
Journal of Information Security, 2017, 8, 296-327
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2017.84020 Oct. 19, 2017 296 Journal of Information Security

Exploring the Effects of Gap-Penalties in
Sequence-Alignment Approach to Polymorphic
Virus Detection

Vijay Naidu*, Jacqueline Whalley, Ajit Narayanan

School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand

Abstract
Antiviral software systems (AVSs) have problems in identifying polymorphic
variants of viruses without explicit signatures for such variants. Align-
ment-based techniques from bioinformatics may provide a novel way to gen-
erate signatures from consensuses found in polymorphic variant code. We
demonstrate how multiple sequence alignment supplemented with gap penal-
ties leads to viral code signatures that generalize successfully to previously
known polymorphic variants of JS. Cassandra virus and previously unknown
polymorphic variants of W32.CTX/W32.Cholera and W32.Kitti viruses. The
implications are that future smart AVSs may be able to generate effective sig-
natures automatically from actual viral code by varying gap penalties to cover
for both known and unknown polymorphic variants.

Keywords
Polymorphic Malware Variants, Gap Penalties, Syntactic Approach, Pairwise
Sequence Alignment, Multiple Sequence Alignment, Automatic Signature
Generation, Smith-Waterman Algorithm, JS. Cassandra Virus,
W32.CTX/W32.Cholera Virus, W32.Kitti Virus

1. Introduction

The automatic extraction of virus and other malware signatures for use in anti-
viral software systems (AVSs) is of paramount importance due to the need to
find effective solutions to defend systems against the increasing number and se-
verity of attacks [1]. It is generally accepted that these attacks now pose a global
risk [2]. Early work on automatic signature extraction focused on simulating the
way that human experts analyzed viruses and generated signatures for use in

How to cite this paper: Naidu, V., Whal-
ley, J. and Narayanan, A. (2017) Exploring
the Effects of Gap-Penalties in Sequence-
Alignment Approach to Polymorphic Virus
Detection. Journal of Information Security,
8, 296-327.
https://doi.org/10.4236/jis.2017.84020

Received: August 1, 2017
Accepted: October 16, 2017
Published: October 19, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2017.84020
http://www.scirp.org
https://doi.org/10.4236/jis.2017.84020
http://creativecommons.org/licenses/by/4.0/

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 297 Journal of Information Security

AVSs [3].
Typically, suspicious code is identified due to anomalous behavior of a com-

puter system. Human experts then manually analyze the suspicious code to
identify invariant code portions (syntactic analysis) or code portions that are
regularly executed (semantic analysis). Such analysis leads to the generation of
unique signatures for use by AVSs when scanning network packets, user files or
memory. Before such signatures can be released, they must be checked against
non-malware to ensure that the number of false positives is kept acceptably low.
For instance, signatures based only on malware encryption/decryption informa-
tion are likely to lead to unacceptably high false positives due to the large pro-
portion of normal Internet traffic that also carries encryption/decryption infor-
mation for integrity (e.g. hash algorithms) and authentication (e.g. certified pub-
lic keys). But relying on human expertise alone to provide manually extracted
signatures is becoming increasingly difficult with the growing volume of mal-
ware. As a result, interest continues to grow in methods to improve automatic
signature extraction. Semantic approaches [4] [5], in addition to standard dy-
namic and execution behavior analysis [6] [7], now include methods such as
control flow analysis [8] [9], behavior model checking [10] [11], executable
graph mining [12] and formal semantic models of analysis [13]. The main prob-
lem with a semantic approach is that an infection must occur to produce ano-
malous behavior. Several execution traces may be required before signatures can
be extracted manually, and there is always the risk that such signatures may not
be effective for different execution paths of the same viral code. Syntactic or
static approaches [14] [15] [16] on the other hand, while possibly preferable be-
cause of their ability to extract signatures that may apply to different variants of
the same malware family and to generate signatures irrespective of differences in
execution paths, have not managed to keep pace with the latest polymorphic and
metamorphic techniques used by virus writers to obfuscate their malware [17]
[18]. Static signature extraction methods must also disassemble or reverse engi-
neer executable code so that structural analysis of the source code is possible.
Such analysis includes: statistical analysis of parameter values and searching for
repeating strings [19] [20]; code feature selection [21]; feature extraction [22];
and n-grams analysis [23] [24] [25]. The mapping of executable code to a suita-
ble level of program representation that allows such structural analysis is prob-
lematic, however, due to such code being deliberately constructed to hide its
functionality, such as through the use of redundant control instructions and va-
riable assignments.

Predicting future metamorphic and polymorphic viral forms to prepare AVSs
for as yet unknown variants has remained a distant research goal for both se-
mantic and syntactic techniques. The key to a successful syntactic approach
would appear to lie in analyzing malware code directly and without execution,
and so removing the need for reverse engineering. By comparing different
structural variants of the same virus, a successful structural/static approach may

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 298 Journal of Information Security

be able to identify common code patterns despite attempts to obfuscate through
polymorphism because, if the virus is to perform its designated payload or func-
tion and remain a variant of a virus family, a common code must be present
even if it is deliberately obscured. A purely syntactic approach, such as the one
proposed in this paper, should detect new polymorphic viral variants indepen-
dently of semantic knowledge based on execution traces, command and control
channels, deduplication and propagation vectors. That is, a purely syntactic ap-
proach to new variants should not require prior infection by those variants.

In this study, we focus on a sequence-based automatic signature extraction
method for identifying polymorphic malware using syntactic analysis of hex
code. Theoretically, malware with polymorphism changes its code and keeps the
functions intact, whereas malware with metamorphism changes sub-functionality
and code while preserving overall functionality [26]. The implications of this
theoretical division are unknown for automatic signature extraction. It is not
even known if any metamorphic malware actually exists [27]. For that reason,
we confine our approach to polymorphic malware capable of mutating into a
potentially infinite number of functionally equivalent but structurally different
variants (details below).

Previous work in syntactic signature extraction [28] introduced the idea of
using basic pairwise sequence alignment techniques from bioinformatics to
identify “consensuses” (common occurrences of hex code) in pairs of variants,
which was a signature for that pair. These consensuses were in turn multiply
aligned with each other to generate a common consensus (i.e. a meta-signature)
for all variants [29] [30]. A by-product of alignment is that variable-length viral
sequences become of fixed length and longer through the introduction of gaps.
Gaps are the segments that are generated when aligning amino acid or nucleo-
tide sequences so that similar and analogous residues in two or more sequences
are paired with each other in the same column. These could also get deposited at
areas where one or more sequences have some additional residues (produced by
an insertion) or have missed some residues (produced by a deletion). Gaps are
generally substituted with gap symbols such as blanks, asterisks or hyphens to
make it pair up with sequences that have no gaps. If insertions and deletions
never occurred, then sequences could simply be paired by shifting them along
each other and only considering the alignment that best paired the existing re-
sidues. In previous work, the evaluation of these consensus-based techniques
was restricted to all known, already identified, polymorphic variants. The sig-
natures extracted were therefore “variant-fit” rather than “variant-predictive”.
The aim of this paper is to examine whether string searching algorithms of
greater sophistication than those investigated previously by Naidu and Na-
rayanan [29], such as the Smith-Waterman algorithm which unlike previous
work [29] includes different combinations of gap open and gap extend penal-
ties, can lead to the automatic generation of signatures not just for known va-
riants but also for unknown (future), or newly generated, variants. In order to

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 299 Journal of Information Security

train and test these novel approaches to automatic signature detection we use
three well-known viruses with their known (for JS. Cassandra virus) and un-
known (for W32.CTX/W32.Cholera and W32.Kitti viruses) polymorphic va-
riants (more details in Subsection 5.2).

A significant number of known variants exist for JS. Cassandra; thus, this vi-
rus is considered useful for testing the hypothesis that relatively sophisticated
gap open and extend facilities do indeed capture known variants that have al-
ready been shown to be captured using consensus identification without gap
penalties [29]. W32.CTX/W32.Cholera virus and W32.Kitti virus, on the other
hand, are used to generate new or unknown variants for testing the effects of the
more sophisticated gap open and extend facilities on their newly corresponding
viral syntactic signatures that are generated in this research. Well-established
viruses are chosen because their structure and behavior are well understood. Vi-
rus generation, even for experimental purposes in academic computer laborato-
ries, is illegal in many countries. We state explicitly that the intention of our re-
search is to aid the global fight against cybercrime through understanding the
mechanisms leading to new polymorphic variants so that appropriate automatic
signature extraction techniques can be developed to help reduce their impact in
future, smarter AVS technologies.

In Section 2 and Section 3, we discuss the background of syntactic techniques
and previous related work. In Section 4, we describe the problem statement. We
then demonstrate our systems and methods in Section 5. Section 6 compares the
results against state-of-the-art AVS products. Section 7 contains the conclusion.

