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ABSTRACT 
Oxygen isotope (δ18O) serves as paleothermometer, and provides paleotemperature for 
carbonates. δ18O signature was used to estimate the temperature of fractionation of dolomite 
and calcite in Montney Formation, empirically calculated to have precipitated, between ap-
proximately 13˚C to ±33˚C during Triassic time in northeastern British Columbia, Western 
Canada Sedimentary Basin (WCSB). Measurements of stable isotopes (δ13C and δ18O) frac-
tionation, supported by quantitative X-ray diffraction evidence, and whole-rock geochemi-
cal characterization of the Triassic Montney Formation indicates the presence of calcite, 
dolomite, magnesium, carbon and other elements. Results from isotopic signature obtained 
from bulk calcite and bulk dolomite from this study indicates depleted δ13CPDB (−2.18‰ to 
−8.46‰) and depleted δ18OPDB (−3.54‰ to −16.15‰), which is interpreted in relation to 
oxidation of organic matter during diagenesis. Diagenetic modification of dolomitized very 
fine-grained, silty-sandstone of the Montney Formation may have occurred in stages of 
progressive oxidation and reduction reactions involving chemical elements such as Fe, 
which manifest in mineral form as pyrite, particularly, during early burial diagenesis. Such 
mineralogical changes evident in this study from petrography and SEM, includes cementa-
tion, authigenic quartz overgrowth and mineral replacement involving calcite and dolomite, 
which are typical of diagenesis. High concentration of chemical elements in the Montney 
Formation -Ca and Mg indicates dolomitization. It is interpreted herein, that calcite may 
have been precipitated into the interstitial pore space of the intergranular matrix of very 
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fine-grained silty-sandstone of the Montney Formation as cement by a complex mechanism 
resulting in the interlocking of grains. 

 

1. INTRODUCTION 
The application of stable isotope geochemistry in the study of sedimentary rocks has increasingly be-

come an integral part of sedimentary geology. In particular, isotopic composition of sediments is impor-
tant in interpreting diagenesis resulting from dolomitazation, and differentiating sources of organic matter 
[1-3], classification of kerogen types [4], and correlating crude oils with source rocks [5-7]. [8] first origi-
nated and formulated the idea of using thermometer to measure the variations with temperature of frac-
tionation factors in isotopic exchange equilibria, particularly, in relation to the oxygen isotopes in the sys-
tem. Subsequently, [9] showcased that oxygen isotope (δ18O) in sedimentary carbonates can serve as a pa-
leothermometer, and can be used to estimate the temperature at which carbonate was formed. The concept 
of using oxygen isotope as paleothermometer was developed on the premise that calcium carbonates pre-
cipitated by organisms is in isotopic equilibrium with the seawater in which the organisms grow [8-10]. 

This study of the Montney Formation in Fort St. John area (T86N, R23W and T74N, R13W), nor-
theastern British Columbia (Figure 1) utilized stable isotopes (13C and 18O), whole-rock geochemistry 
(Table 1) and mineralogical composition (Table 2) to interpret dolomitization of the Montney Forma-
tion because they are established methods for studying dolomitization and diagenesis in carbonates [11, 
12]. 

This research reported herein, primarily focus on using stable isotope (δ18O) to determine the paleo-
tempeterature of precipitation of dolomite in the Triassic Montney Formation. 

2. GEOLOGICAL SETTINGS 
The Montney Formation is the basal stratigraphic unit of Triassic succession in the subsurface of 

western Canada [12-14]. It rests, unconformably in most areas, upon carbonate or mixed siliciclastic-car- 
bonate strata of Carboniferous to Permian age [15-22]. The succession was deposited in a west-facing, ar-
cuate extensional basin on the western margin of Pangaea [23-27]. The Montney Formation consists of 
siltstone, very fine-grained sandstone, bioclastic packstone/grainstone (coquina, in Alberta) [19, 20], in-
terlaminated, interbedded, dolomitic silty-sandstone [12-14, 22] and shale. The Triassic Montney Forma-
tion is separated by an unconformity from the underlying Permian Belloy Formation (Figure 2).The un-
conformity along the Permian-Triassic boundary has been interpreted by [15, 20, 24] to be related to a 
global eustatic sea level fall. The global eustatic fall was related to the amalgamation of Pangaea Supercon-
tinent, and was followed by a protracted Late Permian transgression that continued into the Triassic pe-
riod [24]. The transgression was accompanied by anoxic conditions that induced profound environmental 
change [26-28], and may have severely increased levels of greenhouse gases [26-27]. These were the pri-
mary factors that contributed to the Late Permian-Triassic extinction crises, the largest extinction episode 
in geologic history [25, 27]. 

The paleoclimate reconstruction suggests that the paleoclimate may have ranged from sub-tropical to 
temperate [23-28]. The region has been interpreted to be arid during the Triassic, and was dominated by 
winds from the west [18, 28].  

The WCSB forms a northeasterly tapering wedge of sedimentary rocks with thickness of more than 
6000 meters, which extends southwest from the Canadian Shield into the Cordilleran foreland thrust belt 
[15, 29]. The Cordilleran of the WCSB provides the evidence that the origin and development of the basin 
was associated with tectonic activity [15, 30]. Later epeirogenic events resulted in subsidence that created 
the basin for sediment accumulation, which were attributed to the effects of contemporaneous episodes of 
orogenic deformation in the Cordillera [29, 31]; this is interpreted to be post Triassic, especially due to 
mountain influences [15].  
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Table 1. Whole-rock geochemistry showing Montney Formation chemical element concentrations. 
<DL means less than detection limit. 

