overlapped. These graphs allow us to make a decision that there is no specific 
seasonal or cyclical pattern seen in terms of monthly or yearly basis. We have 
found there is a large jump of vulnerability in specific years. The remaining years 
exhibit fluctuations on the number of vulnerabilities but no obvious seasonal or 
cyclic patterns. Inspecting the signal of the number of venerability in each OS, 
we have found that trend, level and random fluctuations are the major 
ingredients to build the forecasting model. Incorporating these facts, we have 
utilized ANN, SVM, and ARIMA models to forecast the future level of 
vulnerabilities for the three OS.  

Predictive Capability of Models  

One of the most important criteria for evaluating forecasting accuracy is to 
evaluate the error (residuals) generated by the testing data sets. An optimal 
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model is selected based on how accurately it forecast our testing data sets. We 
have computed Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 
and Symmetric Mean Absolute Percentage Error(SMAPE), for each model to 
assist in the selection process of the best model. For each forecast error 
estimation lower values are preferred.  

Prediction accuracy of the analytic model is one of the most important criteria 
to evaluate the model performance and reliability. In addition to RMSE and 
MAE, we utilized an error analysis based on Symmetric Mean Absolute Percent 
Error (SMAPE) rather than Mean Absolute Percent Error (MAPE) to 
convinence the validity of our model. Even though SAMPE is based on MAPE, it 
does consider data containing zeros and non zero values that may skew the error 
rate. It consist of 0% of lower bound and 200% of upper bound, thus it reduces 
the impact of zeros and non zero values on our data sets. The error is computed 
based on the analytical form defined by the equation below:  

1

2SMAPE ,
N

i i

i i i

P A
N P A=

−
=

+∑                    (10) 

where, N is the total number of prediction intervals, iP  is the predicted number 
of vulnerabilities, and iA  is the actual number of vulnerabilities. Once we 
employed ANN, SVM and ARIMA model on our testing data set following 
optimal model are selected based on our error measurement criteria in Table 2. 

Our ANN model evaluation results were quite good despite the fact that we 
did not have enough data to improve the training of our model. However, we 
believe that as more information of the subject matter becomes available the 
ANN model will be easier to implement and with higher accuracy in 
predicting the number of vulnerabilities of the present OS in the market place. 
For Windows 7 and Linux kernel is the analytical model, SVM driven by the 
final Equation (9). With reference to the Table 2, the best models are selected 
for each OS based on the low error rate and the law of parsimony are listed in 
Table 3. 

From Table 3 ARIMA(1,1,3) with drift, SVM with lag 5, and SVM with lag 5 
models are selected for Mac OS X OS, Windows 7 OS, and Linux Kernel OS 
respectively. To be more specific, the forecasting model for Windows 7 OS had 
the lowest SMAPE of (12.45%) which implies it is a good forecasting model. The 
developed model provides good fit to the vulnerability data for Mac OS X and  
 
Table 2. Output measurement criteria on testing data sets for each os. 

Criteria 
MAC OS X Windows 7 

Linux 
Kernel 

  

ARIMA ANN SVM ARIMA ANN SVM ARIMA ANN SVM 

RMSE 19.6456 28.5637 24.6749 21.5971 9.5533 3.5819 22.9 4.08 3.99 

MAE 16.1739 22.0606 19.9257 21.2726 8.9114 3.1504 24.2 3.41 3.28 

SMAPE 0.3125 1.2257 0.9509 0.9926 1.2842 0.1245 1.57 0.73 0.141 
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Table 3. List of best model selected for each os. 

OS Best Model SAMPE 

Mac OS X ARIMA 0.3125 

Windows 7 SVM 0.1245 

Linux Kernel SVM 0.141 

 
Linux Kernel but prediction accuracy is varied. In terms of forecasting, Linux 
kernel has a convincing SMAPE of (14.1%) but MAC OS X is reasonably 
accurate with a SMAPE (31.25%). One possible reason for high percentage error 
may be due to missing components in our analysis such as OS development 
process, patch cycles, difference in security enforcement criteria, as well as 
market share and popularity of the OS. 