2. Background

Because the same viral function can appear in many different physical code
forms it has been posited that only semantic analysis will reveal commonalities
among variants of the same virus for effective signature generation. As a result,
syntactic techniques for signature extraction based on structural detection of
malware are relatively unexplored in comparison to semantic techniques, and so
there is very little in the way of related literature. What literature there is dis-
cussed in Section 3. In order to understand syntactic-based polymorphism de-
tection techniques it is useful to consider a simple example of linguistic signature
extraction. Consider the following structurally-related sentences, where the first
sentence is the original sentence, and the other three are polymorphic versions
of it:

The cat saw the mouse
The mouse was seen by the cat

We see that the cat saw the mouse
We see that the mouse was seen by the cat

Signature extraction is similar to finding the two patterns “cat saw mouse”
and “mouse seen cat” that will help to detect all four sentences as variants de-
spite the variable length of the sentences, the movement of tokens within the

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 300 Journal of Information Security

sentences and introduction of extra material. If options and alternatives are al-
lowed, “{we see} [cat|mouse] [saw|seen] [cat|mouse]” is an approximate regular
expression (rule-based signature) for all four sentences that also allows for deri-
vations of new structural variants not so far encountered (e.g. “that the cat was
seen by the mouse was seen by us”). These signature examples are of course
simplistic when compared to the real task of automatic signature extraction.
Viral signatures must also take into account dependencies between non-adjacent
code in order to deal with specific polymorphic features as well as possible rear-
rangements of code that alter the left-to-right order of signatures. In reality, the
first four sentences above would be in hex (machine code) format and require
accurate disassembly to a language amenable to structural analysis, and the sig-
nature then converted back to hex for real-time scanning of network packets and
cached files. Signatures must also be checked for their uniqueness. That is, be-
fore the generated signature can be released it must be able to distinguish its
source malware from all other malware as well as be consistent with as many va-
riants of that malware as possible. It is generally believed that in 2017 a contem-
porary AVS may contain between a quarter of a million to half a million signa-
tures due to the increasing rate of release of new malware. Updates to AVSs may
require removing old and no longer effective signatures as well as adding new
signatures, and this can be expected to become more time-consuming with the
growth in occurrences of new malware.

A sequence-based approach to signature extraction was previously proposed
and demonstrated using the Smith-Waterman algorithm (SWA) without gap
penalties [29]. SWA is used extensively in bioinformatics for sequence alignment
(finding common subsequences or consensuses among a set of variable length
sequences), and previous work demonstrated the feasibility of using such con-
sensuses in viral hex code as signatures. The approach was further refined [30]
by adopting SWA with six different substitution matrices. Results showed that
it was possible to extract signatures/meta-signatures after applying data
mining rule-extraction techniques to the extracted signatures. Such signa-
tures/meta-signatures can, in turn, be employed as rule-based string templates
for creating more specific, variant-oriented polymorphic malware signatures for
detecting known variants belonging to the same virus family. In other words,
previous work has shown how to progress syntactically (i.e. without execution
traces) from viral code consensus identification for a set of variants of the same
virus family (training set) to generation of signatures in either a regular expres-
sion or rule format for identification of other known variants of the same virus
family (test set).

Another related advancement in a syntactic approach was also recently re-
ported [31]. Two different dynamic programming methods, namely, Needle-
man-Wunsch and SWA were investigated. However, this work was limited to a
single polymorphic malware family (JS. Cassandra) and used fixed parameters
which were not tuned [31]. It was found that SWA gave the best results with

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 301 Journal of Information Security

100% of known variants being identified.
What has improved considerably since the historical view that only semantic

analysis will reveal viral signatures is the growth in our knowledge of se-
quence-based syntactic and structural search algorithms in bioinformatics. Such
algorithms do not just search for the presence or absence of characters in certain
positions but also use pre-loaded substitution matrices that give substitution
probabilities and/or allow such substitution matrices to be generated using
probabilistic techniques. Of greater importance to this paper is that such algo-
rithms manipulate (shift) the strings/sequences to allow for insertion and dele-
tion of characters to maximize the number of matching characters. Previous
work [32] showed that such string manipulation algorithms from bioinformatics
work best with biologically represented strings (amino acids, nucleotide bases)
rather than arbitrary character sets. This is due to the possible inclusion of heu-
ristic biological information in the algorithms that determines to some extent
the matching process (e.g. built-in information concerning mutation rates be-
tween amino acids or nucleotide bases). The implications of rewriting already
well-understood and publicly available sequence-based bioinformatics algo-
rithms to work on hex code (numeric data) are not known. For these reasons
and to allow comparison with previous work, conversion of hex code to an ap-
propriate biological representation is required before sequence matching, with
conversion back to hex code for signature generation. We used a simple iden-
tity (ID) substitution matrix for our alignment experiments instead of other
well-known biological substitution/mutation matrices, such as BLOSUM (Block
Substitution Matrix) and PAM (Point Accepted Mutation). ID provides the most
parsimonious method in that no assumptions are made as to how symbols may
be related to each other. Also, the use of ID allows the effects of gap opening and
closing to be accurately assessed without being compromised by probabilistic
substitution matrices.

3. Related Work

Previous research related to this work has primarily focused on worms. Syntactic
approaches include Autograph [33], Honeycomb [34] and Early Bird [35], all of
which generate signatures that constitute individual adjoining byte strings (to-
kens). Another syntactic approach is Polygraph [36], which identifies an array of
tokens, a subsequence of tokens and Bayes signatures based on probabilistic
methods to detect polymorphic worms. Semantic approaches include PAYL
[37], which produces subsequence signature tokens that associate ingress/egress
payload notifications to detect the initial replication of worms. Other semantic
approaches include: Nemean [38], which focuses on identifying signatures that
defend against worms; Hamsa [39], which produces a set of signature tokens
that can deal with polymorphic worms by investigating their invariant activity;
and Botzilla [40], which produces signatures for the malicious activities (traffic)
created by a malware binary executed several times within a controlled domain.

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 302 Journal of Information Security

Nearly all previous approaches deal with only one malware family and it is cur-
rently not known how generalizable these methods are for capturing variants
belonging to different families. A future, “smart” AVS needs to generate multiple
signatures with very low false positives that can fully capture variants emanating
from many different corresponding polymorphic viral families with multiple
malicious activities (polymorphic engines). In our approach, new structural va-
riants were generated by us in the laboratory using the information included in
documents concerning the corresponding polymorphic viral family (more de-
tails in Subsection 5.2). This use of newly generated novel variants differentiates
our approach from all previous research that exclusively uses existing malware
samples from an online repository.

Other semantic-based research exists for different types of malware, includ-
ing: ShieldGen [41], which generates network signatures for unseen vulnerabili-
ties that are protocol-aware (for instance, the protocol mode with which an in-
vasive message can be posted); AutoRE [42], which produces a spam signature
creation architecture from spam emails that use botnets to detect them; and
Wurzinger et al.’s [43] approach, which identifies botnets that are under the in-
fluence of botmaster (malicious body) using network signatures by examining
the response from a compromised host to a received command and by generat-
ing detection models. ProVex [44] is also a semantic-based approach which ge-
nerates signatures to identify botnets that use encrypted command and control
(C&C) systems after being given the keys and decryption routine employed by
the malware using binary code reuse strategy, and is based on the research pro-
posed by Caballero et al.’s approach [45]. FIRMA [46], also a semantic-based
approach, can be employed to detect similar C&C systems but does not produce
signatures for these. A number of syntactic and semantic-based strategies were
proposed by Scheirer et al.’s approach [47] for the identification of many poly-
morphic worms and use intrusion detection techniques such as sliding window
schemes and instruction semantics, with further refinements by Scheirer et al. In
comparison to these semantic-based approaches, we propose a purely syntactic
approach which generates variable-length syntactic viral signatures that identify
known and unknown variants belonging to a polymorphic viral family, inde-
pendently of execution traces, and, critically for a syntactic approach, without
needing numerous infections for the purpose of malware association.