Well  
Location 

Depth 
(m) 

Major Elements Trace Elements 

Mg Al P K Ca Ti Fe Mn Li Be B Co Cu Zn V Cr 

2 0.2 5 6 31 0.09 3.7 0.03 0.3 0.05 0.03 0.03 0.08 0.1 0.05 2 

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

b-39-H-93-p-9 2042 42,120 31,116 809 24,111 90,976 2795 16,707 297 26.9 51.9 39.1 18.3 43.1 1.2 51.4 <DL 

d-39-F-93-p-9 2668.8 18,820 33,638 1246 24,251 71,508 3021 14,427 266 15 85.7 64.2 13.7 22.7 1.3 46.4 <DL 

d-39-F-93-p-9 2685.4 13,338 40,861 2249 30,359 49,140 3668 20,717 253 17.3 77.7 42.5 23.5 89.6 1.4 62.8 <DL 

d-39-F-93-p-9 2685.4 13,475 41,234 2289 30,453 48,968 3676 20,575 246 17.5 77.9 39 25 111 2 63 <DL 

2-19-79-14W6 2048 19,780 45,633 1955 36,036 45,915 3877 19,687 253 21 288 26.7 24.1 33.8 1.8 69.3 <DL 

2-19-79-14W6 2069.5 20,116 36,583 914 29,177 47,584 3397 16,679 332 17.9 530 28.7 19.1 221 1.5 61.2 <DL 

2-19-79-14W6 2085 11,512 40,016 1493 32,310 36,429 3856 18,929 287 14.4 56.6 39.4 21.2 29.6 1.9 66.1 <DL 

7-13-79-15W6 2055.22 48,152 24,438 1582 20,397 98,597 2080 22,999 364 21.8 271 27 30.5 24.6 1.1 70.1 <DL 

7-13-79-15W6 2061.3 36,224 28,526 688 22,992 79,426 2704 14,057 355 12.7 55.2 40.5 15.2 28.3 1 52.4 <DL 

7-13-79-15W6 2084.5 26,671 35,233 1717 27,941 61,980 3182 20,491 385 15.7 68.2 27.7 18.6 96.3 1.7 58.9 <DL 

7-13-79-15W6 2101.78 14,456 39,659 2139 33,885 37,952 3576 26,134 324 12.4 78.5 58.7 29.3 270 2 65.7 <DL 

9-29-79-14W6 1973 13,408 41,779 938 30,649 50,042 3938 16,527 296 15.6 504 45.1 19.2 82.3 1.6 68.2 <DL 

9-29-79-14W6 1973 13,545 42,786 1003 31,695 51,007 3832 16,575 295 15.4 494 65.5 16.8 86.1 1.7 66.7 <DL 

9-29-79-14W6        1999 11,761 36,736 2465 30,541 53,523 3347 15,951 331 11 46.9 28.1 18.1 68.7 1.1 49.9 <DL 

GSP-2  4993 61,382 1309 45,681 16,528 3521 27,936 288  46.4 9.41 38 121 1.3 19.8 <DL 

Certified value  5800 78,800 1300 44,800 15,000 4000 34,300 320 36 52 7.3 43 120 1.5 20 - 

% recovery  86.1 77.9 100.7 102 110.2 88 81.4 90 88.6 89.3 128.8 88.3 100.7 87.1 99.2 - 

 

Well  
Location 

Depth 
(m) 

Trace Elements 

Ga Ge As Se Rb Sr Y Zr Nb Mo Ru Pd Ag Cd Sn Sb 

0.01 0.02 0.06 0.2 0.04 0.03 0.02 0.09 0.04 0.02 0.01 0.01 0.01 0.06 0.06 0.01 

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

b-39-H-93-p-9 2042 8.36 1.13 10.9 1.64 77.9 279 23 178 9.22 1.95 0.26 7.86 0.53 0.08 3.39 0.95 

d-39-F-93-p-9 2668.8 9.16 1.31 8.95 2.9 65 133 24 181 9.19 15.8 0.12 8.04 0.44 0.16 2.77 1.1 

d-39-F-93-p-9 2685.4 12.2 1.43 17.7 3.53 88 121 28.3 256 11.9 13.8 0.03 11.1 0.59 1.11 3.35 1.17 

d-39-F-93-p-9 2685.4 12.5 1.42 17.3 2.54 87.9 118 28.3 304 11.9 13.5 0.04 12.9 0.59 1.03 3.01 1.27 

2-19-79-14W6 2048 14.5 1.6 19.9 3.06 96.8 107 28.4 172 11.7 28 <DL 7.31 0.5 0.34 3.32 3.55 
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2-19-79-14W6 2069.5 10.4 1.73 16.3 7.1 75.6 96.1 28.1 230 10.4 21.4 0.04 9.95 1.18 5.97 3.35 7.23 

2-19-79-14W6 2085 11.2 1.63 8.01 2 81.3 100 28 281 12.7 4.98 <DL 11.7 0.55 0.28 2.95 0.63 

7-13-79-15W6 2055.22 7.48 1.21 26 10.2 61.9 128 23.6 178 7.01 141 0.22 7.65 0.82 0.61 2.36 10.5 

7-13-79-15W6 2061.3 6.83 1.17 7.84 2.71 53.6 111 22.7 195 8.99 28.7 0.23 9.21 0.44 0.35 3.02 0.91 

7-13-79-15W6 2084.5 9.45 1.36 10.7 1.73 67.9 119 26.7 179 9.54 6.35 0.07 8.28 0.36 1.33 2.81 3.72 

7-13-79-15W6 2101.78 11.3 1.55 15.6 2.11 79.3 107 29.4 241 11.8 70.1 <DL 11.1 0.79 6.03 3.1 2.16 

9-29-79-14W6 1973 11.7 1.47 21 7.21 83.4 103 26.7 237 12.5 20.2 <DL 10.9 1.08 2.08 3.53 7.27 

9-29-79-14W6 1973 12.6 1.41 22 9.26 85.5 103 26.5 230 11.8 21 <DL 10.6 1 2.07 3.23 7.1 

9-29-79-14W6 1999 9.42 1.3 8.26 3.71 73.3 118 28.5 184 9.85 6.82 <DL 8.54 0.39 1.39 2.71 0.51 

GSP-2  22.3 1.92 2.14 4.54 269 245 24 400 22.2 2.15 <DL 18 0.61 0.16 7.99 0.36 

Certified value  22 - - - 245 240 28 550 27 2.1 - - - - - - 

% recovery  101.2 - - - 109.9 102 85.8 72.7 82.4 102.2 - - - - - - 

 

Well  
Location 

Depth 
(m) 

Rare Earth Elements (REE) Trace Elements 

Lu Hf Ta W Re Os Ir Pt Th U Au Tl Pb 

0.04 0.05 0.02 0.08 0.003 0.08 0.04 0.01 0.03 0.01 0.01 0.05 0.03 

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 

b-39-H-93-p-9 2042 0.34 5.59 1.81 311 0.007 <DL <DL 5.83 3.67 0.11 <DL 0.78 12.4 

d-39-F-93-p-9 2668.8 0.36 5.73 1.76 996 0.026 <DL <DL 4.26 4.89 0.1 <DL 1.88 12.5 

d-39-F-93-p-9 2685.4 0.43 9.26 1.41 449 0.031 <DL <DL 7.04 12.1 0.13 <DL 2.43 18.2 

