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Abstract 
In this paper, we are interested in the local existence for the Boussinesq equa-
tions with the slip boundary conditions. Energy method and Gerlakin ap-
proach are employed in this paper to get the main result. 
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1. Introduction 

The Boussinesq equations are as follows: 

( )
( ) ( ) ( )

,
, , 0,

0,

t

t

u u u p u f
u x t t

divu

γ θ
θ θ ε θ
+ ⋅∇ +∇ = ∆ +

 + ⋅∇ = ∆ ∈Ω×
 =

           (1.1) 

where Ω  is a bounded smooth domain of 3R , ( )1 2 3, ,u u u u=  and θ  
represent density and temperature, p  is the pressure function, f  is the ex-
ternal force, 0, 0γ ε≥ ≥  represent viscous coefficient and thermal conductivity 
coefficient. 

In this paper, the initial data is given by  

( ) ( )0 00
, ,

t
u uθ θ

=
=                        (1.2) 

and the boundary condition is  

0u n
∂Ω

⋅ = , 
n
θ

αθ
∂Ω

∂
=

∂
, ( ) ( )Su n Bu

τ τ∂Ω
⋅ =              (1.3) 

Boussinesq equations are the classical model of fluid mechanics. There are a 
lot of important applications in marine ecology and weather forecasting. There 
are a lot of related conclusions about 2-D Boussinesq equations. Ye Zhuan [1] 
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studied the Cauchy problem of the two-dimensional (2D) incompressible Bous-
sinesq equations with fractional dissipation by making use of the nonlinear low-
er bounds for the fractional Laplacian established in Constantin and Vicol. 
Xiaojing Xu [2] studied the Cauchy problem of the two-dimensional (2D) in-
compressible Boussinesq equations with fractional Laplacian dissipation by the 
nonlinear lower bounds for the fractional Laplacian. In this paper, we want to 
study the 3-D Boussinesq equations. On the one hand, the regularity and 
well-posedness of Boussinesq equations is a popular problem that people study. 
Jishan fan [3] proved a regularity criterion for the 3D Boussinesq system with 
partial viscosity. T. Hmidi [4] studied the global well-posedness of the Eu-
ler-Boussinesq system with the term dissipation |D| α on the temperature equa-
tion. On the other hand, the existence of Boussinesq equations is always an im-
portant problem people are interested in. Ying Liu [5] applied the Fourier de-
composition method to study the attenuation in 2L  of the weak existence of the 
Boussinesq equations. Wei Li [6] used the homogeneous balance method and 
travelling-wave transformation to acquire some exact solutions of the Boussi-
nesq equations. Xianjin Li [7] studied the global stability in 2L  of the Boussi-
nesq equations in three dimensional regional and unbounded regional. 

However, for the initial questions and the boundary questions, the stations are 
more complicated and challenging. In fact, in fluid mechanics, two boundary 
conditions are considered mainly. One is the Diriclet boundary condition: 

0,u x= ∈∂Ω , and another is the famous boundary condition proposed by Navier: 

( )0, ,u n Su n u xττ
α⋅ = ⋅ = − ∈∂Ω                 (1.4) 

where n  is the unit outward normal on ∂Ω , uτ  is the tangential part of u , 

Su  denotes the deformation tensor: ( )1
2

tSu u u= ∇ +∇ . 

Now, what we need to do is the study for the local existence of the problem 
(1.1) - (1.3). Usually, the followed existences are considered. First, the smooth of 
the existence is so small [8] [9] [10] that the initial data and the existence are 
close to a constant in ( )2H Ω , however this existence does not have singularity. 
Second, the existence is the “large energy” proposed by Lions [11]. This exis-
tence has regularity but the analysis of the characteristic are more difficult and 
the uniqueness and the continuous dependence can’t be solved [12] [13]. Last, 
according to documents [14] [15] [16], the initial data in ( )2L Ω  is small and 
the initial density is positive and bounded. For example, when the initial data is 
piecewise smooth, the solutions shown in [17] satisfy the Rankine-Hugoniot 
conditions in a strict point wise sense. On the other hand, these solutions have 
so enough structure and regularity that the uniqueness and continuous depen-
dence theory can be proved in [18]. The well-posedness theory is nearly com-
plete in the whole space, but for the Dirichlet condition: on ∂Ω , the station 

0u =  may have problems. However, if considering the Navier condition de-
scribed above, the global weak small-energy solutions can be proved to exist in a 
half space for initial data with small energy and bounded density. David Hoff [19] 
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studied the equations 

( )
( ) ( ) ( )

t 0,

,
jj

j j j j
xxt

div u

u div u u P u divu f

ρ ρ

ρ ρ ρ µ λ ρ

 + =
 + + = ∆ + +

       (1.5) 

where ( )div ⋅  denotes divergence. 
Satisfying the bounded conditions: 

0,
, 0

,
u

x t
u Bu

υ
µ υ
⋅ =

∈Ω > ∏∇ =∏
                 (1.6) 

where ( )xυ  is the unit outward normal on ∂Ω , ( )x∏  is the projection onto 
the tangent plant to ∂Ω  at x, then the existence of the solutions can be given. T. 
Hmidi [20] studied a fractional diffusion Boussinesq model which couples a 
Navier-Stokes type equation with fractional diffusion for the velocity and a 
transport equation for the temperature by establishing global well-posedness re-
sults with rough initial data. 

