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Abstract 
In-field proximal sensing of most major crops nutrients still remains an eco-
nomical and technical challenge. For this purpose, the use of effective mul-
ti-excitation fluorescence and reflectance wavelengths is explored in this 
work on Okra plant. Visible-near infrared (400 - 1000 nm) reflectance and mul-
ti-fluorescence data were collected at leaf scale in a chemically fertilized field 
by using an USB spectrometer mounted with an Arduino-based LED driver 
clip. N, P, K and Ca content of samples leaves were measured using reference 
methods. Average pods yield and leaves macronutrients content were calibrated 
using IRIV-PLS regression after spectra pretreatments. Single informative 
wavelengths bands in reflectance, red and far-red fluorescences were selected 
for building yield and macronutrient content models. We showed that flower-
ing stage was more suitable for yield prediction. Moderately useful macronu-
trient models were found in Ca content (RPDval = 1.93, rP = 0.818) and potas-
sium content with RPDval = 1.8, rP = 0.88. P and N yielding prediction perfor-
mance of RPDval = 1.61 (rP = 0.718 ) and RPDval = 1.46 (rP = 0.56) respectively 
were less accurate. This study demonstrates potentiality of fluorescence and 
reflectance spectroscopy for accurate estimation of leaf macronutrient content 
and crop yield. High selectivity obtained from resulted spectral bands could 
lead to the development of reliable, rapid and cost-effective devices for nu-
trient diagnosis. 
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1. Introduction 

In modern agriculture, remote sensing offers efficient tool for enhancing crop 
production while satisfying sustainability requirements by diagnosing plant nutri-
tional status. Indeed, remote sensing is widely used for early information man-
agement about crops fertilization needs, yield forecasting, diseases identification 
and decision support system from plant leaf to plant canopy and farmland to 
landscape scale. It is therefore quite rightly that methods derived from remote 
sensing are highly regarded as key components of Fertilizers Best Management 
Practices (FBMPs) [1]. According to statistical prevision, world population will 
grow over 9 billion by 2050 [2] [3]. This situation may increase pressure on 
world agriculture by the use of greater amount of chemical fertilizer. To over-
come future challenges in food supply for this expected world population, locks 
and limits in the applications of field remote sensing technology have to be 
solved. 

The availability of nutrients represents a limiting parameter of great importance 
in the evaluation of crop yields [1]. Macronutrients are plant nutrients required 
in important amounts and are constituted by nitrogen (N), potassium (K), cal-
cium (Ca), magnesium (Mg), phosphorous (P), and sulfur (S) [4]. N, P, K, and 
Mg are used in photosynthesis and respiration, whereas Ca serves to cell division 
and to cell walls construction [5]. As yet, dynamics of progress on field remote 
sensing methods currently makes proximal portable or mounted devices directly 
used in the field to measure N content with acquisition of fluorescence and ref-
lectance data [6] [7] [8]. Nevertheless, in-field determinations of other mineral 
nutrients are not as effective as in the case of nitrogen. Nutrients such as P, K 
and S are particularly concerned [3]. About developments in fast spectroscopy 
for plant mineral analysis, it appears that the use of visible data, combined with 
the lowest part of near infra-red range had resulted in good calibration models 
especially in K [9] as well as in Ca and Mg cases [10]. P prediction was poor 
whereas authors in these studies have employed full spectral range (400 - 1000 
nm). Using Vis-NIR hyperspectral imaging, Zhang et al. [11] gave acceptable 
prediction performance of leaf P macronutrient content in region of interest. 
Since correlations between polyphenol and mineral content in olive leaves were 
established in Cetinkaya et al. [12] study, we might expect better prediction per-
formance of leaf macronutrient content by using reflectance additionally with 
fluorescence data. 