2-19-79-14W6 2048 0.41 5.32 1.16 236 0.022 <DL <DL 5.61 6.24 0.09 <DL 2.97 15.6 

2-19-79-14W6 2069.5 0.41 7.01 1.14 251 0.054 <DL <DL 6.03 7.45 0.11 <DL 2.41 15.6 

2-19-79-14W6 2085 0.44 8.61 1.49 490 0.017 <DL <DL 6.26 5.16 0.13 <DL 1.18 17.1 

7-13-79-15W6 2055.22 0.32 5.15 0.6 230 0.169 <DL <DL 5.4 26.9 0.07 <DL 7.29 15.3 

7-13-79-15W6 2061.3 0.37 6.94 1.69 363 0.007 <DL <DL 6.87 5.91 0.12 <DL 1.56 8.11 

7-13-79-15W6 2084.5 0.36 6.08 1.12 223 0.006 <DL <DL 7.02 5.46 0.09 <DL 0.96 12.7 

7-13-79-15W6 2101.78 0.41 7.99 1.69 507 0.092 <DL <DL 6.69 13.1 0.12 <DL 8.2 24.1 

9-29-79-14W6 1973 0.44 7.99 1.62 423 0.056 <DL <DL 8.59 7.37 0.12 <DL 3.78 15.1 

9-29-79-14W6 1999 0.37 6.1 1.05 312 0.021 <DL <DL 4.32 6.51 0.07 <DL 1.03 15.3 

GSP-2  0.21 13.82 0.73 8.58 0.003 <DL <DL 107 2.62 0.18 <DL 1.16 42.5 

Certified value  0.23 14 - - - - - 105 2.4 - - 1.1 42 

% recovery  91.5 98.7 - - - - - 101.6 109.1 - - 105.1 101.2 
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Well  
Location 

Depth 
(m) 

Rare Earth Elements (REE) 

Te Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb 

0.02 0.02 0.03 0.03 0.03 0.004 0.03 0.04 0.03 0.03 0.03 0.04 0.02 0.04 0.006 0.05 

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm pp
 

ppm ppm ppm ppm ppm 

b-39-H-93-p-9 2042 <DL 3.88 219.63 25.48 42.06 5.96 23.48 4.96 1.14 4.94 0.66 4.11 0.85 2.41 0.35 2.27 

d-39-F-93-p-9 2668.8 <DL 2.29 354.78 23.45 33.77 5.41 20.78 4.4 1.06 4.46 0.62 4.03 0.83 2.45 0.37 2.34 

d-39-F-93-p-9 2685.4 <DL 3.7 345.98 30.04 42.3 6.6 25.25 5.29 1.17 5.24 0.74 4.81 1 2.96 0.44 2.81 

d-39-F-93-p-9 2685.4 <DL 3.65 341.81 31.67 52.23 6.93 26.43 5.47 1.21 5.46 0.73 4.79 0.99 2.96 0.44 2.83 

2-19-79-14W6 2048 <DL 4.16 380.24 31.14 44.5 6.51 24.91 5.03 1.27 5.16 0.7 4.79 0.99 2.85 0.42 2.8 

2-19-79-14W6 2069.5 <DL 2.59 330.84 27.21 44.9 6.95 27.1 5.78 1.27 5.63 0.8 4.98 0.99 2.95 0.42 2.72 

2-19-79-14W6 2085 <DL 2.64 334.07 29.93 43.85 6.62 24.77 5.08 1.12 5.02 0.7 4.75 1 2.96 0.43 2.9 

7-13-79-15W6 2055.22 <DL 3.36 175.9 22.74 34.06 4.7 17.56 3.54 0.76 3.53 0.5 3.28 0.73 2.2 0.3 2.08 

7-13-79-15W6 2061.3 <DL 1.99 265.11 24.52 46.27 5.88 22.09 4.48 1.03 4.52 0.64 4 0.83 2.45 0.36 2.33 

7-13-79-15W6 2084.5 <DL 2.72 535.05 28.08 54.32 7.02 26.63 5.38 1.35 5.71 0.76 4.8 0.96 2.75 0.4 2.5 

7-13-79-15W6 2101.78 <DL 2.8 339.91 32.6 46.42 6.78 25.18 5.12 1.18 5.26 0.75 4.71 0.99 2.9 0.42 2.77 

9-29-79-14W6 1973 <DL 3.25 382.29 30.72 55.56 6.88 25.01 4.86 1.13 4.93 0.71 4.71 0.98 2.96 0.42 2.91 

9-29-79-14W6 1999 <DL 2.32 532.15 28.13 36.39 6.45 25.39 5.21 1.28 5.44 0.74 4.87 1.01 2.84 0.4 2.63 

GSP-2  <DL 1.26 1190.09 186.53 407.31 54.36 198.84 26.06 2.63 15.62 1 5.67 0.96 2.64 0.28 1.75 

Certified value  - 1.2 1340 180 410 51 200 27 2.3 12 - 6.1 1 2.2 0.29 1.6 

% recovery  - 105.1 88.8 103.6 99.3 106.6 99.4 96.5 114.4 130.2 - 92.9 95.8 120.1 97.6 109.3 

 
Table 2. Quantitative x-ray diffraction (XRD) analyses showing whole-rock mineralogy of the 
Montney Formation, British Columbia, Western Canada. Data source: B.C. Oil and Gas Commis-
sion. 
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2233.70 Montney 21.2 4.5 6 32.9 20.7 1.8 0 0 5.4 7.6 

2236.40 Montney 15.2 5.2 2.1 52.9 9.8 1.1 0 2.8 8.1 2.9 

2238.00 Montney 19.8 5.3 5 50 15.8 1.1 0 0 1.2 1.8 

2240.80 Montney 19 4.8 3.4 25 20.3 2.5 0 0 17.6 7.3 

2242.50 Montney 16.6 2.9 3.5 43.5 5.9 1.1 0 18.6 6.9 1 

2245.60 Montney 23 4.5 5.2 36.1 8.2 2 0 6.5 8.7 5.8 

2248.10 Montney 30.9 9.1 7.2 14.4 8.9 2.4 0 3.9 15.9 7.3 

2251.50 Montney 24.4 5.5 5.4 31.9 7.7 2.2 0 2 11.3 9.6 
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2252.60 Montney 24 6.9 5.1 28.8 8.7 1.8 0.3 2.2 13.2 8.9 