In this paper, we consider the Boussinesq equations. Because the temperature 
and the fluid are coupled together, the study becomes more difficult. The key we 
solve the problem is how to deal with the temperature. 

First, we define a function  

( )( ) ( ) ( ){ }31 : 0,W w H w x n x x= ∈ Ω ⋅ = ∈∂Ω             (1.7) 

Definition 1.1. For a fixed time T , ( ),u θ  is called the solutions for (1.1) - (1.3) 
on [ ]0,T  if the following holds: 

1) ( ) [ ] ( )( ) [ ] ( )( )1 2 2,, 0, ; 0, ; qu C T H L T Wθ ∈ Ω Ω , 

( ) [ ] ( )( ) [ ] ( )( )2 2 1, 0, ; 0, ;t tu C T L L T Hθ ∈ Ω Ω . 

2) For any times [ ]1 2, 0,t t T∈ ,  

( )( ) ( )2 2

1 1
d d d d

t t
tt t

u u u p x t u f x tϕ γ θ ϕ
Ω Ω

+ ⋅∇ +∇ = ∆ +∫ ∫ ∫ ∫ , 

( )( ) ( )2 2

1 1
d d d d

t t
tt t

u u x t x tθ φ ε θ φ
Ω Ω

+ ⋅∇ = ∆∫ ∫ ∫ ∫ , 

for ,ϕ φ  Lipschitz [ ]0,TΩ×  with , Wφ ϕ∈ . 
Remark: the system parameters Ω  and B  will be assumed to satisfy the 

following conditions: 
1) Ω  is a bounded open set in 3R  with a 3C  boundary. 
2) B  is a 1C  in a neighborhood of ∂Ω . 
Theorem 1.2. Assume the hypotheses hold, let ( ]3,6q∈  be fixed constant 

and the ( )0 0,u θ , p  and f  satisfy the following conditions: 

( ) [ ] ( )( ) [ ] ( )( )2 2, 0, ; 0, ; qp f C T L L T L∈ Ω Ω ; 

( ) [ ] ( )( )2 2, 0, ;t tp f L T L∈ Ω ; 

( ) ( )Su n Bu
τ τ∂Ω

⋅ = . 

Then there is a small 0T∗ >  and a unique strong solution ( ),u θ  to the ini-

https://doi.org/10.4236/jamp.2017.510165


J. Lu 
 

 

DOI: 10.4236/jamp.2017.510165 1954 Journal of Applied Mathematics and Physics 
 

tial boundary value problems (1.2), (1.3) such that: 

( ) [ ] ( )( ) [ ] ( )( )1 2 2,
* *, 0, ; 0, ; qu C T H L T Wθ ∈ Ω Ω ; 

( ) [ ] ( )( ) [ ] ( )( )2 2 1
* *, 0, ; 0, ;t tu C T L L T Hθ ∈ Ω Ω . 

2. The Lame Operator and the Regularity of −∆ Operator 

In this part, we introduce the regularity of Laplace and the −∆ . First we assume 
the condition (1.2) holds, Ω  and B  satisfy the above hypotheses. Consider-
ing the following problem: find 3:u RΩ→  such that:  

( )( ) ( )

,
0,

,

Lu u g x
u n
S u n Bu xττ

β + = ∈Ω
 ⋅ =
 ⋅ = ∈∂Ω

                   (2.1) 

here Lu uγ= − ∆ , fixed Rβ ∈ , given :g RΩ→ . Then the corresponding weak 
form is achieved. 

Use Wω∈  to multiply by the above differential Equation (2.1), we can get: 

( ), dA u g xβ ω ω
Ω

= ⋅∫                     (2.2) 

where :A W W Rβ × →  is the bilinear form: 

( ) ( ), d : dA u Au s Su S xβ ω γ ω ω
∂Ω Ω

= − ⋅ +∫ ∫              (2.3) 

Obviously, Aβ  is continuous on W W×  if B  is bounded, and we can use 
trace theorem to show that Aβ  is coercive if β  is enough large depending on 
γ , Ω , B . In this case, there is a bounded operator 2:S L Wβ →  satisfying  

( ), dA S g g xβ β ω ω
Ω

= ⋅∫                    (2.4) 

for all Wω∈ . Furthermore, because the embedding 2W L→  is compact, Sβ  
is a compact operator from 2L  to 2L  and the symmetry condition guarantees 
Sβ  is self-adjoint. 