There has also been some related research on sequence alignment approaches
using a semantic approach in other security areas. For instance, sequence align-
ment was used to identify masquerade detection by comparing “audit data” (ac-
tual examples of attempted malicious activity via command line entry using au-
thenticated accounts) with legitimate user signatures extracted from their actual
command line entries [48]. Another example is intrusion detection [49], where
variable length patterns from training data consisting of system call traces of
commands under normal execution were analyzed by a sequence-based algo-
rithm called Teiresias. Other sequence alignment approaches that are based on

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 303 Journal of Information Security

semantics include Zhao et al.’s [50] approach, which generates signatures
through an inverse transcoding method by converting the malware sequential
information, such as system call sequences, propagation dataflow, etc., into
amino acid sequences and then aligning them using multiple sequence align-
ment tool. Ki et al.’s [51] approach generates sequences that are typical API call
sequence motifs of malicious activities belonging to several malware samples and
employed multiple sequence alignment tool to align those malware samples to
extract signatures. They then used data mining and machine learning algorithms
to calculate statistical measures, such as accuracy, precision, etc., to test the ex-
tracted signatures but did not test the signatures against new variants. MalGene
[52] uses sequence alignment techniques on two sequences of system call events
belonging to two different analysis environments: one environment in which the
malware evades the AVS, and the other in which it exhibits the malicious activi-
ties. These events are used to construct an “evasion signature” using sequence
alignment. However, this semantic approach requires system call sequences
from both analysis environments which in turn requires the use of system mon-
itoring, which adds an overhead. In contrast, our syntactic approach is indepen-
dent of any prior semantic knowledge. The syntactic approach most closely re-
lated to ours [53] adds nothing new to what was reported by Chen et al.’s ap-
proach in 2012 [28], and repeats the structural sequence alignment and data
mining approaches adopted in that paper and subsequently enhanced by [29]
[30] [31].

To conclude this section, previous use of sequence alignment has for the most
part been semantic in nature, relying on system behavior patterns rather than
code or structural patterns for the identification of malware or fraudulent activ-
ity. Also, because of their semantic nature, the generalizability of the results to
new variants created through polymorphism is unknown, as is the generalizabil-
ity, if any, of signatures to malware of different families. Our syntactic-driven
approach, on the other hand, is based on the intuition that most new (polymor-
phic) variants are simple syntactic alterations of existing malware. The “expres-
sive power” of signatures can be evaluated by identifying how well these signa-
tures generalize to new and unseen variants of the same family, all derived
through polymorphic (structural) changes to the code, as well as across different
families. The advantage of a syntactic approach is that no semantics is required.
That is, there is no need for an infection before a signature is generated. Finally,
most semantic approaches in the literature do not address the problem of false
positive rates. This is because there are many different ways that a program can
run and false positive rates may be impossible to quantify for signatures ex-
tracted from a limited number of execution traces on one variant of malware.
With a syntactic approach, on the other hand, signatures can be checked against
static code and objects, including files, without needing to execute any code. For
instance, one method of distributing malware is to generate new polymorphic
variants and store them undetected in user files until triggered, and syntactic

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 304 Journal of Information Security

signatures may be effective in catching such variants before execution. The ad-
vantages of a syntactic approach are obvious for future smart AVS technology,
but so far there has been very little attempt to analyze the effectiveness of a
purely syntactic approach systematically and across different malware families.
For instance, the signatures generated from our approach are able to satisfy the
false positive rate requisite of 0.1%. More importantly, as will be shown below,
the number of malware training examples needed to extract a signature for use
against unseen test examples is surprisingly small given the sequence alignment
approach adopted in our experiments.

4. Problem Statement

Our previous work [29] [30] [31] has shown that sequence alignment techniques
supplemented with Smith-Waterman algorithm lead to signatures that genera-
lized successfully to unseen but previously known variants of polymorphic vi-
ruses. This prior work adopted a fixed combination of gap open and gap extend
penalties for the automatic generation of virus signatures. However, it is not
known how well this method generalizes to new, unknown variants or what the
effect of gap penalties is. In this paper, we use ten different combinations of gap
open and gap extend penalties to determine whether changes in these penalty
parameters can help to identify signatures for known as well as unknown poly-
morphic variants which we generate in the laboratory, thereby extending the
ability of future AVSs to identify variants not previously encountered.

5. Systems and Methods
5.1. Technical Safeguards

Hex (Hexadecimal) dump extraction (Step-1) and testing (Step-8) were under-
taken on a stand-alone system to prevent possible unintended infection of other
systems. Downloading of polymorphic malware (and known variants) as well as
the generation of unknown variants was performed using “Oracle VM Virtual-
Box” [54] (an x86 software package with virtualization capability) with a
pre-installed Linux-based (Ubuntu) operating system image. Due to possible
security sensitivity, some of the methods below (Step-1 and Step-8) are not de-
scribed in detail, especially details concerning generating hex dumps from po-
lymorphic malware, which are omitted. Interested readers are requested to con-
tact the corresponding author, using their academic email addresses, for further
information. Our method consists of eight steps (see Figure 1 below).

5.2. Hex Dump Extraction

JS. Cassandra virus was written in 2003 by a virus author known as ‘Second Part
To Hell/SPTH’ in Austria. Unlike any other JavaScript virus, JS. Cassandra is
comprised of four distinct polymorphic engines: polymorphic engine I, which in-
cludes Garbage or Junk codes; polymorphic engine II, which modifies its Body
(Body Changing); polymorphic engine III, which modifies its Variables (Variable

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 305 Journal of Information Security

Figure 1. Biosequence analysis method comprising of eight steps.

Changing); and polymorphic engine IV, which modifies its Numbers (Number
Changing) [55] [56]. The original JS. Cassandra virus with its source code was
downloaded from the virus author’s (Second Part to Hell) website [55]. All 351
known (existing) polymorphic variants of the JS. Cassandra virus were success-
fully retrieved [57].

Win32.Cholera/W32.Cholera/W32.CTX is a polymorphic virus which attacks
executable PE (Portable Executable) files and was first identified in 2010. This
virus is programmed in assembly language, and it employs an EPO (Entry Point
Obfuscation) approach, which makes its identification difficult [58] [59]. The
original source files were downloaded from “VX Heaven” [60] website. 198 new
polymorphic variants of “W32.Cholera” virus were generated by executing one
of the original virus files (in this case, a file named “Virus.Win32.CTX.10853”).

Win32.Kitti/W32.Kitti is a polymorphic virus which works with the help of an
overlapping code as an obfuscation technique and was first identified in 2011.

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 306 Journal of Information Security

This virus modifies its instructions to create new instructions with the same se-
mantics but a different structure using an overlapping code process [61] [62]
[63]. The original virus file along with its source code in assembly language was
downloaded from the “Second Part to Hell” [64] website. 1105 new polymorphic
variants of “W32.Kitti” virus were generated by executing the original virus file
(in this case a file named ‘oc.exe’).

The method consists of 8 steps, summarized as follows. Step-1 deals with virus
code variant generation and separating the training set from the test set. Step-2
deals with converting the hex code into a form acceptable for sequence align-
ment. Because variant generation leads to variable length code, Step-3 deals with
the process of first pairwise (local) sequence alignment on the training set using
the SWA to produce equal-length sequences for consensus extraction. Gap open
and gap close penalties are introduced in this step. Step-4 deals with the extrac-
tion of common training subsequences (i.e. consensuses, or signatures) using a
similarity measure. Step-5 deals with the process of multiple sequence alignment
on these training signatures. Step-6 deals with the extraction of consensuses after
the process of multiple sequence alignment. Step-7 deals with the process of
second pairwise (local) sequence alignment between the consensuses (obtained
from Step-6) and training set (obtained from Step-2) using the SWA and extrac-
tion of meta-signatures. Lastly, Step-8 deals with converting signatures back into
viral hex code for the purposes of signature and meta-signature testing. More
details concerning each step are provided below.

Summarizing our method, sequence alignment works on variable length viral
hex strings to produce equal length hex strings through opening and closing
gaps. These equal length strings can be analyzed to produce first-level consen-
suses (signatures), which represent common subsequences at specific locations
for the pairwise alignments. These consensuses/signatures can themselves be
analyzed using multiple sequence alignment to produce second-level raw con-
sensuses that can be further analyzed to identify similarities with each other to
produce meta-signatures for the six variants in that test family. These me-
ta-signatures are then used to test against all existing variants.

Step-1 (Virus code variant generation): The JS. Cassandra virus and all its
known variants were written in the JavaScript programming language, and their
source code was readily available. Five variants out of the 351 known variants
were taken for our training purposes plus the original “JS. Cassandra.js” virus (a
total of six variants). In the case of the W32.CTX virus, five variants out of 198
newly generated polymorphic variants were taken for our training purposes plus
the original “Virus.Win32.CTX.10853” virus (a total of six variants). In the case
of the W32.Kitti virus, five variants of the 1105 newly generated polymorphic
variants were taken for our training purpose as well as the original “oc.exe” virus
(a total of six variants). New variant generation was achieved by using informa-
tion obtained from various sources concerning polymorphic versions (details
available on request). The percentage of training to test ratio of training variants

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 307 Journal of Information Security

for JS. Cassandra virus is 1.7% (6:352), for W32.CTX virus is 3.01% (6:199), and
for W32.Kitti virus is 0.54% (6:1106). A CRC32b hash value was generated for
each of these 18 training variants and no duplicates were found, indicating that
they were unique. Only six variants (the original plus five variants in each case)
are chosen for training (i.e. for generating signatures and meta-signatures) in
line with previous work [29] [30] [31].