2259.50 Montney 33.6 13 9 10.7 14.7 1.2 0.6 2.5 11.7 3.1 

2260.60 Montney 20.7 3.8 9.1 39.5 18.7 0.9 0 0 3.9 3.3 

2262.00 Montney 22.9 6.7 9.5 43 10 1.2 0.6 0 1.5 4.7 

2262.70 Montney 49 7.9 12.1 9.7 9.5 1.5 0.6 0 0 9.7 

2265.20 Montney 20.6 4.7 7.3 53.1 6.2 1.2 0.3 0 2.4 4.4 

2273.00 Montney 41.3 7.9 9.7 8.8 15.9 2 0.7 0.9 3.6 9.4 

2279.20 Montney 34.6 9 10.9 9.9 17.4 1.6 0.5 0 6.3 9.8 

2281.20 Montney 37.5 7.4 10.1 11.8 12.9 1.5 0.5 0 8.1 10.2 

2282.40 Montney 39.9 7.8 9.9 10.4 9.8 1.8 0.4 1 9.1 10 

2288.40 Montney 38.7 8.5 10.7 10.4 13.5 1.5 0.4 0 5.8 10.4 

2294.60 Montney 44.9 7.9 13.6 9 12.6 1.4 0.4 0 0.1 10.2 

2299.40 Montney 31.9 6.3 11.4 25.4 10.5 0.9 1 0 4.6 7.9 

2317.80 Montney 33.3 7.1 9.9 2.9 33.1 1.1 0.7 0 2.6 9.4 

2318.50 Montney 38.3 8.4 12.5 3 20.3 1.3 0.4 0 3.5 12.1 

2323.90 Montney 37.8 7.8 12.5 3.4 21.4 1.2 0.4 0 4.5 11 

2330.30 Montney 40.8 7.8 13.4 4.8 15.7 2.2 0.8 0 0.1 14.5 

2332.80 Montney 31 6.5 8.6 4.7 31.7 1.5 0 0 6.8 9.2 

2341.90 Montney 43.2 6.8 12.3 6.2 14.2 1.1 0.5 0 4.8 10.9 

2352.39 Montney 22.5 3.5 8 13.7 41.5 1 0 0 3.4 6.3 

2354.30 Montney 41 7.8 14.4 4.8 10.4 1.9 0.4 0 2.1 17.1 

2355.94 Montney 42.4 7 10.5 5.3 13.4 1.4 0.4 0 5.3 14.3 

2360.50 Montney 39.5 8.2 10.1 5.1 15.1 1.6 0.5 0 6.3 13.6 

2366.00 Montney 43.4 6.7 13 6.3 9.8 1.6 0.4 0 5.5 13.2 

2370.00 Montney 41 8.4 12.4 5.6 11.6 2.9 0.4 0 9.2 8.5 

2370.60 Montney 38.5 9.9 11.2 4.9 11.8 3.2 0.4 0 11.4 8.7 

2373.00 Montney 42.4 8.2 12.1 4.2 15.3 1.4 0.4 0 4.8 11.2 

2377.00 Montney 22 3.5 6.8 27.6 31.6 0.6 0.3 0 3.1 4.4 

2380.00 Montney 38.5 8.2 12.7 6.2 11.1 3 0.5 0 10.4 9.4 

2383.15 Montney 34.2 6.3 9.2 4.3 27.6 2 0.3 0.3 6.9 8.8 

2387.00 Montney 8.3 1.5 3.3 80.8 2.4 1.2 0 0 1 1.5 

2390.20 Montney 45.8 6.7 14.6 4.3 11.4 2.1 0.6 0 0 14.5 
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2392.00 Montney 10.9 1.2 3.7 68.4 7.7 0.5 0.4 0 1.8 5.4 