The following lemmas are taken from document [21]. 

Lemma 2.1. Assume that 3RΩ⊂  is abounded open set with a 3C  boun-
dary and that ( )B L∞∈ ∂Ω  is a symmetric matrix. For β  enough large, there 
is a compact self-adjoint operator ( ) ( )2 2:S L Lβ Ω → Ω , whose range is con-
tained in W  and for which (2.2) holds for ( )2g L∈ Ω  and Wω∈ . At the 
same time, there is an orthogonal basis { }k k

ω  for 2L  whose elements are in 
( )W C∞ Ω , and which are eigenfunctions of Sβ  

1
k k kSβω γ ω−=  

where kγ →∞ . 
Lemma 2.2. Assume that 0m ≥ , 3RΩ⊂  is abounded open set with a 1mC +  

boundary and that B is a ( )1mC + ∂Ω  mapping from a neighborhood of ∂Ω  
into the set of 3 3×  matrices, then there exists a constant ( ), ,mC C Bγ= Ω  
such that if u  is a solution of (2.1) in the sense of (2.2) where β  and ( )mg H∈ Ω , 
then ( )2mu H +∈ Ω  and 
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( ) ( ) ( )( )2 2m mmH L Hu C u g+ Ω Ω Ω
≤ +                (2.5) 

For the operator −∆ , consider the following problem: find 3: Rθ Ω→  such 
that 

,g x

n

θ δθ
θ

αθ
∂Ω

−∆ + = ∈Ω

∂ = ∂

                    (2.6) 

where Rδ ∈  is fixed, :g RΩ→  is given. 
Use ( )1Hφ ∈ Ω  to multiply by the above differential equation, and integra-

tion by parts, then we get  

( ), dB g xδ θ φ φ
Ω

= ⋅∫                        (2.7) 

where 1 1:B H H Rδ × →  is the bilinear form: 

( ), dB xδ θ φ θ ϕ δθϕ
Ω

= ∇ ⋅∇ +∫                   (2.8) 

Similar to the Lame operator, there exist a bounded operator ( )2 1: L HδΓ Ω →  
meeting 

( ), dB g g xδ δ φ φ
Ω

Γ = ⋅∫                      (2.9) 

for all 1Hϕ∈  and for δ  large enough. Parallel to Lemmas 2.1 - 2.2, we can 
get the following lemmas. 

Lemma 2.3. Assume that 3RΩ⊂  is abounded open set with a 3C  boun-
dary. For γ  large enough, there exist a compact self-adjoint operator  

( ) ( )2 2: L LγΓ Ω → Ω , whose range is contained in 1H  and for which (2.9) 
holds for ( )2g L∈ Ω  and 1Hφ ∈ . At the same time, there is an orthogonal ba-
sis { }k k

φ  for 2L  whose elements are in ( )1H C∞ Ω  and which are eigen-
functions of γΓ , 1

k k kγφ γ ω−Γ = , where kγ →∞ . 
Lemma 2.4. Assume that 0m ≥ , 3RΩ⊂  is abounded open set with a 1mC +  

boundary and that B is a ( )1mC + ∂Ω  mapping from a neighborhood of ∂Ω  
into the set of 3 3×  matrices, then there exists a constant ( )mC C= Ω  such 
that if θ  is a solution of (2.6) in the sense of (2.7) where ( )mg H∈ Ω , then 

( )2mHθ +∈ Ω  and 

( ) ( ) ( )( )2 2m mmH L HC gθ θ+ Ω Ω Ω
≤ +              (2.10) 

3. A Prior Estimates for Higher Regularity 

In this part, we need the following prior estimates to prove the local existence of 
the solution. Assume that the following inequalities hold: 

( ) 20 0 0, 1
H

u Cθ + ≤                      (3.1) 

( ) ( )( ) ( )22 2

22 2
100

sup d 1q

T
t t LH L Lt T

u t u t u u t C∗

∗≤ ≤
+ + ∇ + ∇ + ≤∫      (3.2) 

where 0 11 C C≤ ≤ , 0 T T∗< ≤ . 
Remark: C is a constant if be not added. 

https://doi.org/10.4236/jamp.2017.510165


J. Lu 
 

 

DOI: 10.4236/jamp.2017.510165 1956 Journal of Applied Mathematics and Physics 
 

3.1. Estimate for Temperature 

Lemma 3.1.1. 2 2
2 2

0
d

t

L L s Cθ θ+ ∇ ≤∫   
Proof: Multiplying the second equation of (1.1) by θ  and integrating over 