Okra (Abelmoschus esculentus (L.) Moench. syn. Hibiscus esculentus L.) is a 
rich source of protein, vitamin, magnesium, potassium, manganese, sodium, cal-
cium, iron, copper and zinc [13] [14] [15]. Apart from its rich nutritional as-
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pects, it has been reported therapeutic benefits (antidiabetic, antipyretic, diuret-
ic, antispasmodic, etc.) [16]. This vegetable is widely cultivated within tropical 
and subtropical regions where nutrients requirements for N, P2O5 and K2O are 
reported to be 79, 32 and 89 kg∙ha−1 respectively for a yield of 20 t∙ha−1 [17]. Al-
though these amounts vary with factors such as: cultivar, plant density, soil type, 
whether the crop is irrigated or not, the climate and other environmental condi-
tions [18], higher productivity of Okra has been obtained with manure fertiliza-
tion [19] [20] [21]. In West Africa, the gumbos occupy the second place of vege-
table production after tomatoes [22]. Two okra species are cultivated in Ivory 
Coast: Abelmoschus esculentus and Abelmoschus caillei whose average yield is 
up to 6 t∙ha−1 and potential yields vary between 11 and 13 t∙ha−1 [23]. 

Chemistry or biochemistry data retrieval in spectroscopy measurement is 
accurately performed in multivariate calibration methods. These procedures 
are largely known as chemometrics in which efforts are made for developing 
mathematical and statistical methods to extract relevant, useful and efficient 
information from raw spectral data. In the optimization of chemometric process, 
steps such as spectral pretreatment, variable selection and latent factors are highly 
cases sensitive [24]. Especially in quantitative spectroscopy, single wavelengths 
selection has been shown to improve precision and accuracy in the calibration 
process [25]. Moreover, identification of effective wavelengths could offer possi-
bilities to develop non-destructive macronutrient diagnosis devices for crops 
monitoring. Recently, new trends in chemometrics have highlighted IRIV-PLS 
methods which demonstrated superior performances in front of other success-
ful variable selection algorithm particularly GA-PLS, MC-UVE-PLS and CARS 
[26]. IRIV method is part of MPA-based method. This algorithm consists in ge-
nerating sub-datasets by using Binary Matrix Sampling (BMS) and to find out 
strongly informative, weakly informative, uninformative and interfering variables, 
from statistical analysis in the variable space. The most interesting variables re-
tained after backward elimination procedure are those which are strong and 
weak. 

In the present study, we demonstrate potential of multi-excitation fluorescence 
combined with active reflectance for sensing yield and leaves macronutrients 
contents. This main objective is twofold: 1) to identify the best phenologic stage 
for pods yield prediction; and 2) to develop predictive models of N, P, K, and Ca 
concentration in okra leaves. 

2. Material and Methods 
2.1. Plant Material, Environmental Conditions and Soil Sampling 

The seeds of gumbo from the variety GB1230 provided by the Centre National 
de Recherche Agronomique (CNRA) were used in this study. The fertilizer ex-
perimentation was conducted at National Polytechnic Institute (INPHB) expe-
rimental farm on a manually cleared area of dimensions 39 m × 16 m located at 
altitude 229 m, latitude 06˚53'17.5''N and longitude 05˚13'19.6''W. The climate 
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during the experimental period (mid-August to mid-November 2014) on site 
registered mean values of 27˚C temperature, 78% humidity and 1008.5 hPa 
pressure. Three composite surface soil samples (0 - 15 cm) were collected in 
three main parts of field before sowing. The samples were dried in open air la-
boratory for 15 days and clods were crushed by hand and gravels removed. Sub-
sequently, the soil was slightly crushed and passed through a 2 mm calibrated 
sieve. Analyses were performed on soil fractions smaller than 2 mm. pH was 
measured in a water-soil (ratio 2/5) solution with a pH-meter. The methods of 
Walkley and Black [27], Kjeldahl [28] and Thomas [29] were respectively used for 
the determination of organic carbon, total nitrogen and organic ammonium. 
Cation exchange capacity (CEC) and exchangeable cations (Ca2+, Mg2+, Na+, K+) 
were extracted by the ammonium acetate method [29]. Total phosphorus is ex-
tracted by perchloric acid while assimilable phosphorus was estimated with Ol-
sen method modified Dabin. Chemical properties of samples analysed indicate a 
very low fertile soil with fairly rich organic matter according to the critical classes 
of chemical elements [30]. The mean soil pH was 6.2 and some of the other 
mean values obtained were as follows: total nitrogen, 0.06%; organic carbon, 
0.64%; 4NH+ , 0.25% ; assimilable and available phosphorus, 25 ppm and 294 
ppm. CEC mean value is 3.31 cmol∙kg−1 and the values obtained for Ca2+, Mg2+, 
K+ and Na+ were 0.829, 0.330, 0.078 and 0.083 ppm, respectively. 