2394.30 Montney 8.1 1.1 3.2 78.2 6.8 0.6 0 0 0.5 1.6 

2396.10 Montney 39.5 3.7 10.7 5.9 17.7 2.3 0.5 0 0 19.8 

2400.00 Montney 40.4 4.5 13.8 4.6 12 1.9 0.6 0 3.7 18.4 

2404.45 Montney 16.4 2.4 8.7 51 6.1 1 0.4 0 4 9.9 

2415.70 Montney 31 3.3 7.7 5.2 23 2 0.8 0 3.1 23.8 

2419.60 Montney 43 6.7 15.1 4.7 9.2 1.1 0.5 0 2.7 17 

2421.80 Montney 41.4 5.5 12.3 3.6 10.3 1.4 1.1 0 4.1 20.4 

2427.90 Montney 45.7 7.3 13.7 5.9 5.9 1.4 0.5 0 3.7 15.9 

2428.70 Montney 42.3 3.6 13 8.6 6.2 2 0.6 0 4.6 19.1 

2433.30 Montney 47.5 5.7 12.2 4.3 4 1.8 0.7 0 4.5 19.3 

2435.40 Montney 43.4 5.3 11.8 4.9 6.2 1.7 0.7 0 4.2 21.8 

2442.44 Montney 41.7 3.8 9.4 3.6 13.8 1.8 1.2 0 4 20.7 

2447.76 Montney 46.2 5.5 10.8 2.2 4.6 2.2 0.6 0 5 22.9 

2449.70 Montney 46.3 4 10.9 2.6 6 2.2 0.6 0 4.2 23 

2453.90 Montney 42.7 4.6 10.7 3.5 6.4 2.1 0.6 0 4.5 24.8 

2470.80 Montney 43.5 4.1 13 3.3 7 1.7 1.2 0 3.8 22.6 

2481.70 Montney 43.5 4 9.3 3.5 7 1.8 1.1 0 5.1 24.8 

2482.70 Montney 42.5 3.6 9.4 3.5 11 1.5 1.3 0 3.9 23.3 

2486.00 Montney 41.6 3.8 10.5 3.6 7.2 1.7 1.3 0 3.7 26.6 

2490.20 Montney 40 4.4 11.1 2.9 8 1.6 1.4 0 4.9 25.7 

2492.70 Montney 38.7 4.1 9.7 3.1 16.2 1.7 1.1 0 3.2 22.1 

2495.15 Montney 40.5 4.2 8.6 3.4 6.5 2.5 1.2 0 4.2 29 

2501.65 Montney 44 2.8 8.7 3.7 6.5 1.9 0.8 0 5 26.6 

2504.95 Montney 49.8 4.6 10 3.4 5.8 1.5 0.7 0.3 5.2 19.2 

2506.15 Montney 25.1 1.2 4.1 2 54.1 0.6 0.6 0 2 10.3 

2510.65 Montney 51.7 3.3 7.7 3.3 5.7 2 0.8 0 5.5 20 

2512.55 Montney 47.8 4.3 8.4 3.3 5.4 2.2 0.7 0 5.7 22.1 

2517.00 Montney 48.9 3.4 5.1 5.6 9 1.9 0.5 0 6.3 19.2 

2522.70 Montney 49.1 3.1 4.4 3.9 6.6 2.5 0.8 0 6.7 22.9 

2528.10 Montney 50 3.6 5.3 1 4.5 2.9 0.7 0 5.7 26.2 

MINIMUM 8.1 1.1 2.1 1 2.4 0.5 0 0 0 1 

MAXIMUM 51.7 13 15.1 80.8 54.1 3.2 1.4 18.6 17.6 29 

AVERAGE 35.7 5.5 9.4 15 12.9 1.7 0.5 0.6 5.1 13.6 
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Figure 1. Location map of study area showing Montney Formation isopach contour map in nor-
theastern British Columbia, Western Canada Sedimentary Basin (WCSB). 

3. METHOD OF STUDY 
The laboratory experiment and procedure for isotopic analyses in this study was performed in the 

isotope laboratory of Prof. Karlis Muehlenbachs in the Department of Earth and Atmospheric Sciences, 
University of Alberta (Figure 3). The extracted isotopic composition was analyzed using the Finnin-
gan-MAT 252 Mass Spectrometer at the University of Alberta. 

Stable isotope analysis for calcite and dolomite (13C/12C and 18O/16O) involves arrays of mechanics, 
namely; 

1) Samples were grinded into uniform grains (powder form) using the pulverizing shatter 
box-machine for homogeneity of samples in order to provide a uniform surface area for acid reaction with 
samples following the method of [32], and samples were allowed to dry in air;  

2) Samples were measured ~40 - 50 mg per sample and 3 ml of anhydrous phosphoric acid (H3PO4) 
were measured into each glass reaction vessel and evacuated overnight on a vacuum line to remove at-
mospheric components (gas) from the samples;  

3) The samples were reacted with anhydrous phosphoric acid (H3PO4) at 25˚C for one hour. The 
reaction is expressed chemically as:  

( )3 3 4 2 3 4 23CaCO 2H PO 3H O Ca PO+ → +  

4) Following the method of [33], CO2 was evolved after one-hour time from the reaction of acid with  
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Figure 2. Type log of the Triassic Montney Formation [12], northeastern British Columbia, Canada. 
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Figure 3. (a) Exemplifies Montney Formation core where samples were obtained for isotopes (13C 
and 18O) analyses; (b) Shows research scientist at the University of Alberta’s Isotope Geochemistry 
Laboratory; loaded samples into glass reaction vessel to evacuate atmospheric components (gas) from 
the samples on a vacuum line; (c) Shows a magnified version of samples on a vacuum line from (b). 
 
calcite in the sample;  

5) This CO2 was purified by distillation through a dry ice trap, condensed in a sample collection tube 
immersed in liquid nitrogen, and analyzed for calcite δ13C and δ18O values; 

6) The CO2 gas formed between the first and the fourth hour from the time of reaction was pumped 
out into a collection vessel as CO2 for calcite to avoid contamination;  

7) The vessel was then placed in a hot water bath at 25˚C and the reaction was left in that condition 
for 72 hours; 

8) The CO2 that formed during the remainder reaction was extracted in a similar process and ana-
lyzed for δ13C and δ18O of the dolomite component.  

All analyses follow the standard method of [34]. The δ value is conventionally defined by [35], using 
the following expression: 

sample

standard

1 1000
R
R

δ
 

= − × 
 

                               (1) 

where R = 13C/12C or 18O/16O. The standard for carbonate is PDB [36], and that for water is SMOW [37]. 
The results derived from the analysis are shown in Table 3. 
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Table 3. Carbon and oxygen isotope data for bulk calcite cement and bulk dolomite analyzed from 
the Montney Formation, northeastern British Columbia, Canada. 

Formation Sample Location Depth (m) 
Bulk Calcite and Dolomite 

δ13C 
‰ PDB 

δ18O 
‰ PDB 

δ18O 
‰ SMOW 

Montney 9-29-79-14W6 1987.0 −5.07 −5.86 24.87 

Montney 9-29-79-14W6 1989.0 −4.19 −16.15 24.66 

Montney 9-29-79-14W6 2059.0 −5.08 −13.50 27.42 

Montney 9-29-79-14W6 1981.0 −5.07 −5.86 24.87 

Montney 9-29-79-14W6 1989.4 −3.70 −5.82 24.91 

Montney 9-29-79-14W6 1983.0 −2.71 −5.51 25.33 

Montney 9-29-79-14W6 1960.0 −2.87 −4.70 26.06 

Montney 9-29-79-14W6 1987.0 −4.22 −7.19 23.58 

Montney 9-29-79-14W6 1963.0 −4.22 −7.19 23.58 

Montney 9-29-79-14W6 1987.0 −3.17 −5.39 25.35 

Montney 11-04-79-14W6 2068.0 −3.83 −5.34 25.41 

Montney 11-04-79-14W6 2074.0 −6.31 −3.66 27.14 

Montney 11-04-79-14W6 1989.0 −4.10 −5.94 24.79 

Montney 11-04-79-14W6 2068.0 −3.83 −5.34 25.41 

Montney 11-04-79-14W6 2088.9 −8.46 −6.79 23.99 

Montney 11-04-79-14W6 2059.0 −4.78 −3.54 27.67 

Montney 11-04-79-14W6 1989.4 −2.78 −14.10 26.79 

Montney 11-04-79-14W6 2091.0 −2.18 −3.66 27.14 

Montney D-39-F/93-P−9 2671.7 −2.18 −3.66 27.14 

Montney D-39-F/93-P-9 2668.0 −4.37 −8.17 22.48 

Montney 7-13-79-15-W6 2055.3 −6.10 −5.84 24.9 

4. RESULTS FROM THIS STUDY 
4.1. Stable Isotope Geochemistry-Description of Data 

Carbon and oxygen isotopes (δ13CPDB and δ18OPDB) were analyzed in order to determine the bulk cal-
cite and bulk dolomite (δ13C and δ18O) isotopic signature of the Montney Formation (Table 3). The data 
in Table 3 and Figure 4 show in general, depletion in isotopic composition (δ13CPDB and δ18OPDB) of both 
calcite and dolomite in the host lithology (very fine-grained silty-sandstone). The bulk calcite isotopic 
compositions of the Montney sediments range from (δ13CPDB −2.8‰ to −6.10‰, and δ18OPDB −3.66‰ to 
−16.15‰), and bulk dolomite isotopic composition values range from (δ13CPDB –2.71‰ to –8.46‰, and 
δ18OPDB −3.66‰ to −7.19‰) (Figure 4). High values (−13.50‰ to −16.15‰) occur in intervals that probably 
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(a)                                          (b) 