Ω , one has 

( )21 d d d
2 d

x u x
t

θ ε θ θ θ θ
Ω Ω

= ∆ ⋅ − ⋅∇ ⋅∫ ∫             (3.1.1) 

( )

( )( )
( ) ( )

( )2 2 2 2

2

22

22

d d d

d d

d d

L L L L

x C s x
n

C s x

C x C x

C Cδ

θ
ε θ θ θ θ

αθ θ

θ θ θ θ

θ θ θ δ θ

Ω ∂Ω Ω

∂Ω Ω

Ω Ω

∂ ∆ ⋅ ≤ − ∇ ∂ 

= − ∇

≤ + ⋅ ∇ + ∇

≤ + ∇ + + ∇

∫ ∫ ∫

∫ ∫

∫ ∫
       (3.1.2) 

( )

( )
( )
( )

3 1 2

2 2 22 1

2 2 2

2 2 2

1 1
2 2

2

2 2 2

d d L H L

L L LL H

L L L

L L L

u x u x u

u u

C

C Cδ

θ θ θ θ θ θ

θ θ θ

θ θ θ

δ θ θ θ

Ω Ω
⋅∇ ⋅ = ⋅∇ ⋅ ≤ ∇

≤ + ∇ ∇

≤ ∇ + ∇

≤ ∇ + + ∇

∫ ∫

        (3.1.3) 

Substituting (3.1.2) - (3.1.3) into (3.1.1), letting δ  small enough and using 
Gronwall’s inequality: 

2 2
2 2

0
d

t

L L s Cθ θ+ ∇ ≤∫  

Lemma 3.1.2. 2 2
22

0
d

t
tL L s Cθ θ∇ + ≤∫   

Proof: Multiplying the second equation of (1.1) by tθ  and integrating over 
Ω , one has 

( )2d dt t tx u xθ ε θ θ θ θ
Ω Ω

= ∆ ⋅ − ⋅∇ ⋅∫ ∫               (3.1.4) 

( )

( ) ( )

( )2 2 2

22

2 2

2 2 2

d d d

1 d 1 dd d
2 d 2 d

d d
d
d
d

t t t

L L L

x s x
n

s x
t t

C x
t

C C
t δ

θ
ε θ θ ε θ ε θ θ

εαθ ε θ

θ θ θ θ

θ δ θ θ

Ω ∂Ω Ω

∂Ω Ω

Ω

∂
∆ ⋅ = − ∇ ⋅∇

∂

= − ∇

≤ + ⋅ ∇ + ∇

≤ ∇ + + ∇

∫ ∫ ∫

∫ ∫

∫
        (3.1.5) 

( )

( )
22

22
2 2

d dt t tL LL

t LL

u x u x u

C Cδ

θ θ θ θ θ θ

δ θ θ

∞
Ω Ω

⋅∇ ⋅ = ⋅∇ ⋅ ≤ ∇

≤ + ∇

∫ ∫
       (3.1.6) 

Substituting (3.1.5) - (3.1.6) into (3.1.4), letting δ  small enough and using 
Gronwall’s inequality, 

2 2
22

0
d

t
tL L s Cθ θ∇ + ≤∫  

Lemma 3.1.3. 2 2
2 2

0
d

t
t tL L s Cθ θ+ ∇ ≤∫   
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Proof: Differentiating the second equation of (1.1) with respect to t , multip-
lying the second equation of (1.1) by tθ  and integrating over Ω , one has 

21 d d d
2 d t t t t t t tx u u x

t
θ ε θ θ θ θ θ θ

Ω Ω
= ∆ ⋅ − ⋅∇ ⋅ − ⋅∇ ⋅∫ ∫        (3.1.7) 

( )

( )( )
( )
( )
( )

2

2 2 2 2

2 2 2 2

2

22

22

2 2

2 2 2 2

d d d

d d

d

t
t t t t

t t

t t t t L

t t t tL L L L

t t t tL L L L

x s x
n

C s x

C x

C

C Cδ

θ
ε θ θ ε θ ε θ

θ θ

θ θ θ θ

θ θ θ θ

θ θ δ θ θ

Ω ∂Ω Ω

∂Ω Ω

Ω

∂
∆ ⋅ = − ∇

∂

≤ − ∇

≤ +∇ ⋅ + ∇

≤ + ∇ + ∇

≤ + ∇ + + ∇

∫ ∫ ∫

∫ ∫

∫      (3.1.8) 