2.2. Field Experimental Design and Fertilizers Management 

The experiment consisted of three 14 m × 11 m blocks; each block was divided 
into twelve plots of 5 m × 1.5 m including 15 plants, with an alley of 2 m be-
tween the blocks and 1 m within the plots. The experiment was laid out in a 
randomised complete block design (RCBD), with twelve treatments, and each 
treatment was replicated three times. Treatments consisted of a combination of 
N, P and K, each one at three levels supplemented with three reference treat-
ments at the same level for all factors as shown in Table 1. 

Fertilizers were prepared using urea (45% N), potassium chloride (60% K2O) 
and tricalcic phosphate (27% P2O5). They were applied once and locally for each 
plant of a plot at twenty days after sowing corresponding to 2 - 3 leaves stage. 
Each fertilizer proportion was calculated on the basis of the optimal requirement 
per plant knowing the elementary surface of application according the formula 
[31]: 

100
x Sq

C
×

=
×

                         (1) 

With x: fertilizer proportion per hectare; S: elementary surface (m2); C: con-
tent of fertilizing unit (%). 

2.3. Spectra Acquisition 

The experimental setup was detailed in a previous study [32] and was adaptation 
from Brydegaard et al. [33] one. It used an USB4000 spectrometer Ocean Optics,  
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Table 1. Factor levels and supply modes of fertilization treatments. 

Treatment N(kg∙ha-1) P (kg∙ha-1) K (kg∙ha-1) NPK supply mode 

TN 0 0 0 (0; 0; 0) 

TM 39.5 7 37 (1/2; 1/2; 1/2) 

TS 79 14 74 (1; 1; 1) 

T1 0 14 74 (0; 1; 1) 

T2 26.34 14 74 (1/3; 1; 1) 

T3 52.68 14 74 (2/3; 1; 1) 

T4 79 0 74 (1; 0; 1) 

T5 79 4.67 74 (1; 1/3; 1) 

T6 79 9.34 74 (1; 2/3; 1) 

T7 79 14 0 (1; 1; 0) 

T8 79 14 24.67 (1; 1; 1/3) 

T9 79 14 49.34 (1; 1; 2/3) 

 
a laptop and an Arduino microcontroller. The Led clip is composed of three 
Light-emitting-diodes (Leds) exciting the fluorescence at 380 nm (UV), 520 nm 
(green) and 630 nm (red) while the emitted fluorescence light was detected in 
the red and far-red spectral regions using a long-pass filter at 650 nm. A white LED 
emitting (400 - 700 nm) was utilized for reflectance measurement. A schematic 
drawing of the experimental setup used is given in Figure 1. 

2.4. Spectra Preprocessing 

Before starting chemometrics analyzes, three preprocessing methods namely 
gaussian filtering, standard normal variate transformation (SNV) and second 
derivation were applied to each spectra type (fluorescence with red, green, UV 
Led and reflectance with white Led). SNV standardized each spectrum by its 
own average and standard deviation for quantity correction [34]. It changes rela-
tion between peaks and enhances noisy signals. If prior to SNV one peak varies, 
after SNV all peaks vary. Derivatives are a form of high-pass filter and frequen-
cy-dependent scaling and are often used when lower-frequency (i.e., smooth and 
broad) features such as baselines are interferences and higher-frequency (i.e., 
sharp and narrow) features contain the signal of interest. Hruschka [35] showed 
that the derivative transformation methods could enhance the signal-to-noise 
ratio and resolve overlapping absorption features. Additionally, the derivative 
hyperspectra of crops could also eliminate or minimize the effects of leaf water 
content, noise, and atmosphere on N estimations of crops. Rieppo et al. [36] noted 
that second derivative spectroscopy allows more specific identification of small 
and nearby lying absorption peaks which are not resolved in the original spec-
trum, thereby offering means to increase the specificity of absorption peaks for 
certain molecules of the tissue. 
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Figure 1. Schematic drawing of the experimental setup used for spectra acquisition. 