All 18 training variants were checked using the “VirusTotal” [65] (a free on-
line scanner for malware) website to confirm that malicious functionality was
preserved in the 18 variants. “VirusTotal” employs 55 well-known AVS products
and so provides good assurance that our variant generation for the W32.CTX
and W32.Kitti viruses was effective. Table 1 gives the detection ratio based on
the 55 state-of-the-art AVS products obtained from the “VirusTotal” website for
the 18 training variants, indicating that on average only 53.69% and 73.33% of
the 55 AVS products successfully detected the 15 variants and three original po-
lymorphic viruses, respectively. Hex dumps were then extracted from the 18 va-
riants using “sigtool” (available on the ClamAV (“Clam AntiVirus”) [66] web-
site). A severely reduced proportion of training to test samples was used to re-
flect the current difficulty in identifying signatures that generalize from a small,

Table 1. Detection ratio based on the 55 state-of-the-art AVS products obtained from the
VirusTotal website for the 18 malicious variants.

Polymorphic Malware 1 Filename Detection Ratio

JS. Cassandra Virus

JS. Cassandra.js (Original Virus) 39/55

v_000.js (Variant 1) 19/55

v_002.js (Variant 2) 21/55

v_003.js (Variant 3) 15/55

v_004.js (Variant 4) 17/55

v_005.js (Variant 5) 17/55

Polymorphic Malware 2 Filename Detection Ratio

W32.CTX/W32.Cholera
Virus

W32.CTX.Cholera.Virus.10853
(Original Virus)

38/55

actmovie.exe (Variant 1) 41/55

cisvc.exe (Variant 2) 42/55

dcomcnfg.exe (Variant 3) 37/55

forcedos.exe (Variant 4) 39/55

MRT.exe (Variant 5) 39/55

Polymorphic Malware 3 Filename Detection Ratio

W32.Kitti Virus

OC.exe (Original Virus) 44/55

absdmfcj.exe (Variant 1) 41/55

adehsjud.exe (Variant 2) 41/55

crilunah.exe (Variant 3) 44/55

nafybgho.exe (Variant 4) 12/55

nalgjahg.exe (Variant 5) 18/55

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 308 Journal of Information Security

previously encountered set of known variants to a potentially infinite set of new
variants.

5.3. Hex to Amino Acid Conversion

Step-2 (Converting the viral code into a form acceptable for sequence
alignment): In this step, the extracted 18 hex dump sequences belonging to the
three polymorphic malware families were converted into amino acid sequences.
Conversion of hexadecimal into amino acid sequences for input to JAligner [67]
was performed using the rules shown in Table 2. A short example of the conver-
sion of hexadecimal code into 16 amino acid characters is shown below:

4d5a800001000000 (16-bit hexadecimal code)
KDLAQGGGGHGGGGGGG (16 amino acid characters)

5.4. First Pairwise (Local) Sequence Alignment and Signature
Extraction

The string matching SWA was used to perform pairwise local alignment and to
extract the most common substring/pattern from the three different families of
polymorphic variants. Signature and meta-signature in this section are defined
as follows. A signature is a single string (or a common substring/pattern) that
can identify a single or (in some cases) a few known and unknown variants,
whereas a meta-signature is a string (or a common substring/pattern) that can
identify most or all known variants as well as some or all unknown (or new) va-
riants.

Step-3 (First pairwise (local) sequence alignment using the SWA): In this
step, a pairwise (local) alignment was performed on all six training strings for
each family using the SWA with an ID substitution matrix (i.e. alignment was
performed through matching in particular positions rather than preloaded bio-
logically informed mutation rates) between two sequential converted amino acid
sequences using JAligner [67]. Ten different combinations of gap open and gap
extend penalties were used while conducting the pairwise local alignments. A
gap penalty of zero means no penalty for any gaps introduced in the alignment

Table 2. Rules for converting hexadecimal into amino acid.

Hexadecimal Amino Acid Hexadecimal Amino Acid

0 G 8 Q

1 H 9 P

2 I a A

3 R b B

4 K c C

5 L d D

6 M e E

7 N f F

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 309 Journal of Information Security

[68] [69]. In our case, we have six variants, i.e. V1, V2, V3, V4, V5 and V6
(where V1 is the original virus and V2-V6 are its polymorphic variants). For in-
stance, between V1 and V2, ten different combinations of gap open and gap ex-
tend penalties were applied, which led to ten different pairwise local alignments.
We applied a similar procedure on the remaining four pairs i.e. on V2 and V3,
V3 and V4, V4 and V5, and V5 and V6, respectively. In total, 150 pairwise local
alignments were carried out in this step, 50 for each of the three viruses. In the
case of the W32.Kitti virus, only the first 46,000 amino acid characters (i.e.
around 18.5%) were aligned due to the significantly longer lengths of amino acid
sequences belonging to its six variants. In the case of amino acid sequences, JA-
ligner [67] allows pairwise alignment of two sequences of maximum combined
sequence length of up to 92,000, only after dedicating the initial Java memory
size of 13,312 MB and maximum heap memory size of 15,360 MB to JAligner.

Step-4 (Extraction of signatures): After the local alignment process, com-
mon substrings, or signatures, from the pairwise local alignments which had the
highest percentage of identities and similarities were extracted (i.e. a threshold of
85% and over), resulting in 57 common substrings from the 61 pairwise local
alignments. Ten common substrings were extracted from the 26 pairwise local
alignments for the JS. Cassandra virus, 17 from the ten pairwise local alignments
for W32.CTX/W32.Cholera virus and 30 from the 25 pairwise local alignments
for W32.Kitti virus. The minimum and maximum sequence lengths of signatures
obtained for JS. Cassandra virus were 53 and 198, respectively, with a mean
(sum, median and standard deviation of 1064, 107 and 45.563, respectively) of
106.4 for ten signatures in their amino acid representation. The minimum and
maximum sequence lengths of signatures obtained for W32.CTX virus were 30
and 1069, respectively, with a mean (sum, median and standard deviation of
7410, 276 and 397.665, respectively) of 436 for 17 signatures in their amino acid
representation. The minimum and maximum sequence lengths of signatures
obtained for W32.Kitti virus were 790 and 1868, respectively, with a mean (sum,
median and standard deviation of 50,662, 1868 and 407.706, respectively) of
1689 for 30 signatures in their amino acid representation.

5.5. Multiple Sequence Alignment and Consensus Extraction

Step-5 (Multiple sequence alignment on signatures): In this step, a multiple
alignment was performed on the signatures (i.e. common substrings) obtained
in Step-4 using T-Coffee [70] available on the EMBL-EBI website, with align-
ment being constrained to the ID matrix. In total, three separate multiple align-
ments were performed (i.e. on 10, 17 and 30 signatures, respectively), one for
each of the three polymorphic malware types. The main purpose of alignment
here is to produce second-level consensuses (more details in Step-6).

Step-6 (Extraction of consensuses after multiple sequence alignment):
T-Coffee [70], similar to other alignment tools, produces a consensus sequence
that represents the most common residues (amino acid representations) in each

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 310 Journal of Information Security

position of multiple sequences after alignment. In this step, the consensus was
stored and the process was repeated three times, once for each polymorphic
malware. Three consensuses were extracted in this step. One of these consensus-
es with a sequence length of 203 for the JS. Cassandra virus is shown below in
hex representation:

4a4e4f49da598f4a09cad3585d1a0b9c9bdd5b990a13585d1a0b9c985b991bdb4a
0a4a8e4e4e4e4a4ac9cf4f49cad3585d1a0b9c9bdd5b990a13585d1a0b9c985b991bd
b4a0a4a8e4e4e4e4a4ac9ca49cad4dd1c9a5b99cb999c9bdb50da185c90dbd9194a0

5.6. Second Pairwise (Local) Sequence Alignment and
Meta-Signature Extraction

Step-7 (Second pairwise (local) sequence alignment using the SWA and Ex-
traction of meta-signatures): In this step, a pairwise (local) alignment between
the consensus and the sequence of the original virus/variant was performed us-
ing the SWA with an ID matrix using JAligner [67]. In total, three separate pair-
wise local alignments were performed, one for each type of polymorphic mal-
ware. The fixed combination of gap open (i.e. 10) and gap extend (i.e. 1) penalty
(as used in [29] [30] [31]) was used in this step. The outcome of this alignment is
a common substring, or meta-signature, that will be used to detect all the known
(and the unknown/new) polymorphic variants of that family. In total, three me-
ta-signatures for JS. Cassandra virus, three meta-signatures for W32.CTX/Cholera
virus and five meta-signatures for W32.Kitti virus were extracted in this step.
One of the eleven common substrings (i.e. the meta-signatures) of sequence
length 56 obtained from this step for the JS. Cassandra virus is shown below in
hex representation:

28272b4d6174682e726f756e64284d6174682e72616e646f6d28292a

5.7. Amino Acid to Hex Conversion and Meta-Signature
(and Signature) Testing

Step-8 (Converting the sequences back into viral hex code and signature
testing): In this final step, the eleven meta-signatures from Step-7 (and the 57
signatures obtained in Step-4) in their amino acid sequence representation were
converted back to hexadecimal format for testing purposes. The eleven hex me-
ta-signatures and the 57 signatures obtained in Step-4 were tested against the
three polymorphic malware types along with their known and unknown variants
using ClamAV (i.e. Clamscan antivirus scanner) software. One of the eleven hex
meta-signatures, with a sequence length 76, obtained from this step for the JS.
Cassandra virus is shown below:

393939292b273d3d272b4d6174682e726f756e64284d6174682e72616e646f6d28
292a393939

5.8. Summary

By downloading the JS. Cassandra polymorphic virus and its known variants in

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 311 Journal of Information Security

its original JavaScript coding as well as generating new (unknown) variants of
the other two viruses, the authenticity of the variants has been assured. By
checking all 18 training variants against a number of AVS systems, we have pro-
vided assurance that these variants are genuinely malicious. The first pairwise
alignment was conducted using ten different combinations of gap open and gap
extend penalties, and the second pairwise alignment was conducted using a fixed
combination of gap open (i.e. 10) and gap extend penalty (i.e. 1). There were no
gap open and gap extend penalty options available for the process of multiple
sequence alignment. After signature extraction, all biologically-represented sig-
natures and meta-signatures were converted back to hex code for evaluation
(details below). All the signature/meta-signature testing against the polymorphic
variants was conducted using the latest version of the Clamscan antivirus scan-
ner [66].

6. Results and Evaluation of State-of-the-Art AVS Products

Table 3 provides the results of the pairwise local alignments that were per-
formed in Step-3. Only the desired pairwise local alignment results with the
highest percentage of identities and similarities are shown in Table 3.

From Table 3, it can be seen that the percentages of identities and similarities
were higher than 85%, indicating that there were high percentages of the code
conserved in the sequences. In the case of W32.Kitti virus, the percentage of
identities and similarities was 100%. In the case of W32.CTX virus, the percen-
tages of identities and similarities were over 94% and in some cases 100%. As
expected, Table 3 indicates that the amount of gap increases with lower gap
open penalties (see Columns “Gap Open Penalty” and “Gaps Percentage”), indi-
cating that the amount of insertions or deletions to maximize the amount of
matches was also lower. In previously adopted methods [29] [30] [31] a fixed
combination of gap open (i.e. 10) and gap extend (i.e. 1) penalty was used. The
work reported here has instead explored various combinations of gap open and
gap extend penalties (conducted in Step-3) to explore the effect of these penalties
on variant detection. It can be seen from the results in Table 3 that the percen-
tages of identities and similarities were higher (i.e. over 97%) when the gap open
and gap extend penalties were higher, indicating that the (pairwise local) align-
ments were compact, thereby restricting the amount of gaps (with lower gap
percentages) and increasing their importance (see Columns “Gap Open Penal-
ty”, “Gap Extend Penalty” and “Gaps Percentage” in Table 3).

Tables 4-6 provide the detection rate results for the three malware types along
with their known and unknown variants. The detection was carried out using
Clamscan and the most effective signatures obtained in Step-4. The most effec-
tive signatures were determined to be the signatures that detected over 90% of
the variants. These signatures were placed inside our own generated (.ndb) da-
tabase [29], which is used by Clamscan as a recommended database file format
for signature testing purposes. Detection performance for each of the three viruses

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 312 Journal of Information Security

Table 3. Results of the pairwise local alignments that were performed in Step-3.

Polymorphic
Malware 1

Pairwise Alignment
Gap Open

Penalty
Gap Extend

Penalty
Identity

Percentage
Similarity
Percentage

Gaps
Percentage

Alignment
Length

Alignment
Score

JS. Cassandra
Virus

Original JS. Cassandra
virus and Variant 1

15 1 98.51% 98.51% 1.49% 134 116.00

20 0.5 98.51% 98.51% 1.49% 134 111.50

20 1 98.51% 98.51% 1.49% 134 111.00

25 0.5 100.00% 100.00% 0.00% 108 108.00

25 1 100.00% 100.00% 0.00% 108 108.00

Variant 1 and Variant 2

15 1 88.84% 88.84% 11.16% 215 139.00

20 0.5 88.84% 88.84% 11.16% 215 140.00

20 1 100.00% 100.00% 0.00% 138 138.00

25 0.5 100.00% 100.00% 0.00% 138 138.00

25 1 100.00% 100.00% 0.00% 138 138.00

Variant 2 and Variant 3

15 1 100.00% 100.00% 0.00% 106 106.00

20 1 100.00% 100.00% 0.00% 106 106.00

25 0.5 100.00% 100.00% 0.00% 106 106.00

25 1 100.00% 100.00% 0.00% 106 106.00

Variant 3 and Variant 4

10 1 95.19% 95.19% 4.81% 208 170.00

15 0.5 95.19% 95.19% 4.81% 208 164.00

15 1 95.19% 95.19% 4.81% 208 160.00

20 0.5 95.19% 95.19% 4.81% 208 154.00

20 1 95.19% 95.19% 4.81% 208 150.00

25 0.5 95.19% 95.19% 4.81% 208 144.00

25 1 95.19% 95.19% 4.81% 208 140.00

Variant 4 and Variant 5

10 1 100.00% 100.00% 0.00% 198 198.00

15 1 100.00% 100.00% 0.00% 198 198.00

20 1 100.00% 100.00% 0.00% 198 198.00

25 0.5 100.00% 100.00% 0.00% 198 198.00

25 1 100.00% 100.00% 0.00% 198 198.00

Polymorphic
Malware 2

Pairwise Alignment
Gap Open

Penalty
Gap Extend

Penalty
Identity

Percentage
Similarity
Percentage

Gaps
Percentage

Alignment
Length

Alignment
Score

W32.CTX/W32.
Cholera
Virus

Original W32.CTX virus
and Variant 1

25 1 99.29% 99.29% 0.71% 1553 1507.00

Variant 1 and Variant 2 5 1 96.15% 96.15% 3.85% 2309 2015.00

Variant 2 and Variant 3 10 1 96.41% 96.41% 3.59% 2060 1804.00

Variant 3 and Variant 4 5 1 94.40% 94.40% 5.60% 2017 1707.00

Variant 4 and Variant 5

10 1 100.00% 100.00% 0.00% 736 736.00

15 1 100.00% 100.00% 0.00% 736 736.00

20 0.5 100.00% 100.00% 0.00% 736 736.00

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 313 Journal of Information Security

Continued

20 1 100.00% 100.00% 0.00% 736 736.00

25 0.5 100.00% 100.00% 0.00% 736 736.00

25 1 100.00% 100.00% 0.00% 736 736.00

Polymorphic
Malware 3

Pairwise Alignment
Gap Open

Penalty
Gap Extend

Penalty
Identity

Percentage
Similarity
Percentage

Gaps
Percentage

Alignment
Length

Alignment
Score

W32.Kitti
Virus

Original W32.Kitti virus
and Variant 1

5 1 86.35% 86.35% 13.65% 3297 2061.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 1 and Variant 2

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 2 and Variant 3

5 1 88.12% 88.12% 11.88% 3266 2130.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 3 and Variant 4

5 1 88.18% 88.18% 11.82% 3265 2129.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

Variant 4 and Variant 5

5 0.5 87.03% 87.03% 12.97% 3285 2349.00

5 1 90.51% 90.51% 9.49% 3225 2217.00

10 1 100.00% 100.00% 0.00% 1868 1868.00

15 1 100.00% 100.00% 0.00% 1868 1868.00

20 1 100.00% 100.00% 0.00% 1868 1868.00

25 1 100.00% 100.00% 0.00% 1868 1868.00

was measured using the following metrics: true positive rate (sensitivity), true
negative rate (specificity), positive predictive value (precision), detection ratio
(accuracy) and F1 score (the harmonic mean of the positive predictive value and
true positive rate) and are presented in Tables 4-6. In total, 57 signatures were
tested, but only the results using the most effective signatures are shown in
Tables 4-6.

The performance of our virus detection method was compared with that of
the top commercial products available at the time of the research in 2016 as

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 314 Journal of Information Security

Table 4. Detection rates for detection of JS. Cassandra Polymorphic Malware and its known variants by testing the Top Five 2016
[71] state-of-the-art AVS products and our top signatures obtained in Step-4 using Clamscan.