( )
23 1 12 6

1 12 2 2 2

1 1
2 2

2 2

dt t t t t tLL H HL L

t t t tH HL L L L

u x u C u

C C u C uδ κ

θ θ θ θ θ θ

θ δ θ θ κ θ

Ω
⋅∇ ⋅ ≤ ∇ ≤

≤ + + ∇ +

∫  (3.1.9) 

2 2 2 2
2 2dt t t t t tL L L L Lu x u Cδθ θ θ θ θ δ θ∞

Ω
⋅∇ ⋅ ≤ ∇ ≤ + ∇∫    (3.1.10) 

Substituting (3.1.8) - (3.1.10) into (3.1.7), letting δ  and κ  small enough 
and using Gronwall’s inequality, 

2 2
2 2

0
d

t
t tL L s Cθ θ+ ∇ ≤∫  

3.2. Estimate for Velocity 

Lemma 3.2.1. 2 2
2 2

0
d

t

L Lu u s C+ ∇ ≤∫  
Proof: Multiplying the first equation of (1.1) by u  and integrating over Ω , 

one has 

2 21 d d d
2 d

u x u u u u p u f u x
t

γ θ
Ω Ω

= ∆ ⋅ + ⋅∇ −∇ ⋅ + ⋅∫ ∫         (3.2.1) 

( ) ( )
( ) ( )2 2

2 2

d 2 d 2 d d

d d L L

u u x div Su u x Su n u s Su u x

C Bu u s Su u x C u u

γ γ γ
Ω Ω ∂Ω Ω

∂Ω Ω

∆ ⋅ = ⋅ = ⋅ ⋅ − ⋅∇

≤ ⋅ + ⋅∇ ≤ + ∇

∫ ∫ ∫ ∫

∫ ∫
  (3.2.2) 

( )

( )
( )
( )

3 1 2

2 2 22 1

2 2 2

2 2 2

2

1 1
2 2

2

2 2 2

d d L H L

L L LL H

L L L

L L L

u u u x u u x u u u

u u u u u

C u u u

C u C u uδδ

Ω Ω
⋅∇ ⋅ = ⋅∇ ≤ ∇

≤ + ∇ ∇

≤ ∇ + ∇

≤ ∇ + + ∇

∫ ∫

        (3.2.3) 

2 2 2 2
2 2d L L L Lp u x p u C u pδ δ

Ω
∇ ⋅ = ∇ ≤ + ∇∫          (3.2.4) 

( )2 2 2 2
2 2d L L L L Lf u x f u C C uδθ θ δ θ∞

Ω
⋅ = ≤ +∫        (3.2.5) 

Substituting (3.2.2) - (3.2.5) into (3.2.1), letting δ  small enough and using 
Gronwall’s inequality, 
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2 2
2 2

0
d

t

L Lu u s C+ ∇ ≤∫  

Lemma 3.2.2. 2 2
22

0
d

t
tL Lu u s C∇ + ≤∫  

Proof: Multiplying the first equation of (1.1) by tu  and integrating over Ω , 
one has 

2d dt t t t tu x u u u u u p u f u xγ θ
Ω Ω

= ∆ ⋅ + ⋅∇ ⋅ −∇ ⋅ + ⋅∫ ∫        (3.2.6) 

( ) ( )
( ) ( )2 2

2 2

d 2 d 2 d d

dd d
d

t t t t

t t L L

u u x div Su u x Su n u s Su u x

C Bu u s Su u x C u u
t

γ γ γ
Ω Ω ∂Ω Ω

∂Ω Ω

∆ ⋅ = ⋅ = ⋅ ⋅ − ⋅∇

≤ ⋅ + ⋅∇ ≤ + ∇

∫ ∫ ∫ ∫

∫ ∫
 (3.2.7) 

( )

( )
22

22
2 2

d dt t tL LL

t LL

u u u x u u u x u u u

C C u uδ δ

∞
Ω Ω

⋅∇ ⋅ = ⋅∇ ⋅ ≤ ∇

≤ + ∇

∫ ∫
       (3.2.8) 

2 22 2
2 2dt t tL LL Lp u x p u C u pδ δ

Ω
∇ ⋅ = ∇ ≤ + ∇∫         (3.2.9) 

( )2 22 2
2 2

t t tL L LL Lf u dx f u C C uδθ θ δ θ∞
Ω

⋅ = ≤ +∫      (3.2.10) 

Substituting (3.2.7) - (3.2.10) into (3.2.6), letting δ  small enough and using 
Gronwall’s inequality, 

2 2
22

0
d

t
tL Lu u s C∇ + ≤∫  

Lemma 3.2.3. 2 2
2 2

0
d

t
t tL Lu u s C+ ∇ ≤∫  

Proof: Differentiating the first equation of (1.1) with respect to t , multiplying 
the first equation of (1.1) by tu  and integrating over Ω , one has  

d

d

tt t

t t t t t t t t t t t t

u u x

u u u u u u u u p u f u f u xγ θ θ
Ω

Ω
= ∆ ⋅ + ⋅∇ ⋅ + ⋅∇ ⋅ −∇ ⋅ + ⋅ + ⋅

∫
∫

 (3.2.11) 