2.5. Content Measurement of N, P, K and Ca 

After the spectral measurement of leaves from each experimental plot in the 
field, those leaves were collected and destructively sampled to determine their 
macronutrient content. Chemical analysis of plants tissue were conducted in the 
Laboratoire de Pédologie and Laboratoire des Procédés Industriels, de Synthèses, 
de l’Environnement et des Énergies nouvelles (LAPISEN) at National Polytechnic 
Institute Houphouet Boigny (INPHB). The reference method for nitrogen con-
tent was the Kjeldahl [28]. Dried and crushed leaves samples of 0.4 g are minera-
lized and put in solution with nitric and chlorhydric acid [37]. Phosphorus content 
was determined by UV/Vis Spectrometer Jasco V-530 Inc. Calcium and potassium 
content was determined by flame atomic absorption spectrometry air-acetylene 
using spectrophotometer VARIAN type AA20, Australia [38]. 

2.6. Chemometric Analysis 

A general workflow procedure has guided the development of macronutrient 
models. In this context, Figure 2 gives a substantial overview. Four main methods 
were employed. 

In chemometric process, initial samples are firstly screened with Monte Carlo 
method for detecting potential outliers. After eliminating these dubious data, the 
remaining samples are splitted in training and test data according to Kennard-Stone 
data partition method. These two subsets are used as input parameters in IRIV 
algorithm for selecting optimal reflectance and fluorescence wavelengths. Final-
ly, PLSR using normal samples was conducted with optimal spectral data ob-
tained from IRIV process. Then, calibration models and their validation are gen-
erated. 

2.6.1. Monte Carlo Method of Outliers Detection 
Applied at first on QSAR/QSPR data set, the MC method is proved to be an ap-
proach for diagnosing dubious samples contained in raw dataset [39]. This me-
thod was used to increase model performance prediction and consisted in stud-
ying the distribution of prediction errors of each sample obtained from original 
dataset. The number of principal component was firstly determined using 
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Figure 2. Flow-chart of chemometric method in macronutrient models development. 
 
cross-validation in PLS and PCR method. For a given number of iteration, 70% 
to 90% samples are randomly chosen from whole dataset and used to calibrate 
the model. This model is tested on the remaining samples and prediction error 
on each sample is computed and stored. The statistical distribution of these er-
rors was evaluated through mean value ( )m j  and the standard deviation ( )s j  
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for the j  th sample. The result of variance of residuals versus mean of residuals 
on all samples are plotted in a diagram which is able to differentiate three types 
of outliers and normal samples according to computed statistical sample coor-
dinate as follows: 

( ) ( )1

1 k
im j error i

k =
= ∑                          (2) 

( ) ( ) ( )( )2

1

1 21
1

k
is j error i m j

k =

 = − − 
∑                 (3) 

2.6.2. Kennard-Stone Data Partition Approach 
Kennard and Stone [40] approach offers a practical solution to split a study pop-
ulation into a training set and a testing set. The KS algorithm consists in select-
ing samples by evaluating the Euclidian distance ( ),xED p q x -vectors of each 
pair ( ),p q  of samples according to the following formula below [40] [41] [42] 
[43]. 

( ) ( ) ( ) [ ]
2

1, ,   , 1,N
x p qjED p q j x j q Mx p

=
 = − ∈ ∑             (4) 

In Equation (4), N is the number variables in x and M is the number of sam-
ples. ( )px j  and ( )qx j  are the j th variable for samples p and q, respectively. 
At each iteration, the algorithm selects the point furthest from the points already 
retained. This process is executed again until selecting the N desired points. The 
aim of KS algorithm is to find a representative and uniform subset selection of 
data. 

2.6.3. IRIV Selection Method 
IRIV stands for Iteratively Retaining Informative Variable. This method was de-
veloped by considering the data matrix x which contains N samples in rows and 
p variables in columns, and y, of size 1N × , denoting the measured property of 
interest [26]. Binary matrix sampling consists of generating a binary matrix M of 
dimension K P×  which is assigned randomly with the number “1” or “0” to 
each column. Each row of the binary matrix corresponds to an individual sam-
pling, where “1” denotes the samples selected for modeling and “0” for unse-
lected samples. By the process of inclusion and exclusion of the binary values “1” 
or “0”, the matrix 1M  is obtained by changing for the first column all “0” to “1” 
and vice versa. Then a subset (variable ith column) is evaluated by PLS and a 
statistical distribution of the RMSECV at inclusion and exclusion is obtained. 
These statistical distributions of RMSECV for a variable are tested with the as-
sumption that the distribution of the data is the same for two groups in order to 
identify the importance of this variable. Mann-Whitney’s non-parametric U-test 
is used for this purpose. According to the p-value obtained, the variables are 
classified into 4 categories: highly informative, weakly informative, interfering 
and non-informative. After removing the last two types of variables, a new sub-
set is generated and the same calculation cycle is repeated. At the end of the ite-
ration, when no non-informative or interfering variable exists, a background 
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elimination procedure is carried out to output the optimal variables selected. 