Polymorphic
Malware

Pairwise Alignment/AVS
Product

Top Five State-of-the-art AVS Products and
Our Top Signatures (S)

Detection Ratio (with Accuracy) and
Statistical Measures

JS. Cassandra
Virus

AntiVirus Ranked No. 1 Bitdefender Antivirus

Detection Ratio (Accuracy) 1/352 (0.2841%)

Sensitivity/Recall 0.2841%

Specificity 0.00%

Precision 100.00%

F1 Score 0.5666%

AntiVirus Ranked No. 2 Kaspersky Anti-Virus

Detection Ratio (Accuracy) 1/352 (0.2841%)

Sensitivity/Recall 0.2841%

Specificity 0.00%

Precision 100.00%

F1 Score 0.5666%

AntiVirus Ranked No. 3 McAfee AntiVirus

Detection Ratio (Accuracy) 152/352 (43.18%)

Sensitivity/Recall 43.18%

Specificity 0.00%

Precision 100.00%

F1 Score 60.31%

AntiVirus Ranked No. 4 Norton Security

Detection Ratio (Accuracy) 5/352 (1.42%)

Sensitivity/Recall 1.42%

Specificity 0.00%

Precision 100.00%

F1 Score 2.80%

AntiVirus Ranked No. 5 F-Secure Anti-Virus

Detection Ratio (Accuracy) 1/352 (0.2841%)

Sensitivity/Recall 0.2841%)

Specificity 0.00%

Precision 100.00%

F1 Score 0.5666%

Original JS. Cassandra virus and
Variant 1

S1

Detection Ratio (Accuracy) 340/352 (96.59%)

Sensitivity/Recall 96.59%

Specificity 0.00%

Precision 100%

F1 Score 98.26%

Variant 1 and Variant 2 S4

Detection Ratio (Accuracy) 339/352 (96.31%)

Sensitivity/Recall 96.31%

Specificity 0.00%

Precision 100%

F1 Score 98.12%

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 315 Journal of Information Security

Continued

Variant 2 and Variant 3

S5, S8

Detection Ratio (Accuracy) 339/352 (96.31%)

Sensitivity/Recall 96.31%

Specificity 0.00%

Precision 100%

F1 Score 98.12%

S6

Detection Ratio (Accuracy) 325/352 (92.33%)

Sensitivity/Recall 92.33%

Specificity 0.00%

Precision 100%

F1 Score 96.01%

S7

Detection Ratio (Accuracy) 340/352 (96.59%)

Sensitivity/Recall 96.59%

Specificity 0.00%

Precision 100%

F1 Score 98.26%

Variant 3 and Variant 4 S10

Detection Ratio (Accuracy) 325/352 (92.33%)

Sensitivity/Recall 92.33%

Specificity 0.00%

Precision 100%

F1 Score 96.01%

reported by the “TopTenReviews” [71] website. The top five AVS products in
this listing were tested using the same three viruses along with their known and
unknown variants, and the results are presented in Tables 4-6.

From Tables 4-6, it can be seen that most of our signatures obtained in Step-4
detected the polymorphic variants, except for two of the 57 signatures that de-
tected none of the variants (not shown in Tables 4-6). In the case of W32.Kitti
virus, for 26 out of the 28 most effective signatures the detection rates were 100%
and for the remaining two, the detection rates were over 99% (Table 6). In the
case of W32.CTX virus, for four out of the eight most effective signatures the
detection rates were 100% and for the remaining four, the detection rates were
over 91% (Table 5). For the JS. Cassandra virus, the detection rates were above
92% using seven of the 12 signatures (Table 4). From Tables 4-6 (based on the
detection ratio, accuracy and statistical measures, such as sensitivity, specificity,
etc., needed for malware detection), it can also be seen that none of the top five
AVS products fully detected the polymorphic variants except for the Kaspersky
Anti-Virus, which successfully detected all of the new polymorphic variants of
the W32.Kitti virus. In some cases, the top five AVS products could only suc-
cessfully detect the original virus and none of its variants (either known or un-
known).

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 316 Journal of Information Security

Table 5. Detection rates for detection of W32.CTX/W32.Cholera Polymorphic Malware and its new/unknown variants by testing
the Top Five 2016 [71] state-of-the-art AVS products and our top signatures obtained in Step-4 using Clamscan.

Polymorphic
Malware

Pairwise Alignment/AVS
Product

Top Five State-of-the-art AVS Products and
Our Top Signatures (S)

Detection Ratio (with Accuracy) and
Statistical Measures

W32.CTX/W32.
Cholera Virus

AntiVirus Ranked No. 1 Bitdefender Antivirus

Detection Ratio (Accuracy) 176/200 (88.00%)

Sensitivity/Recall 88.00%

Specificity 0.00%

Precision 100.00%

F1 Score 93.62%

AntiVirus Ranked No. 2 Kaspersky Anti-Virus

Detection Ratio (Accuracy) 86/200 (43.00%)

Sensitivity/Recall 43.00%

Specificity 0.00%

Precision 100.00%

F1 Score 60.14%

AntiVirus Ranked No. 3 McAfee AntiVirus

Detection Ratio (Accuracy) 27/200 (13.50%)

Sensitivity/Recall 13.50%

Specificity 0.00%

Precision 100.00%

F1 Score 23.79%

AntiVirus Ranked No. 4 Norton Security

Detection Ratio (Accuracy) 177/200 (88.50%)

Sensitivity/Recall 88.50%

Specificity 0.00%

Precision 100.00%

F1 Score 93.89%

AntiVirus Ranked No. 5 F-Secure Anti-Virus

Detection Ratio (Accuracy) 191/200 (95.50%)

Sensitivity/Recall 95.50%

Specificity 0.00%

Precision 100.00%

F1 Score 97.69%

Variant 1 and Variant 2 S4

Detection Ratio (Accuracy) 183/200 (91.50%)

Sensitivity/Recall 91.50%

Specificity 0.00%

Precision 100%

F1 Score 95.56%

Variant 2 and Variant 3 S7

Detection Ratio (Accuracy) 189/200 (94.50%)

Sensitivity/Recall 94.50%

Specificity 0.00%

Precision 100%

F1 Score 97.17%

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 317 Journal of Information Security

Continued

Variant 3 and Variant 4

S12

Detection Ratio (Accuracy) 189/200 (94.50%)

Sensitivity/Recall 94.50%

Specificity 0.00%

Precision 100%

F1 Score 97.17%

S13, S15-S16

Detection Ratio (Accuracy) 200/200 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

S14

Detection Ratio (Accuracy) 192/200 (96.00%)

Sensitivity/Recall 96.00%

Specificity 0.00%

Precision 100%

F1 Score 97.96%

Variant 4 and Variant 5 S17

Detection Ratio (Accuracy) 200/200 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

The eleven meta-signatures, obtained from Step-7, were tested on the three

viruses along with their known and unknown variants using Clamscan by plac-
ing these meta-signatures inside our own generated (.ndb) database [29]. Figure
2 shows that all 352 (accuracy of 100%) JS. Cassandra variants (including the
original virus) were successfully detected by the Clamscan antivirus scanner us-
ing our .ndb database. One of the three meta-signatures obtained for JS. Cassan-
dra in Step-7 detected all 352 JS. Cassandra variants (output is shown in Figure
2). Two of the other three meta-signatures detected 340 out of 352 (with an ac-
curacy of 96.59%) and 15 out of 352 (with an accuracy of 4.26%) JS. Cassandra
variants, respectively. Figure 3 shows that all 200 of the W32.CTX variants (in-
cluding the two original viruses) were successfully detected by the Clamscan an-
tivirus scanner. Figure 4 shows that all 1106 of the W32.Kitti variants (including
the original virus) were successfully detected by one of the three successful (with
100% accuracy) meta-signatures. The remaining two out of the overall five me-
ta-signatures detected none of the 1106 variants. One of the three meta-signatures
obtained for the W32.CTX virus in Step-7 detected all 200 W32.CTX variants (as
shown in Figure 3) while another detected 189 of the 200 variants (94.5% accu-
racy). However, the final meta-signature detected only 19 of the 200 W32.CTX
variants (9.5% accuracy). None of the scans (as shown in Figures 2-4) took

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 318 Journal of Information Security

Table 6. Detection rates for detection of W32.Kitti Polymorphic Malware and its new/unknown variants by testing the Top Five
2016 [71] state-of-the-art AVS products and our top signatures obtained in Step-4 using Clamscan.