( ) ( )
( ) ( )2 2

2 2

d 2 d 2 d d

d d

t t t t t t t t

t t t t t tL L

u u x div Su u x Su n u s Su u x

C Bu u s Su u x C u u

γ γ γ
Ω Ω ∂Ω Ω

∂Ω Ω

∆ ⋅ = ⋅ = ⋅ ⋅ − ⋅∇

≤ ⋅ + ⋅∇ ≤ + ∇

∫ ∫ ∫ ∫

∫ ∫
 (3.2.12) 

( )
23 1 12 6

2 2 1 2 2 1

1 1
2 2

2 2

dt t t t t t tLL H HL L

t t t t t tL L H L L H

u u u x u u u C u u u

C C u u u C u u uδ κδ κ

Ω
⋅∇ ⋅ ≤ ∇ ≤

≤ + + ∇ +

∫  (3.2.13) 

2 2 2 2
2 2dt t t t t tL L L L Lu u u x u u u C u uδ δ∞

Ω
⋅∇ ⋅ ≤ ∇ ≤ + ∇∫       (3.2.14) 

2 2 2 2
2 2dt t t t t tL L L Lp u x p u C u pδ δ

Ω
∇ ⋅ = ∇ ≤ + ∇∫           (3.2.15) 

( )2 2 2 2
2 2dt t t t t tLL L L Lf u x f u C C uδθ θ δ θ∞

Ω
⋅ = ≤ +∫        (3.2.16) 

( )2 22 2
2 2dt t t t tL LL L Lf u x f u C C uδθ θ δ θ∞

Ω
⋅ = ≤ +∫         (3.2.17) 

Substituting (3.2.12)-(3.2.17) into (3.2.11), letting δ  and κ  small enough 
and using Gronwall’s inequality, 

2 2
2 2

0
d

t
t tL Lu u s C+ ∇ ≤∫  
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3.3. Elliptic Estimates for Velocity and Temperature 

Lemma 3.3.1. 1H Cθ∇ ≤  

Proof: According to the second equation of (1.1), we have 
( )t u θθ

θ
ε ε

⋅∇
−∆ = − − , 

then use the elliptic regularity: 

( )( ) ( )2 2 2 222t tH L L LLL
C u C uθ θ θ θ θ θ θ≤ − − ⋅∇ + ≤ + ∇ ⋅ +  

( )
( )

1 2 2 22

2 22

tH H L LL

t L L LL

C u

C u C

θ θ θ θ θ

θ θ θ∞

∇ ≤ ≤ + ∇ ⋅ +

≤ + ∇ + ≤
 

Lemma 3.3.2. 1,
2

0
dq

t

W s Cθ∇ ≤∫   

Proof: According to the second equation of (1.1), we have ( )t u θθ
θ

ε ε
⋅∇

−∆ = − − , 

then use the elliptic regularity: 

( )( ) ( )2,q q q qqqt tW L L LLL
C u C uθ θ θ θ θ θ θ≤ − − ⋅∇ + ≤ + ∇ ⋅ +  

Both sides of the above inequality multiply by itself, then  

( )2,
22 2 2

q q qqtW L LLC uθ θ θ θ≤ + ∇ ⋅ +  

( )
( )

1, 2,

1 11

22 2 2 2

2 2 2 2

q q q qqtW W L LL

t L H HH

C u

C u

θ θ θ θ θ

θ θ θ∞

∇ ≤ ≤ + ∇ ⋅ +

≤ + ∇ +
 

And integrating over ( )0, t , we have 

( )1, 1 11
22 2 2 2

0 0
d dq

t t
tW L H HHs C u s Cθ θ θ θ∞∇ ≤ + ∇ + ≤∫ ∫  

Lemma 3.3.3. 1Hu C∇ ≤   
Proof: According to the first equation of (1.1), we have  

( )t u uu p fu θ
γ γ γ γ

⋅∇ ∇
−∆ = − − − + , then use the elliptic regularity: 

( )( )
( )( )

2 22

2 2 22 2

tH LL

t L L LL L

u C u u u p f u

C u u u p f u

θ

θ

≤ − − ⋅∇ −∇ + +

≤ + ⋅∇ + ∇ + +
 

( )( )
( )

2 2 2 221 2

3 1 2 2 22

1 2 2 22 3 1

1 1
2 2

||

|| ||

tH L L LLH L

t L H L L LL L

t H L L L LL L H

u u C u u u p f u

C u u u p f u

C u u u u p f u

C

θ

θ

θ

∞

∞

∇ ≤ ≤ + ⋅∇ + ∇ + +

≤ + ∇ + ∇ + +

 
≤ + ∇ + ∇ + +  

 
≤

 