2.6.4. PLSR Analysis 
Partial Least-Squares Regression (PLSR) has become a standard tool in chemo-
metry and is widely applied in various fields such as chemical [44], economical 
[45], biological [46] [47] [48] and social sciences [49]. In this study, PLSR analy-
sis was performed to establish regression models for the determination of the 
target chemical concentrations measured in fresh gumbo leaves (variable matrix 
𝑌𝑌) based on the optimal variable spectra (variable matrix X) obtained from the 
IRIV process. Autoscale technique was the main preprocessing method employed 
for X-Block and Y-Block. Cross-validation method was based on venetian blinds 
using 5-folds split for K model, 6-folds for N and Ca models, then 8-fold for P 
one. Models for macronutrients content developed were built with a number of 
samples in calibration set comprising 67% to 75% of whole data. 

2.7. Model Evaluation 

To check whether the model satisfy to standard qualities in multivariate regres-
sion, we referred to some common chemometrics terms: Bias, Ratio Performance 
Deviation (RPD), correlation coefficient in calibration (RC) and prediction (RP), 
root mean square error (RMSE) of calibration (RMSEC) and prediction (RMSEP). 
According to Williams [50], correlation coefficient, SEP, bias and RPD are the 
most useful statistics for evaluating calibration performance. Moreover, using Mal-
ley et al. [51] criteria based on correlation coefficient and RPD on validation da-
ta, we are able to classify the success of predictions. Indeed these criteria propose 
a guideline scale for describing the performance of calibrations for environmen-
tal samples as follows: Excellent, RP > 0.95, RPD > 4; Successful, RP = 0.9 - 0.95, 
RPD 3 - 4; Moderately Successful, RP = 0.8 - 0.9, RPD 2.25 - 3; and Moderately 
Useful, RP= 0.7 - 0.8, RPD 1.75 - 2.25. 

2.8. Software 

All methods have required Matlab software for computations (version 2015a, the 
Math Works, Inc.). Chemometric analyses have respectively used libpls and IRIV 
codes freely provided by Li et al. [52] at http://www.libpls.net and Yun et al. [26] at 
http://code.google.com/p/multivariate-calibration/downloads/list. Computations were 
carried out on a general-purpose computer with intel® Core (TM) i3-4160 3.6 
GHz CPU and 16 GB of RAM where Microsoft Windows 10 was employed as op-
erating system. PLSR was performed using the PLS Toolbox (V. 8.1, Eigenvector 
Research, Inc., Wenatchee, USA). 

3. Results and Discussion 
3.1. Reference Data of Macronutrients Content and Okra Yield 

Maximum yield of approximatively 6 - 7 t/ha obtained in this study of Okra 
farm experimentation can be justified by a harvest period of only 45 days rather 
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than the three months envisage don the employed variety. This yield is particu-
larly suitable according to others experimental farming carried out on the same 
variety. On the level of nutritional information, both calibration and validation 
set covered large value ranges. This is due to fertilization design, leaf position 
and period of time run out during the first and the second acquisition. Mousta-
kas et al. [53] showed that in Okra (Abelmoschus esculentus (L.) Moench.) ma-
jor nutrient uptake was rapidly increasing between 30 and 60 days after trans-
planting. This ensures higher concentration value, mainly observed in the second 
acquisition samples set. Table 2 summarizes yield and macronutrient contents 
used in this study. 

3.2. Spectral Features of Preprocessed Okra Fresh Leaves 

After SNV and 2nd derivative, the preprocessed spectra are successively com-
bined to form a single spectrum. Autoscale of those combinations of multi fluo-
rescence and reflectance spectra is shown in Figure 3. 