Polymorphic
Malware

Pairwise Alignment/AVS
Product

Top Five State-of-the-art AVS Products
and Our Top Signatures (S)

Detection Ratio (with Accuracy) and Statistical
Measures

W32.Kitti
Virus

AntiVirus Ranked No. 1 Bitdefender Antivirus

Detection Ratio (Accuracy) 324/1106 (29.29%)

Sensitivity/Recall 29.29%

Specificity 0.00%

Precision 100.00%

F1 Score 45.31%

AntiVirus Ranked No. 2 Kaspersky Anti-Virus

Detection Ratio (Accuracy) 1106/1106 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

AntiVirus Ranked No. 3 McAfee AntiVirus

Detection Ratio (Accuracy) 293/1106 (26.49%)

Sensitivity/Recall 26.49%

Specificity 0.00%

Precision 100.00%

F1 Score 41.88%

AntiVirus Ranked No. 4 Norton Security

Detection Ratio (Accuracy) 450/1106 (40.69%)

Sensitivity/Recall 40.69%

Specificity 0.00%

Precision 100.00%

F1 Score 57.84%

AntiVirus Ranked No. 5 F-Secure Anti-Virus

Detection Ratio (Accuracy) 333/1106 (30.11%)

Sensitivity/Recall 30.11%

Specificity 0.00%

Precision 100.00%

F1 Score 46.28%

Original W32.Kitti virus and
Variant 1

S1-S6

Detection Ratio (Accuracy) 1106/1106 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

Variant 1 and Variant 2 S7-S10

Detection Ratio (Accuracy) 1106/1106 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 319 Journal of Information Security

Continued

Variant 2 and Variant 3

S11, S13-S16

Detection Ratio (Accuracy) 1106/1106 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

S12

Detection Ratio (Accuracy) 1105/1106 (99.91%)

Sensitivity/Recall 99.91%

Specificity 0.00%

Precision 100.00%

F1 Score 99.95%

Variant 3 and Variant 4

S17, S19-S22

Detection Ratio (Accuracy) 1106/1106 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision 100.00%

F1 Score 100.00%

S18

Detection Ratio (Accuracy) 1105/1106 (99.91%)

Sensitivity/Recall 99.91%

Specificity 0.00%

Precision 100.00%

F1 Score 99.95%

Variant 4 and Variant 5 S23, S25, S27-S30

Detection Ratio (Accuracy) 1106/1106 (100.00%)

Sensitivity/Recall 100.00%

Specificity 0.00%

Precision and F1 Score 100.00%

Figure 2. Screenshot of the scan result obtained from Clamscan antivirus
scanner for 352 JS. Cassandra viral variants using the meta-signature.

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 320 Journal of Information Security

Figure 3. Screenshot of the scan result obtained from Clamscan antivirus scanner
for 200 W32.CTX viral variants using the meta-signature.

Figure 4. Screenshot of the scan result obtained from Clamscan antivirus scanner
for 1106 W32.Kitti viral variants using the meta-signature.

longer than 15 seconds, with most taking just a couple of seconds. Six signatures
(i.e. three signatures and three meta-signatures) were checked for false positives
on 8173 Windows system files: one signature and two meta-signatures obtained
for JS. Cassandra virus, one signature and one meta-signature obtained for
W32.Kitti virus, and one signature obtained for W32.CTX virus. Figure 5 shows
that only two of the 8173 Windows system files were detected as false positives

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 321 Journal of Information Security

Figure 5. Screenshot of the scan result obtained from Clamscan antivirus scanner for
8173 Windows system files using the six signatures.

(0.024% false positive rate) using the six signatures, satisfying the false positive
rate requisite of 0.1%.

7. Conclusions

The aim of our research was to test whether increasingly sophisticated gap open
and extend penalties help to produce signatures capable of capturing new poly-
morphic variants. The results indicate that relatively sophisticated gap penalties
captured known variants (training set) of JS. Cassandra virus (see Figure 2).
Furthermore, the increasingly sophisticated gap penalties captured unknown va-
riants (test set) of W32.CTX and W32.Kitti viruses, respectively, indicating the
feasibility of more sophisticated gap open and gap extend facilities (see Figure 3
and Figure 4). Remarkably, our research demonstrated that it is possible to
detect known (training set) as well as unknown (test sets) variants using the
training signatures obtained from a very small proportion (typically 3% and be-
low) of training variants of that test family. Detection of test variants using the
training signatures could revolutionize our understanding on the detection and
generation of polymorphic variants. The three virus families selected are 5 - 11
years old. But as our analysis shows, current AVS products still cannot success-
fully and consistently identify all their known variants (see Table 1, Table 4,
Table 5 and Table 6).

As can be seen from our research, significant concerns exist as to whether
modern AVS software systems can or will identify new/unknown (future) va-
riants of polymorphic malware. The ultimate goal for any future, smart AVS
would be to identify all potential new/unknown (future) polymorphic variants

https://doi.org/10.4236/jis.2017.84020

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 322 Journal of Information Security

utilizing a syntactic method to detect variants both within a virus family as well
as across virus families. Our findings show that increasing the gap open and gap
extend penalties decreases the number of gaps (in some cases to the point where
no gaps exist) in the final alignment (see Columns “Gap Open Penalty”, “Gap
Extend Penalty” and “Gaps Percentage” in Table 3). Moreover, the signatures
obtained from the alignment with few or no gaps have proven to be more effec-
tive and successful in detecting known and unknown polymorphic variants than
alignment with many gaps. From the results provided in Tables: Tables 3-5, it
can be concluded that some of the final alignments, i.e., those with gap percen-
tages of 0.5 or higher, have moderately effective signatures (an accuracy of less
than 100%). From the results presented in Table 1 and Table 6, it can be con-
cluded that the final alignments with no gap percentages (i.e. 0.00%) have highly
effective signatures (i.e. with an accuracy of 100%). Most importantly, the results
from Table 3 indicate that the conversion of malware code into biological re-
presentations has served the task of identifying common code subsequences.

Future work: While gap extend and gap open penalties are used in Step-3 to
extract first-level signatures, the effect of such penalties on meta-signature ex-
traction also requires investigation. The meta-signatures generated are currently
linear. Conversion of these linear signatures to rule-based templates will need to
be undertaken to compress their representation.

Limitations of our study: Our focus on well-known and historic viruses does
not take into account the rapid evolution of other forms of malware, such as
ransomware and DDoS attacks that involve external manipulation. Furthermore,
we do not take into account the unknown (new) variants generated from poly-
morphic virus construction kits. Building such a library of unknown polymor-
phic variants will allow us to investigate the impact of a new polymorphic mal-
ware detection system in relation to old and existing malware variants. However,
nearly all malware has a self-replicating component irrespective of its function.
On the assumption that our signatures and meta-signatures are capturing essen-
tial aspects of malware replication, the results described here may be applicable
to other malware types (not just viruses or worms) that also involve a replication
step.

References
[1] Symantec Internet Security Threat Report (2014) Symantec Corporation.

http://www.symantec.com

[2] Global Risks 2012: Insight Report (2012) World Economic Forum.
http://reports.weforum.org/global-risks-2012/

[3] Kephart, J. and Arnold, W. (1994) Automatic Extraction of Computer Virus Signa-
tures. Proceedings of the 4th Virus Bulletin International Conference, Abingdon,
England, 178-184.
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+extractio
n+of+computer+virus+signatures&btnG=

[4] Christodorescu, M., Jha, S., Seshia, S.A., Song, D. and Bryant, R.E. (2005) Seman-

https://doi.org/10.4236/jis.2017.84020
http://www.symantec.com/
http://reports.weforum.org/global-risks-2012/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+extraction+of+computer+virus+signatures&btnG
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+extraction+of+computer+virus+signatures&btnG

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 323 Journal of Information Security

tics-Aware Malware Detection. Proceedings of the IEEE Symposium on Security
and Privacy SP ‘05, California, 8-11 May 2005, 32-46.
https://doi.org/10.1109/sp.2005.20

[5] Sathyanarayanan, V.S., Kohli, P. and Bruhadesgwar, B. (2008) Signature Generation
and Detection of Malware Families. In: Mu, Y., Susilo, W. and Seberry, J., Eds., In-
formation Security and Privacy, Lecture Notes in Computer Science, Sprin-
ger-Verlag, Heidelberg, 336-349. https://doi.org/10.1007/978-3-540-70500-0_25

[6] Ellis, D., Aiken, J.G., Attwood, K.S. and Tenaglia, S.D. (2004) A Behavioral Ap-
proach to Worm Detection, Proceedings of the ACM Workshop on Rapid Malcode
(WORM04), Washington, DC, 29 October 2004, 43-53.
https://doi.org/10.1145/1029618.1029625

[7] Gao, D., Reiter, M.K. and Song, D. (2006) Behavioral Distance for Intrusion Detec-
tion. In: Valdes, A. and Zamboni, D., Eds., Recent Advances in Intrusion Detectio-
nRAID 2005, Lecture Notes in Computer Science, Springer-Verlag, Heidelberg,
63-81. https://doi.org/10.1007/11663812_4

[8] Cesare, S. and Xiang, Y. (2010) Classification of Malware Using Structured Control
Flow. Proceedings of the 8th Australasian Symposium on Parallel and Distributed
Computing (AusPDC), Brisbane, 1 January 2010, 61-70.