After the selection of the best model with minimum error rate, our study 
revealed the fact that the developed model provides a good fit for the OS datasets 
and can be used to forecast the future vulnerabilities. Fitting time series models 
to the vulnerability database is demonstrated via the graph as shown below. 

Figure 9 shows the original vulnerability plot against fitted vulnerabilities of 
MAC OS X Operating System. Even though having random fluctuations that is 
increasing and decreasing behavior present in each year, our model accurately 
captures the holistic attributes of the signal with reasonable accuracy. 

Figure 10, demonstrates results of fitted time series model and the actual 
vulnerabilities of the Windows 7 OS. Eventhough Windows 7 OS have limited 
amount of data comparing to other OS, it has lowest approximately 12% 
prediction error which attends to the high qualitiy of forecasting future 
vulnerabilities.  

Figure 11 shows the fitting time series of the SVM model and the actual 
vulnerability data of Linux Kernel OS. Graphically our model shows a perfect fit 
with a prediction accuracy of 14% little bit higher than Windows 7 OS. This is 
probably due to very sharp increase of vulnerabilities in 2014 and a sudden 
decrease of in 2015. 

All of the above plots 9, 10, and 11 a good fit for each OS but different degrees 
of prediction accuracy. From a careful reading of the fitted plots, we can 
conclude that best fitted model may not produce the best forecasting accuracy 
and vice versa. In case of Mac OS X, forecasted vulnerabilities is not that much 
better to the fit of data. Unlike Mac OS X, windows 7 has quite good fit but 
forecasted vulnerabilities are a way better than Mac OS X. We eventually used 
our models to forecast the future vulnerabilities of these OS and recommended 
choice for predicting monthly vulnerabilities is summarized by Table 4. As an 
example, the following Table 4 highlights the fore-casted values for the 12 
months of the year 2016. From the table we can say that predicted number of 
vulnerabilities for 2016 for Mac OS X is highest followed by Linux kernel and 
Windows 7. 

Initially, we split our data sets in terms of training and testing data sets. The  
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Figure 9. Original vulnerability vs. fitted vulnerabilities for mac os x os. 
 

 
Figure 10. Original vulnerability vs. fitted vulnerabilities for windows 7 os. 
 
collection period of training data set of each OS is mentioned in Table 1. 
Similarly, 2016 is considered as testing data sets to validate our model for all OS. 
Utilizing our best developed model, we forecasted 2016 vulnerabilities which are 
given in Table 5. Now the following Table 5 compares the total true 
vulnerabilities and forecasted vulnerabilities for each OS. This comparison table 
shows the accuracy and reliability of our developed analytical models. 

Our study revealed the fact that seasonality and trends are not the major  
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Figure 11. Original vulnerability vs. fitted vulnerabilities for linux kernel os. 
 
Table 4. Forecasted vulnerabilities of mac os x, windows 7, and linux kernel os. 

OS 
Forecasted Vulnerabilities 

Total 
Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Mac OS X 28 24 32 26 32 34 31 26 27 36 38 37 371 

Windows 
7 

11 10 9 11 9 11 11 10 10 11 11 13 127 

Linux 
Kernel 

7 16 7 18 34 8 7 24 7 7 12 18 165 

 
Table 5. Actual and forecasted vulnerability comparison of the os. 

OS 
2016 Total Vulnerabilities 

Actual Forecasted 

Mac OS X 396 371 

Windows 7 134 127 

Linux Kernel 230 165 

 
components of the forecasting models. Nevertheless, the level of the time series 
is only the significant component to build the model. This suggests that it is 
difficult to predict vulnerabilities based on monthly seasonal patterns or trends. 
Further investigation is needed whether weekly, quarterly, or annual patterns 
might produce remarkable trends or seasonal components but such data is not 
publically availiable to improve the quality of the model. 

The ANN model did not perform well in forecasting the vulnerabilities 
because we did not have enough data to improve the training process so as to 
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improve its forecasting accuracy. With more vulnerability data we believe that 
the ANN model will be very competitive in forecasting vulnerabilities of the OS. 