On Figure 3 examination, we can notice enhanced peaks in number and in-
tensity more in fluorescence spectra than in reflectance one. These peaks may 
have been caused by different contents of nutritional parameters as derivative 
spectroscopy has been proved to be an efficient method which enhances resolu-
tion in spectroscopic data [54]. 

3.3. Outliers Detection Using MC Method 

Analysis of Figure 4 shows that there are different outliers in number and type 
by chemical content. Some similar outliers are found in calcium as well as in po-
tassium and phosphorus data. 

Nitrogen samples are very low because chemical analysis at first data acquisi-
tion performed on P, K and Ca has consumed almost samples. Besides some of 
 
Table 2. Reference data parameters. Yield data is expressed in kg/ha. N is shown as per-
centage of dry matter and P, K, Ca values are given in mg/kg of dry matter. 

 Parameter Yield 1 Yield 2 N P K Ca 

Calibration 

n 24 24 13 32 30 32 

Min 201 201 1.6 666.67 8932 6793 

Max 7868.6 7868.6 3.64 2678.34 204,966 663,699 

Mean 3396.5 3396.5 2.927 1495.73 95,177.4 217,464 

Std 2353.7 2353.7 0.575 577.48 66,560.1 199,068 

Validation 

n 12 12 5 14 10 15 

Min 1455.2 1455.2 2.8 800 48918.7 64793 

Max 4823.6 4823.6 4.03 2161.67 181,333.3 696,999 

Mean 3076.3 3076.3 3.328 1580.47 112,005.3 353,135 

Std 946.3 946.3 0.47 446.32 51,573 207,257 
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Figure 3. Combination of preprocessed multi-fluorescences and reflectance spectra ob-
tained successively by SNV, 2nd derivative and autoscale. Vertical green lines indicate 
peaks. Red, green and violet bands respectively correspond to fluorescence emission in 
650 - 850 nm region by using red, green and violet Led excitation sources. Blue color 
band is related to reflectance in 400 - 1000 nm region with white Led source. 

 
the samples intended for nitrogen analysis have been loosed during drying oven 
process. Using the Monte Carlo method, we have left out 6, 19, 21 and 26 sam-
ples respectively in nitrogen, phosphorus, calcium and potassium data as shown 
below. 

3.4. Developpement and Validation of Calibration Models 
3.4.1. Okra Best Phenologic Stage for Fruits Yield Prediction 
After partitionning yield and spectra data with Kennard-Stone algorithm, we 
applied IRIV algorithm to find out the best phenologic stage for pods yield pre-
diction. YieldAcq1 is related to first spectra acquisition at vegetative stage and 
YieldAcq2 is concerned with second acquisition at flowering growth stage. Model 
related to YieldAcq2 has RMSEC and RMSEP values lower than the one devel-
oped using spectra acquired at vegetative stage in YieldAcq1. YieldAcq2 model is 
established using wavelengths in fluorescence under red, green and UV excita-
tions, and variables in reflectance bands while YieldAcq1 only used fluorescence 
variables under UV excitation (Table 3). 

Results of IRIV modelling respectively gave RMSEP and RMSEC values of 
1736.9 kg/ha and 1547.3 kg/ha for YieldAcq2 against 2523.3 kg/ha and 1627.4 
kg/ha for YieldAcq1. Good model tendency is to have high Rc and RP values 
while RMSEC and RMSEP values are low [55] [56]. Hence, YieldAcq2 root mean 
square error on calibration and validation are more appropriate. This result 
agrees with Weber et al. [57] one. Their study on grain maize prediction by us-
ing leaves reflectance have indicated that coefficients of determination (r2) be-
tween predicted and actual grain yield were highest for measurements con-
ducted at anthesis and milk-grain stage. Thus, we conclude that fluorescence and 
reflectance measured at flowering stage are suitable for gumbo fruits yield pre-
diction. 
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(a)                                                          (b) 

 
(c)                                                            (d) 

Figure 4. Schematic diagram differentiating outliers and normal samples in calcium (a); potassium (b); phosphorus (c); and ni-
trogen content (d). 

3.4.2. Prediction of Macronutrient Content 
Table 4 summaries the calibration and validation statistics for N, P, K and Ca 
macronutrients. Minimum rC value of 0.92 and RPDcal value of 2.35 indicate high 
efficiency in overall model calibration. Models also appear robust as rP values 
stand in 0.79 - 0.86 range. 