Figure 4. Isotopic data plot for the Montney Formation. (a) Bar graph showing calculated δ13C, δ18O, 
and SMOW; (b) Displays δ13C, δ18O (PDB) fields. 
 
have higher organic matter content or the presence of hydrocarbon. [36, 37] show that high negative δ13

PDB 
depleted values greater than (−10) are associated with methane gas in the Formation. Within the study 
area, the high methane (gas) is probably the cause of high negative isotopic values (−13.50‰ to −16.15‰) 
seen in some of the analyzed samples from Montney Formation. According to a recent report by [38], in 
British Columbia, the Montney Formation host substantial hydrocarbon reserve with estimated volume of 
natural gas (271TCF), Liquified Natural Gas (LNG = 12,647 million barrels) and oil reserve (29 million 
barrels). 

4.2. The Calculation of the Temperature of Fractionation of Calcite Was Rendered  
Using the Equation below [35] 

3 6 2
Calcite-water10 ln 2.78 10 2.89Tα −= × −                          (2) 

There is a relationship: 
3 18 18

Calcite-water calcite water10 ln O Oα δ δ≈ −                           (3) 

Therefore: 
18 18 6 2

calcite waterO O 2.78 10 2.89Tδ δ −− = × −                         (4) 

Using the δ18OPDB range of bulk calcite (−2 to −7.19) assuming the δ18OSMOW value of pore water is 
between −2‰ and −7‰ (based on laboratory experiment from this study, which shows depleted δ18O 
values; see Table 3). 

The resultant expression by substituting into Equation (4) gives the following: 

( ) ( ) 18 6 2
calcite24.91 SMOW 2 2.78 10 2.89Tδ −− − = × −                    (5) 

On solving Equation (5), gives: 
305.43 KT =  

The temperature in degrees Celsius (˚C) is 32.42˚C. Therefore, paleotemperature of precipitation of 
calcite during the Lower Triassic Period in the study area is ~32˚C. 

4.3. For the Calculation of the Temperature of Fractionation of Dolomite, the Equation below  
Is Used [39] 

3 6 2
Calcite-water10 ln 3.2 10 3.3Tα −= × −                              (6) 

Therefore: 
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( )18 18 6 2
waterdolomiteO SMOW O 3.2 10 3.3Tδ δ −− = × −                      (7) 

Using the δ18O PDB range of bulk dolomite (−5 to −6.79) assuming the δ18O (SMOW) value of pore water 
is between −5‰ and −7‰ (based on laboratory experiment which show a depleted δ18O values). 

By substituting into Equation (7), Equation (8) below is obtained: 

( ) ( ) 18 6 2
water23.99 SMOW 6.79 O 3.2 10 3.3Tδ −− − = × −                    (8) 

The value of temperature T , which satisfies Equation (8) is: 306.4 K (33.3˚C). Therefore, 3 C33.T =   is 
the paleotemperature of precipitation of dolomite during the Lower Triassic Period in the present study. 
However, one of the samples analyzed in this study show paleotemperature of 13˚C. 

4.4. Interpretation of Isotopic Signature 

The values of the result from δ13CPDB bulk calcite (Table 3) show depletion in the isotopic composi-
tion (δ13CPDB −2.1‰ to −8.46‰). The negative δ13CPDB values are indicative of pore-water derived from 
seawater and dissolution of metastable carbonate in conjunction with organic matter decomposition by 
bacteria in sulfate reducing environment. The total organic carbon (TOC) of the Montney Formation is a 
result of high nutrient rich sediment source, rapid sedimentation, and preservation of organic matter [40] 
in oxygen-depleted, anoxic depositional environment [41-44]. This phenomenon explains the biasing of 
carbon isotope towards a very low (negative δ13CPDB) discerned from the Montney Formation. The anoxic 
condition generate high alkalinity, which increases the total dissolved carbon that causes calcite to preci-
pitate from pore-water, thereby biased towards light δ13CPDB values during early diagenesis [35]. 

The depleted δ18OPDB of bulk calcite values range from (δ18OPDB −3.54‰ to −16.15‰) and the 
δ18OSMOW range between 22.48‰ and 27.42‰ (Table 3, which is within the fresh water range) reported by 
[44] as indication of mixing of marine pore-water and meteoric groundwater during authigenic calcite 
precipitation. Applying the δ18OPDB range of the bulk calcite (δ18OPDB −3.54‰ to −16.15‰), the calcite 
fractionation equation 3 6 2

calcite-water10 ln 2.78 10 2.89Tα −= × −  [35, 44] and assuming that the δ18OSMOW 
values of pore-water is between −2 to −7.19, the paleotempertaure under which the calcite have precipi-
tated is interpreted to have occurred between approximately 13˚C to ±33˚C (from analyzed samples; see 
calculation above). This interpretation is consistent with a warm paleotemperature reported for the Trias-
sic period of western Canada [23, 45]. 

The bulk dolomite isotopic values (δ13CPDB −2.71‰ to −8.46‰) provide information on the origin 
and the precipitation of the dolomite. The very low (negative) values of δ13CPDB from the Montney sedi-
ment indicate depleted δ13CPDB (−2.71 to −8.46). The interpretation for the negative values (light 
bulk-dolomite δ13CPDB) indicates that biogenic CO2 significantly contributed to the total dissolved inor-
ganic carbon [46]. The evidence of biogenic CO2 contribution from isotopic signature is supported by the 
total organic carbon (TOC) content based on source-rock kerogen (Table 2) from the Montney Forma-
tion. The organic carbon content coupled with the depleted bulk dolomite (δ13CPDB −3.66‰ to −16.15‰) 
of the Montney Formation jointly indicate an anoxic, extremely poor oxidation environment where anae-
robic sulfate reduction characteristic of early stage zone of methanogenesis occurs. The δ13CPDB has been 
used as a proxy of upwelling intensity because upwelling waters are 13C depleted [11]. [47] assert that the 
upwelling isotopic effect might be compensated by the effect of planktonic blooms induced by the nutrient 
enrichment of upwelled water. The present of apatite mineral (Table 2) in the Montney Formation indi-
cates upwelling of nutrient rich waters, which implies the presence of dissolved carbon in anaerobic condi-
tion. 