5. Conclusions  

We have developed effective linear and non linear analytic models to forecast 
future vulnerabilities by utilizing the vulnerability datasets of three major OS 
namely, Windows 7, Linux Kernel, and Mac OS X. We have not found any 
influential trend and seasonality components from the time series data. The 
proposed forecasting models reveal the fact that non linear time series models 
predict quite well with minimum level of error rate. The developed models can 
be used by the developers, the user community, and individual organization to 
predict the vulnerability level of their OS. Developers can examine the OS 
readiness by predicting the future vulnerability trend. Based on the projected 
vulnerabilities, they can allocate the security maintenance resources to detect the 
upcoming vulnerabilities. At the same time, they can implement the proper 
software security patch plan. The users can obtain useful information to 
compare different OS in terms of the risk associated with their vulnerability. 
They also can access the risk before patches are applied. Similarly, every 
organization has their own customized security policies that requires allocation 
of time and resources. The predictive vulnerability models we have developed 
can be used to quantitatively guide such policies. 

Finally, the developed forecasting models of the three OS that dominate the 
global market can be used to predict their future vulenerabilities. The predictive 
vulnerabilities can be used to identify the risks associated with the forecast for 
each of the three OS. IT manager can implement the forecasting vulnerabilities 
in their operating strategies and contingency plans. Based on their predictions, 
each of the three manufacturing companies can make one of the decision: they 
are willing to live with it, make minor research and development design or 
major modifications. The predictive results can be used for competitive analysis 
of the three OS companies that are essential to their marketing strategies. 

References 
[1] National Institute of Standard and Technology (NIST) Report 2014.  

http://www.nist.gov/  

[2] Secunia Vulnerability Review (2015).  
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_p
df.pdf  

[3] Vulnerability Review (2016).  
http://www.flexerasoftware.com/enterprise/resources/research/vulnerability-review/  

[4] 2015 Microsoft Vulnerabilities Study: Mitigating Risk by Removing User Privileges.  
http://learn.avecto.com/2015-microsoft-vulnerabilities-report  

[5] Pokhrel, N.R. and Tsokos, C.P. (2017) Cybersecurity: A Stochastic Predictive Model 
to Determine Overall Network Security Risk using Markovian Process. Journal of 
Information Security, 8, 91-105. https://doi.org/10.4236/jis.2017.82007 

https://doi.org/10.4236/jis.2017.84023
http://www.nist.gov/
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf.pdf
https://secunia.com/?action=fetch&filename=secunia_vulnerability_review_2015_pdf.pdf
http://www.flexerasoftware.com/enterprise/resources/research/vulnerability-review/
http://learn.avecto.com/2015-microsoft-vulnerabilities-report
https://doi.org/10.4236/jis.2017.82007


N. R. Pokhrel et al. 
 

 

DOI: 10.4236/jis.2017.84023 382 Journal of Information Security 
 

[6] Rajasooriya, S.M., Tsokos, C.P. and Kaluarachchi, P.K. (2017) Cyber Security: Non-
linear Stochastic Models for Predicting the Exploitability. Journal of Information 
Security, 8, 125-140. https://doi.org/10.4236/jis.2017.82009 

[7] Othmane, L.B., Chehrazi, G., Bodden, E., Tsalovski, P. and Brucker, A.D. (2017) 
Time for Addressing Software Security Issues: Prediction Models and Impacting 
Factors. Data Science and Engineering, 2, 107-124.  
https://doi.org/10.1007/s41019-016-0019-8 

[8] Desktop Operating System Market Share. https://www.netmarketshare.com/  

[9] Rahimi, S. and Zargham, M. (2013) Vulnerability Scrying Method for Software 
Vulnerability Discovery Prediction without a Vulnerability Database. IEEE Trans-
actions on Reliability, 62, 395-407. https://doi.org/10.1109/TR.2013.2257052 

[10] Scandariato, R., Walden, J., Hovsepyan, A. and Joosen, W. (2014) Predicting Vul-
nerable Software Components via Text Mining. IEEE Transactions on Software En-
gineering, 40, 993-1006. https://doi.org/10.1109/TSE.2014.2340398 