Ca and K models have better calibration success according to RPD value cal-
culated on validation data. These models are classify as moderately useful ac-
cording to Malley et al. [51] criteria although the rP coefficients above 0.8 were 
high enough to be considered moderately successful (Table 4).Potassium model 
has the highest correlation values with rC = 0.899 and rP = 0.885. RPD values in  
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Table 3. Selected effective wavelengths from 2nd derivative spectra. 

Nutrient 
or yield 

parameter 

Variables 
number 

Fluorescence 
R630 (nm) 

Fluorescence 
G520 (nm) 

Fluorescence 
UV375 (nm) 

Reflectance 
white Led (nm) 

N 7    570 - 571; 607 - 608 

P 13 758 - 759; 772; 783; 680; 810; 744; 817; 973 - 974 

K 95 781 - 782; 673; 835 - 836; 
681 - 683;  
759; 799; 

418 - 421; 450 - 456;  
754; 767 - 768; 
824; 942 - 944;  

957 - 959; 972 - 974 

Ca 6    649 - 654 

YieldAcq1 5 703; 767    

YieldAcq2 119 692; 733 677 669 - 670 
467 - 476; 652 - 657;  
858 - 860; 980 - 987 

 
Table 4. Results of PLS prediction of macronutrient. 

Parameters N P K Ca 

Model     

N LV 5 10 8 7 

Pre-Processing X-Block Autoscale 

Pre-Processing Y-Block Autoscale 

RMSEC 0.1490 164.19 10076 55422 

2
Cr  0.9270 0.9170 0.9760 0.9200 

2
CVr  0.8570 0.7890 0.8990 0.8650 

RPDcal 3.86 2.35 6.6 3.59 

     

Test     

2
Pr  0.570 0.718 0.885 0.818 

RMSEP 0.320 276.45 28609.7 107162 

RPDval 1.468 1.614 1.802 1.934 

 
both models (1.9 for Caand 1.8 for K) are close to 2. Potassium RPDval value is 
similar to Villatoro-Pulido et al. [58], Ward et al. [59] and Aldana et al. [60] re-
sults ones in which 400 - 2500 nm spectral ranges were used to predict dry 
ground leaves samples. Highest RPDval value of 6.1 for potassium has been found 
in Menesatti et al. [10] work using VIS-NIR in 400 - 1000 nmon fresh orange 
leaves but Ca RPDval = 1.5 was low. 

In Figure 5, predicted versus measured plots for calcium and potassium show 
representative data range. The validation set presents significant bias whereas 
calibration ones equals zero. Variables selected in our study are very small for 
calcium model (6 variables) while potassium model uses 95 wavelengths: all  
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(a)                                                          (b) 

 
(c)                                                          (d) 

Figure 5. Predicted vs. reference plots and model data for: (a) Calcium calibration; (b) Calcium validation; (c) Potassium calibra-
tion; (d) Potassium validation. 

 
fluorescence emission signals in red and far-red bands with excitations in red 
(781 - 782 nm), green (673; 835 - 836 nm), UV (681 - 683; 759; 799 nm) and 
large number of reflectance variables.  

Klančnik et al. [61] has shown that reflectance spectra were significantly af-
fected by the Ca concentrations which were mostly accumulated in the meso-
phyll, and particularly in the areas of the vascular bundles. In this case, our study 
confirms but much better precises the relations between Ca content and most 
sensitive reflectance bands located in 649 - 654 nm range. In the case of potas-
sium, the use of fluorescence in red, green, UV light for model building suggests 
that variation in this nutrient could elicit changes in flavonol, anthocyanin and 
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chlorophyll pigments. These results at leaf level are essentially new for flavonol 
and anthocyanin content. Increase of anthocyanin content in petals due to po-
tassium uptake has been reported [62]. An increase in chlorophyll, and carote-
noid contents was also found as a result of potassium treatments excepting for 
higher concentration [63]. Calcium and potassium models developed denote 
strong relevance of the selected wavelengths in fluorescence and reflectance 
mode that could be used for accuracy measurements of leaf calcium and potas-
sium content. 

In contrast, the two last models have low performance prediction owing to 
their RPDval values (1.6 for P and 1.47 for N). Nevertheless, the correlation coef-
ficient in phosphorus prediction around 0.72 represents a satisfactory result 
since poor prediction ability has been reported in previous investigations [10] 
[59] [64]. 