The biasing towards light (warm) bulk dolomite δ18OPDB results show depleted in isotopic composi-
tion (δ18OPDB −2.71‰ to −8.46‰) indicates the present of meteoric water in the pore-water during preci-
pitation of dolomite (Muehlembachs, 2011, personal communication). Further interpretation for the light, 
depleted isotopic values (δ18OPDB −2.71‰ to −8.46‰) suggest the formation within, or modification by 
meteoric water, or under elevated temperatures [38]. Applying the bulk calcite dolomite values of δ18OPDB 
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−5.51‰ to −6.97‰, the dolomite-water fractionation equation 103lnαdolomite-water = 3.2 × 106 T−2 − 3.3 [38], 
assuming the pore-water δ18OSMOW of −5.51‰ to −6.97‰, the dolomite was precipitated in temperatures 
~33˚C. According to [48], oxygen isotopic analysis of marine carbonates gives at best, the estimate of 
temperatures at which the carbonate was deposited. The paleotemperature suggests that the Montney 
Formation has only encounter eodiagenetic realm of diagenetic stage. 

On a geological time frame, the oxygen isotope composition of seawater is controlled by exchange of 
oxygen with silicate rocks [11, 49-51]. Unaltered silicate rocks are enriched in δ18O relative to seawater by 
~5.7‰ [11]. The isotopic composition of seawater is controlled by kinetic steady-states, reflecting major 
influxes of continental input, principally, the dissolved load of rivers; oceanic crust/seawater exchange at 
mid-oceanic ridges [52] and removal of chemical species via sedimentation [53]. 

High temperature interactions between seawater and rocks that occur during hydrothermal circula-
tion are at axial mid-ocean ridges drive the isotopic composition of seawater towards increasing δ18O that 
of the rock [50]. Low temperature interactions such as those that occur in off axis vent systems and during 
continental weathering, drive seawater isotopic composition towards low δ18O [50], perhaps, such pheno-
menon may have implications for the low δ18O values found in the Montney Formation. 

5. DISCUSSIONS 
5.1. Carbon and Oxygen Isotope Geochemistry 

Important observation from isotopic studies of the Montney Formation sediments (very fine-grained, 
dolomitic silty-shale) shows that paleotemperatures of dolomitization is ~±33˚C. Such low temperature is 
characteristic of shallow burial, thus, suggests that the Montney Formation has only undergone eogenetic 
(early) phase of diagenesis and diagenetic process. The drive for warm temperature during the Triassic 
period have been reported to be associated with increase in CO2 content in the atmosphere, which led to a 
global temperature increase that heralded most of the Permian-Triassic period [54].  

The extraction of CO2 during isotopic lab analyses for bulk calcite and bulk dolomite reveal that al-
though the sediments are believed to be dolomitized, some of the analyzed samples show no evidence of 
calcite and in some cases, dolomite where not found (and therefore, not extracted). This observation was 
confirmed by utilizing X-ray diffraction (XRD) analyses, which explicitly confirms that dolomite and cal-
cite where both found in most samples, but, in other samples, calcite was not present with dolomite and 
verse versa. Interpretation for this important discovery in the Montney Formation samples can be surmise 
in relation to the mode of substitution of Mg and Ca in carbonate rocks.  

Thermodynamically, dolomite is stable in most natural solutions at earth surface conditions, and a 
thermodynamic drive exists for the conversion of calcite to dolomite [55]. Characteristically, most natural 
dolomite exhibits some degree of mixing of calcium and magnesium between cation layers [55, 56]. The 
phenomenon of the present/absent of calcite/dolomite in the Montney Formation proves that dolomites 
commonly depart from stoichiometric composition of an excess of calcium, which is accommodated in the 
magnesium layers [56, 57, 59]. Other explanations for the absent of calcite in some of the Montney Forma-
tion samples may be due to the fact that several cations, principally, Fe, Sr, Na, and Mn, substitute for cal-
cite in many dolomites [58]. Significant amount of Fe, Sr, Na, and Mn in this study (Figure 5) support 
such possibility of substitution for calcite [58]. 

Overall, stable isotope geochemistry and results of this study leads to two important conclusions: 1) 
isotopic composition (δ13C and δ18O) of the Montney Formation in the study area serves as a paleother-
mometer, and was used to constrain the temperature at which the carbonate (dolomite and calcite) asso-
ciated with the Montney Formation was formed at seawater temperature ±33˚C. Mineral precipitation at 
low temperatures are enriched in 18O while minerals formed at high temperatures show less 18O enrich-
ment [11]; and 2) dolomitized Montney Formation has mainly undergone eogenetic stage of diagenesis. 
The δ18O SMOWcalcite values of (−3.66‰ to −16.15‰), and that of δ18Odolomite range from −2.71‰ to 
−8.46‰ indicate some oxidation of organic matter during diagenesis. This interpretation conforms with  
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(a)                            (b)                          (c) 

     
(d)                          (e)                            (f) 

Figure 5. Shows the variation pattern of concentration of trace elements. (a) Illustrates the composi-
tion of dolomite, in which there is higher concentration of magnesium (Mg) relative to the calcite 
(Ca) component. The graph pattern shows good correlation between Mg and Ca; (b) Shows major 
elements, potassium (K) and aluminum (Al). The concentration of K is very high because of the clay 
mineral and the organic richness of the Montney Formation sediments. The Al concentration is re-
lated to the clay mineralogy and partly has affinity to organic matter. The graph pattern of K and Al 
correlates very well; (c) Shows alkaline earth metals—Strontium (Sr) and Rubidium (Rb) concentra-
tion; (d) Illustrates the concentration of Iron (Fe) and Manganese (Mn). Fe and Mn are both related 
to diagenesis. The concentration of Fe is very high compared to the concentration of Mn. This in-
dicates that Fe has more dominating diagenetic influence in the Montney Formation. Evidence from 
thin-section petrography (Figure 6(d)) shows replacement of organic matter by pyrite; (e) Shows the 
relationship between radioactive elements—Uranium (U) and Thorium (Th). These elements are 
particularly related to the clay mineralogy and organic components of the Montney Formation se-
diments; (f) Shows the relationship between calcite (Ca) and Potassium (K). Evidently, Ca has 
enormously high concentration due to the stoichiometric co-existence with dolomite. Adapted from 
[12]. 
 
isotopic signature of depleted δ18OSMOW of [35] with respect to calcite-water fractionation equation, and 
dolomite-water fractionation of [38]. 