[11] Shin, Y. and Williams, L. (2013) Can Traditional Fault Prediction Models Be Used 
for Vulnerability Prediction? Empirical Software Engineering, 18, 25-59.  
https://doi.org/10.1007/s10664-011-9190-8 

[12] Nguyen, V.H. and Tran, L.M.S. (2010) Predicting Vulnerable Software Components 
with Dependency Graphs. Proceedings of the 6th International Workshop on Secu-
rity Measurements and Metrics, ACM. https://doi.org/10.1145/1853919.1853923 

[13] Alhazmi, O.H. and Malaiya, Y.K. (2006) Prediction Capabilities of Vulnerability 
Discovery Models. Reliability and Maintainability Symposium, 86-91.  
https://doi.org/10.1109/RAMS.2006.1677355 

[14] Musa, J.D. and Okumoto, K. (1984) A Logarithmic Poisson Execution Time Model 
for Software Reliability Measurement. Proceedings of the 7th International Confe-
rence on Software Engineering, 230-238. 

[15] Rescorla, E. (2005) Is Finding Security Holes a Good Idea? IEEE Security & Privacy, 
3, 14-19. https://doi.org/10.1109/MSP.2005.17 

[16] Anderson, R. (2002) Security in Open versus Closed Systems the Dance of 
Boltzmann, Coase and Moore. Technical Report, Cambridge University. 

[17] https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-res
earch-report-2015.pdf  

[18] Phillips, P.C. and Perron, P. (1998) Testing for a Unit Root in Time Series Regres-
sion. Biometrika, 2, 335-346. 

[19] Frank, R.J., Davey, N. and Hunt, S.P. (2001) Time Series Prediction and Neural 
Networks. Journal of Intelligent & Robotic Systems, 31, 91-103.  
https://uhra.herts.ac.uk/bitstream/handle/2299/593/102081.pdf?sequence=1  

[20] Edwards, T., ansley, D., Frank, R. and Davey, N. (1997) Traffic Trends Analysis us-
ing Neural Networks. Procs of the Int Workshop on Applications of Neural Net-
works to Telecommunications. http://hdl.handle.net/2299/7171  

[21] Patterson, D.W., Chan, K.H. and Tan, C.M. (1993) Time Series Forecasting with 
Neural Nets: A Comparative Study. Procs the International Conference on Neural 
Network Applications to Signal Processing, 269-274. 

[22] Bengio, S., Fessant, F. and Collobert, D. (1995) A Connectionist System for Me-
dium-Term Horizon Time Series Prediction. Proc. Intl. Workshop Application 
Neural Networks to Telecoms, 308-315. 

[23] Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 20, 
273-297. https://doi.org/10.1007/BF00994018 

https://doi.org/10.4236/jis.2017.84023
https://doi.org/10.4236/jis.2017.82009
https://doi.org/10.1007/s41019-016-0019-8
https://www.netmarketshare.com/
https://doi.org/10.1109/TR.2013.2257052
https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1007/s10664-011-9190-8
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1109/RAMS.2006.1677355
https://doi.org/10.1109/MSP.2005.17
https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-research-report-2015.pdf
https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-research-report-2015.pdf
https://uhra.herts.ac.uk/bitstream/handle/2299/593/102081.pdf?sequence=1
http://hdl.handle.net/2299/7171
https://doi.org/10.1007/BF00994018

	Cybersecurity: Time Series Predictive Modeling of Vulnerabilities of Desktop Operating System Using Linear and Non-Linear Approach
	Abstract
	Keywords
	1. Introduction
	2. Related Research
	3. Data and Methodology  
	3.1. Autoregressive Integrated Moving Average Process (ARIMA) Model
	3.2. Artificial Neural Network (ANN) 
	3.3. Support Vector Machine (SVM)
	3.4. Analysis with ANN and є SV Regression 

	4. Analysis 
	Predictive Capability of Models 

	5. Conclusions 
	References