Our result in validation set is comparatively equivalent to Zhang et al. [11] 
phosphorus prediction when they applied hyperspectral imaging technique in 
VIS-NIR region (380 - 1030 nm) on oilseed rape leaves region of interest. Pho-
tosynthetic process largely relies on P containing compounds [65]. P plays a very 
important role in the composition of chloroplast and photosynthesis and can be 
directly involved in the assimilation of photosynthesis and photosynthetic phos-
phorylation [66]. Thus, photosynthesis is sensitive to low P stress [67]. Variation 
in P content affects chlorophyll a fluorescence response with red light excitation. 
Our findings also show that phosphorus level concomitantly induced variation 
in flavonol and anthocyanin content respectively responsible of fluorescence in 
far-red band under UV (375 nm) and green (520 nm) light excitation. Involved 
wavelengths are mentioned in Table 3. This result corroborates Ulrychová et 
Sosnová [68] study which shows that phosphorus deficiency result in an evident 
increase of anthocyanin content. But, Stewart et al. [69] work attributed increase 
of total flavonol in tomato plant leaves mainly to nitrogen deficiency than to low 
phosphorus content. 

In the case of nitrogen prediction, most investigations have established high 
accuracy measurements by using reflectance spectra [70] [71] [72]. In this work, 
7 optimal variables in 2nd derivative reflectance bands (570 - 571; 607 - 608 nm) 
are the most informative regions for nitrogen model development. These regions 
correspond to negative slope in green-yellow leaf reflectance and are related to 
LUE (Light Use Efficiency) green spectral region. They represent high selectivity 
for nitrogen wavelength screening in light of previous studies. Few sampling ex-
plains low value of correlation coefficient and RPD on validation. Nevertheless, 
according to Wang model performance classification [73], RPD and correlation 
coefficient values respectively in 1.4 - 2 and 0.5 - 0.75 ranges are acceptable. As 
shown in Figure 6, the calibration models are representative of macronutrient 
content variation and present in test set lower bias than calcium and potassium 
models. 

From this study, we can conclude reasonable prediction performance of ma-
cronutrient models using combined fluorescence and reflectance informative  
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(a)                                                          (b) 

 
(c)                                                          (d) 

Figure 6. Predicted vs. reference plots and model data for: (a) Phosphorus calibration; (b) Phosphorus validation; (c) Nitrogen 
calibration; (d) Nitrogen validation. 

 
wavelengths. Results evidence with representative dataset is given for calcium, 
potassium and phosphorus Okra leaves content. However models building process 
has left out many outliers samples. More generalized model should take into ac-
count larger data. Since the experiments were conducted under one cultural and 
ecological environment in the field conditions of three months with variety 
GB1230 of Okra seeds, methods and monitoring models still need to be verified 
in other ecological areas. 

4. Conclusion 

The results from this study showed that fluorescence and reflectance spectral 
acquisition at flowering stage are appropriate for okra yield estimation. In addi-
tion, optimal wavelengths were selected in red and far-red bands from three ex-
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citation fluorescence and specific bands reflectance derivatives spectra especially 
for yield estimation using spectra acquired at flowering stage as well as for po-
tassium and phosphorus data. Macronutrients content prediction has followed a 
process trajectory using Monte Carlo outliers detection, Kennard-Stone data 
partition and IRIV approach combined to PLSR. Moderately useful models are 
concerned with calcium content (RPDval = 1.93, rp = 0.818) and potassium con-
tent (RPDval = 1.8, rp = 0.88). Less accuracy but acceptable with RPDval = 1.6, rp = 
0.718 was obtained in phosphorus prediction and RPDval = 1.46, rp = 0.56 in ni-
trogen prediction. Our work gives a substantial understanding of macronutrient 
content relationship with some plants biochemicals by linking them to new re-
levant spectral bands. Thus fluorescence and reflectance spectroscopy could be a 
promising alternative to acquire a reliable predictive view of the macronutrient 
concentration of Okra leaves. Furthermore, such method could be optimized 
and applied on other agricultural cultures in order facilitating the rapid and easy 
evaluation of crops nutritional status by the development of low-cost portable 
devices for crops monitoring. 
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