Lemma 3.3.4. 1,
2

0
dq

t

Wu s C∇ ≤∫   
Proof: According to the first equation of (1.1), we have 

 ( )t u uu p fu θ
γ γ γ γ

⋅∇ ∇
−∆ = − − − + , then use the elliptic regularity: 
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( )( )
( )( )

2,q qq

q q qq q

tW LL

t L L LL L

u C u u u p f u

C u u u p f u

θ

θ

≤ − − ⋅∇ −∇ + +

≤ + ⋅∇ + ∇ + +
 

Both sides of the above inequality multiply by itself, then
 

 ( )( )2,
222 2 2 2

q q q qq qtW L L LL L
u C u u u p f uθ≤ + ⋅∇ + ∇ + +  

( )( )
( )

1, 2,

1 1 11

222 2 2 2 2

2 2 2 2 2 2 2

q q q q qq q

q

tW W L L LL L

t L H L L H HH

u u C u u u p f u

C u u u p f u

θ

θ∞ ∞

∇ ≤ ≤ + ⋅∇ + ∇ + +

≤ + ∇ + ∇ + +
 

And integrating over ( )0, t , we have 1,
2

0
dq

t

Wu s C∇ ≤∫ . 

4. The Local Existence of the Solution of  
Boussinesq Equations 

First, we consider the following linearized system: 

( )
( ) ( ) ( )

,
, , 0,

0,

t

t

u v u p u f
u x t t

divu

γ θ
θ θ ε θ
+ ⋅∇ +∇ = ∆ +

 + ⋅∇ = ∆ ∈Ω×
 =

            (4.1) 

Lemma 4.1. Let Ω  be a bounded domain in 3R  with smooth boundary, 
when 3 6q< ≤ , we have ( ) ( )1

0 0,u Hθ ∈ Ω . Assume that  

[ ] ( )( ) [ ] ( )( )2 2 2,0, ; 0, ; qv L T H L T W∞∈ Ω Ω , 

[ ]( ) [ ]( )2 2 10, ; 0, ;tv L T L L T H∞∈   

with the boundary conditions: 

0v n
∂Ω

⋅ = , ( ) ( )Sv n Bv
τ τ∂Ω

⋅ =  

Then there is a unique strong solution ( ),u θ  meeting (1.1) - (1.3) such tat 

( ) [ ] ( )( ) [ ] ( )( )2 2 2,, 0, ; 0, ; qu C T H L T Wθ ∈ Ω Ω ; 

( ) [ ] ( )( ) [ ] ( )( )2 2 1, 0, ; 0, ;t tu C T L L T Hθ ∈ Ω Ω            (4.2) 

Proof: It follows from Theorem 4 in chapter 5.9 [22], then we obtain  
[ ]( )10, ;v C T H∈ . 

Next, Gerlakin approach is applied to prove the local existence of the solution 
of Equation (4.1). 

Assume that { }1

m
lφ  and { }1

m
lω  respectively representing the eigenvectors of 

the operator −∆  and the operator L  are smooth functions.  

{ }1 2, , ,m
mV span φ φ φ=  , { }1 2, , ,m

mW span ω ω ω=   

for a positive constant m  fixed, let 

( ) ( ) ( ) ( )
1 1

,
m m

l l
m m l m m l

l l
t a t u t b tθ φ ω

= =

= =∑ ∑             (4.3) 

We hope that the coefficients ( ) ( ),l l
m ma t b t  satisfy: 
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d d

d d

tm m m m tm m m tm m m tm m m m tm m

tm m m m m m m

u v u u p u x u u f u x

u x x

ω ω ω γ ω θ ω

θ φ θ φ ε θ φ
Ω Ω

Ω Ω

 + ∇ +∇ = ∆ +


+ ∇ = ∆

∫ ∫
∫ ∫

  (4.4) 

Thus we seek functions ( ),m mu θ  that satisfy the “projection” (4.4) of prob-
lem (4.1) onto the finite dimensional subspace spanned by { } { }( )1 1

,m m
l lω φ . 

It follows from Theorem 1 in chapter 7 [22], then we obtain that for m∀ , 
there exists unique ( ),m mu θ  satisfying Equation (4.4). 