5.2. Dolomitization of the Montney Formation 

Dolomite is a rhombohedra carbonate with the ideal formula CaMg(CO3)2, in which calcium and 
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magnesium occupy preferred sites [38]. [59, 60] used hydrothermal experiments extrapolated to low tem-
peratures to demonstrate that calcite and dolomite are essentially ideal in composition at 25˚C. Thus, any 
double carbonate crystal of Ca and Mg at 25˚C is not essentially pure dolomite, and is either metastable or 
unstable with respect to calcite [38]. This relationship is evident in XRD analysis (Table 2), which sup-
ports the co-existence of dolomite and calcite. 

Isotopic signature obtained from bulk calcite and dolomite results from this study indicates depleted 
(δ13CPDB −2.71‰ to −8.46‰) and (δ18OPDB −2.71‰ to −8.46‰), which is interpreted in relation to the 
oxidation of organic matter during diagenesis. Diagenetic modification of the very fine-grained, sil-
ty-sandstone of the Montney Formation may have occurred in stages of progressive oxidation and reduc-
tion reactions involving chemical element such as Fe, which manifest in mineral form as pyrite, particu-
larly, during early burial diagenesis [61], or late stage diagenesis [62]. Mineralogical changes in the form of 
cementation and mineral replacement involving calcite and dolomite are typical of diagenesis [61], and are 
evident in the Montney Formation based on petrographic study and SEM. 

Oxidation and reduction reaction mechanisms explains the modification of sediments, shortly after 
burial, prior to lithification or compaction during which fluids are ejected into the depositional interface 
[63, 64]. This phenomenon drives the oxidation and reduction processes involving Fe, sulfur, and carbon 
[61]. The significant amounts of organic matter (TOC) in the Montney Formation essentially make these 
elements principal reactants. The carbon compound of the organic matter content is the most rapidly oxi-
dized and consequently contributing energy to drive the Fe into the ferrous state, thereby causing fixation 
of sulfur as pyrite [61]. Because of the present of organic matter in the Montney sediments, pyrite occurs 
as scattered “clots” in some of the samples examined. This occurrence is evident in thin-section petrogra-
phy (Figure 6). Pyrite is related to post-depositional emplacement [65] caused by the dissolution of or-
ganic matter due to diagenesis. 

High concentration of chemical elements in the Montney Formation, particularly, Ca and Mg indi-
cate dolomitization. It is interpreted herein, that calcite may have been precipitated into the interstitial 
pore space of the intergranular matrix of the very fine-grained silty-sandstone of the Montney Formation 
as cement by a complex mechanism resulting in the interlocking of grains, welded together by calcite ce-
ment [66]. Evidence of grain interlocking is revealed by SEM image showing authigenic quartz overgrowth 
(Figure 6). 

It is established through mineralogical composition in this study (Table 2) that the Montney Forma-
tion is quartz rich and contains clay minerals as well, including unstable mineral such as feldspar (Table 
2). This sort of compositional mixture of quart, clay and feldspar minerals may have resulted in the de-
composition of feldspar along the clay-quartz boundary due to processes involving hydrolysis in the 
course of diagenesis [61].  

The depositional environment interpreted for the Montney Formation is proximal to distal offshore 
marine setting [14, 22]. In the marine environment, several weathering and transformation are prevalent. 
As a result, there exist an exchange of cations, in which the positions of clay minerals are changed, thereby 
resulting in the substitution of Mg for Ca [39, 40, 60]. In the marine environment chlorite and illite miner-
als are formed by fixation of Mg and K in montmorillonite or degraded illite delivered into distal settings 
due to continental denudation resulting from fluvial processes [40]. The present of illite and palygorskite 
clay mineral (Figure 6) support the evidence of diagenesis in the Montney Formation formed from ionic 
solutions in extreme conditions of temperature and pressure [40]. Dolomite in the Montney Formation 
appears as detrital in thin-section petrography (Figure 7). Such allogenic (non in-situ) dolomite and cal-
cite may have only played a role (minimal) in the Montney Formation diagenesis, compared to sediments 
that are mainly composed of biogenic carbonate formed completely from aragonite and calcite [40]. Thus, 
authigenic calcite may have played dominant role in the vast diagenetic phenomenon in the Montney 
Formation. 

6. CONCLUSIONS 
Results obtained from isotopes (13C and 18O) from this study indicate depleted δ13CPDB (−2.71‰ to  
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Figure 6. Microphotographs showing SEM and thin-section petrography of the Montney Formation 
illustrating the mineralogical composition. (a) Dolomite and quartz matrix. The quartz exhibits 
conchoidal fracture; (b) Shows magnification of plate C. Authigenic quartz overgrowth is illustrated 
in plate-B as evidence of grain dissolution due to diagenesis, and subsequent mineral precipitation 
(calcite) in the form of calcite cement that welded the grains together; (c) Shows quartz and illite 
with the authigenic quartz overgrowth; (d) Illustrates pyritized, dolomitized, organic carbon rich 
siltstone. Pyrite replaces organic matter in plate-D during decomposition of organic matter due to 
diagenensis; (e) Illustration of a very well formed palygorskite clay; a form of clay mineral growth, 
formed from the transformation of dickite to illite, and further transformation of illite to palygors-
kite due to severe temperature and pressure in a diagenetic regime. Adapted from [12]. 

 
−8.46‰) and it is related to oxidation of organic matter during diagenesis. Diagenetic modification of the 
Montney Formation (very fine-grained, silty-sandstone) may have occurred in stages of progressive oxida-
tion and reduction reactions involving chemical element such as Fe, which manifest in mineral form as 
pyrite, particularly, during early burial diagenesis, or late stage diagenesis [67]. Mineralogical changes in 
the form of cementation and mineral replacement involving calcite and dolomite are typical of diagenesis. 
Based on isotopic signature and paleotemperature calculations, the calcite and dolomite of the Montney 
Formation may have formed at temperatures ranging from ~13˚C to ±33˚C, which is consistent with a 
warm, arid paleoclimate reported for the Triassic time [23, 30]. 
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Figure 7. Photomicrographs showing dolomitic silty-sandstone. (a) Shows detrital 
dolomite resembles ripple; (b) shows detrital dolomite admixed siltstone [12]; (c) 
shows mica, quartz, dolomite, and detrital grains; red arrow = Quartz; yellow arrow = 
Dolomite; white arrow = Mica. 
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