5. The Proof of Theme 1.2 

Similar to the prior estimates in part 3, we have 

( ) ( )( ) ( )22 2

22 2
100

sup d 1q

T
m t m tm mLH L Lt T

u t u t u u t C∗

∗≤ ≤
+ + ∇ + ∇ + ≤∫  

where C  has no connection with m , then we have 

( ) ( ) ( )1, , in 0, ;m mu u L T Hθ θ ∞→  

( ) ( ) ( )weakly 2 2,, , in 0, ; q
m mu u L T Wθ θ→  

( ) ( ) ( )*weakly 2, , in 0, ;m mu u L T Hθ θ ∞→  

( ) ( ) ( )weak 2 1, , in 0, ;t m t m t tu u L T Hθ θ∂ ∂ →  

It follows from Theorem 3 in chapter 7 [22], let m →∞  then we obtain that 
( ),u θ  is the solution of (4.1).  

The proof of Lemma 4.1 is completed. 

Next, the iteration method is used to prove the local existence of the solution 
of Boussinesq equations.  

Construct approximate solutions of Boussinesq equations that meet the initial 
and boundary problems (1.2) - (1.3). 

1) define 0 0u = , 
2) assume that 1k ≥ , define 1kv u −= , 

( )
( ) ( ) ( )

1 ,

, , 0,

0,

k k k k k k k
t

k k k k
t

k

u u u p u f

u x t t

divu

γ θ

θ θ ε θ

− + ⋅∇ +∇ = ∆ +

 + ⋅∇ = ∆ ∈Ω×


=

      (5.1) 

Initial conditions:  

( ) ( )0 00
, ,k k k k

t
u uθ θ

=
=                    (5.2) 

Boundary conditions:  

0ku n
∂Ω

⋅ = , 
k

k

n
θ αθ

∂Ω

∂
=

∂
, ( ) ( )k kSu n Bu

τ τ∂Ω
⋅ =        (5.3) 

According to Lemma 4.1, we can know that the problems (5.1) - (5.3) exist the 
local solutions ( ),k ku θ . Furthermore, according to the prior estimates, we get  

( ) ( )2 2 2

2 22
100

sup d 1q

Tk k k k
t tH L L Lt T

u u u u t C∗

∗≤ ≤
+ + ∇ + ∇ + ≤∫      (5.4) 

where C  has no connection with k . 
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According to Aubin-Lions lemma, one has 

( ) ( ) ( )1
*, , in 0, ;k ku u L T Hθ θ ∞→  

( ) [ ] ( )( ) [ ] ( )( )2 2 2,, 0, ; 0, ; qu L T H L T Wθ ∞
∗ ∗∈ Ω Ω  

( ) [ ] ( )( ) [ ] ( )( )2 2 1, 0, ; 0, ;t tu L T L L T Hθ ∞
∗ ∗∈ Ω Ω

 

Last, we show the continuity of u  and θ  over time. 

( ) ( )

( )(
)

*
*

*

3 3 3 3 12 2 2 2

*

2 22 2

*

0

0

0

0

sup ,

sup d

sup

sup d

t tt tW t T

t t t t t t
t T

t t t tL L L L HL L L L
t T

t t tL LL L
t T

u u

u u u u u p f f x

C u u u u f f

p u u s

ψ

γ θ θ ψ

θ θ ψ

ψ ψ ψ

≤ ≤

Ω≤ ≤

≤ ≤

∂Ω≤ ≤

=

≤ ∆ + ⋅∇ + ⋅∇ +∇ + +

≤ ∇ + ∇ + +

+ ∇ + ∇ ∇ + ∇

∫

∫

 

where *W  denotes the dual space of W . It follows from Theorem 3 in chapter 
5.9 [22], then we obtain ( )2

*0, ;tu C T L∈ . Then according to the elliptic regular-
ity, we have ( )2 2

*0, ;u L T L∞∇ ∈ . 

( ) ( )

( )(
)

*
1

1

3 3 12 2
1

22
1

1

1

1

1

sup ,

sup d

sup

sup d

H

H

H

H

t tt tW

t t t

t tL L HL L

t tLL

u u x

C u u

s

ϕ

ϕ

ϕ

ϕ

θ θ ϕ

ε θ θ θ ϕ

θ θ ϕ

θ ϕ θ ϕ

=

Ω=

=

∂Ω=

=

≤ ∆ + ⋅∇ + ⋅∇

≤ ∇ + ∇

+ ∇ ∇ + ∇

∫

∫

 

where ( )( )*1H Ω  denotes the dual space of ( )1H Ω . This can show 

( ) ( )( )( )*2 1
*0, ;t t

L T Hθ ∈ Ω . So we have ( )( )2 1
*0, ;t L T Hθ ∈ Ω . Similar to the 

proof of the continuity of tu , it is easy to know ( )2
*0, ;t C T Lθ ∈ . Then accord-

ing to the elliptic regularity, we have ( )2 2
*0, ;C T Lθ∇ ∈ . 

Above all, we complete the proof of the Theorem 1.2. 
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