[9] Tang, H., Zhu, B. andRen, K. (2009) A New Approach to Malware Detection. In:
Park, J.H., Chen, HH., Atiquzzaman, M., Lee, C., Kim, T. and Yeo, SS., Eds., Ad-
vances in Information Security and Assurance ISA 2009, Lecture Notes in Comput-
er Science, Springer-Verlag, Heidelberg, 229-238.
https://doi.org/10.1007/978-3-642-02617-1_24

[10] Kinder, J., Katzenbeisser, S., Schallhart, C. and Veith, H. (2005) Detecting Malicious
Code by Model Checking. In: Julisch, K. and Kruegel, C., Eds., Detection of Intru-
sions and Malware, and Vulnerability Assessment DIMVA 2005, Lecture Notes in
Computer Science, Springer-Verlag, Heidelberg, 174-187.
https://doi.org/10.1007/11506881_11

[11] Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F. and Nazario, J.
(2007) Automated Classification and Analysis of Internet Malware. In: Kruegel, C.,
Lippmann, R. and Clark, A., Eds., Recent Advances in Intrusion Detection RAID
2007. Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 178-197.
https://doi.org/10.1007/978-3-540-74320-0_10

[12] Eskandari, M. and Hashemi, S. (2012) A Graph Mining Approach for Detecting
Unknown Malware. Journal of Visual Languages and Computing, 23, 154-162.

[13] Chaumette, S., Ly, O. and Tabary, R. (2011) Automated Extraction of Polymorphic
Signatures Using Abstract Interpretation. Proceedings of the 5th International Con-
ference on Network and Systems Security (NSS), Milan, 6-8 September 2011, 41-48.
https://doi.org/10.1109/icnss.2011.6059958

[14] Zhang, Q. and Reeves, D.S. (2007) MetaAware: Identifying Metamorphic Malware.
Proceedings of the IEEE 23rd Annual Computer Security Applications Conference,
Florida, 10-14 December 2007, 411-420. https://doi.org/10.1109/acsac.2007.9

[15] Steinbock, B. and Martini, P. (2009) Classification and Detection of Metamorphic
Malware Using Value Set Analysis. Proceedings of the 4th International Conference
on Malicious and Unwanted Software, Quebec, 13-14 October 2009, 39-46.

[16] Griffin, K., Schneider, S., Hu, X. and Chiueh, T. (2009) Automatic Generation of
String Signatures for Malware Detection. In: Kirda, E., Jha, S. and Balzarotti, D.,
Eds., Recent Advances in Intrusion Detection RAID 2009. Lecture Notes in Com-
puter Science, Springer-Verlag, Heidelberg, 101-120.

https://doi.org/10.4236/jis.2017.84020
https://doi.org/10.1109/sp.2005.20
https://doi.org/10.1007/978-3-540-70500-0_25
https://doi.org/10.1145/1029618.1029625
https://doi.org/10.1145/1029618.1029625
https://doi.org/10.1007/978-3-642-02617-1_24
https://doi.org/10.1007/11506881_11
https://doi.org/10.1007/978-3-540-74320-0_10
https://doi.org/10.1109/icnss.2011.6059958
https://doi.org/10.1109/acsac.2007.9

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 324 Journal of Information Security

https://doi.org/10.1007/978-3-642-04342-0_6

[17] Moser, A., Kruegel, C. and Kirda, E. (2007) Limits of Static Analysis for Malware
Detection. Proceedings of the IEEE 23rd Annual Computer Security Applications
Conference, Florida, 10-14 December 2007, 421-430.
https://doi.org/10.1109/acsac.2007.21

[18] Rastogi, V., Chen, Y. and Jiang, X. (2014) Catch Me If You Can: Evaluating Android
Anti-Malware against Transformation Attacks. IEEE Transactions on Information
Forensics and Security, 9, 99-108. https://doi.org/10.1109/TIFS.2013.2290431

[19] Schultz, M.G., Eskin, E., Zadok, E. and Stolfo, S.J. (2001) Data Mining Methods for
Detection of New Malicious Executables. Proceedings of the IEEE Symposium on
Security & Privacy, California, 14-16 May 2001, 38-49.
https://doi.org/10.1109/secpri.2001.924286

[20] Baldangombo, U., Jambaljav, N. and Horng, S-J. (2013) A Static Malware Detection
System Using Data Mining Methods. https://arxiv.org/abs/1308.2831
https://doi.org/10.5121/ijaia.2013.4411

[21] Komashinskiy, D. and Kotenko, I. (2010) Malware Detection by Data Mining Tech-
niques Based on Positionally Dependent Features. Proceedings of the 18th Euromi-
cro Conferences on Parallel, Distributed and Network-based Processing, Pisa, 17-19
February 2010, 617-623. https://doi.org/10.1109/pdp.2010.30

[22] Tabish, S.M., Shafiq, M.Z. and Farooq, M. (2009) Malware Detection Using Statis-
tical Analysis of Byte-Level File Content. Proceedings of the 15th ACM SIGKDD
Workshop on Cybersecurity and Intelligence Informatics, Paris, 28 June - 1 July
2009, 23-31. https://doi.org/10.1145/1599272.1599278

[23] Abou-Assaleh, T., Cercone, N. and Sweidan, R. (2004) Detection of New Malicious
Code Using N-Grams Signatures. Proceedings of the 2nd Annual Conference on
Privacy, Security and Trust, New Brunswick, 13-15 October 2004, 13-15.

[24] Kolter, J.Z. and Maloof, M.A. (2006) Learning to Detect and Classify Malicious Ex-
ecutables in the Wild. Journal of Machine Learning Research, 7, 2721-2744.

[25] Shafiq, M.Z., Tabish, S.M. and Farooq, M. (2008) Embedded Malware Detection
Using Markov N-Grams. Proceedings of the 5th International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, Paris, 10-11 July
2008, 88-107. https://doi.org/10.1007/978-3-540-70542-0_5

[26] Skoudis, E. and Zeltser, L. (2004) Malware: Fighting Malicious Code. United States:
Prentice Hall Professional, New Jersey.

[27] Ferrie, P. and Ször, P. (2001) Hunting for Metamorphic. Virus, 123-143.
https://pdfs.semanticscholar.org/4e07/1925c789610a6c4db9d460b5d45b4f1ec861.pdf

[28] Chen, Y., Narayanan, A., Pang, S. and Tao, B. (2012) Malicioius Software Detection
Using Multiple Sequence Alignment and Data Mining. Proceedings of the 2012
IEEE 26th International Conference on Advanced Information Networking and Ap-
plications (AINA), 26-29 March 2012, 8-14. https://doi.org/10.1109/AINA.2012.62

[29] Naidu, V. and Narayanan, A. (2016) A Syntactic Approach for Detecting Viral Po-
lymorphic Malware Variants. In: Chau, M., Wang, G. and Chen, H., Eds., Intelli-
gence and Security Informatics PAISI 2016. Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 146-165.
https://doi.org/10.1007/978-3-319-31863-9_11

[30] Naidu, V. and Narayanan, A. (2016) Using Different Substitution Matrices in a
String-Matching Technique for Identifying Viral Polymorphic Malware Variants.
Proceedings of the 2016 IEEE Congress on Evolutionary Computation (WCCI-IEEE

https://doi.org/10.4236/jis.2017.84020
https://doi.org/10.1007/978-3-642-04342-0_6
https://doi.org/10.1109/acsac.2007.21
https://doi.org/10.1109/TIFS.2013.2290431
https://doi.org/10.1109/secpri.2001.924286
https://arxiv.org/abs/1308.2831
https://doi.org/10.5121/ijaia.2013.4411
https://doi.org/10.1109/pdp.2010.30
https://doi.org/10.1145/1599272.1599278
https://doi.org/10.1007/978-3-540-70542-0_5
https://pdfs.semanticscholar.org/4e07/1925c789610a6c4db9d460b5d45b4f1ec861.pdf
https://doi.org/10.1109/AINA.2012.62
https://doi.org/10.1007/978-3-319-31863-9_11

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 325 Journal of Information Security

CEC), Vancouver, 24-29 July 2016, 2903-2910.
https://doi.org/10.1109/cec.2016.7744156

[31] Naidu, V. and Narayanan, A. (2016) Needleman-Wunsch and Smith-Waterman
Algorithms for Identifying Viral Polymorphic Malware Variants. Proceedings of the
14th IEEE International Conference on Dependable, Autonomic and Secure Com-
puting (DASC), Auckland, 8-12 August 2016, 326-333.
https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2016.73

[32] Naidu, V. and Narayanan, A. (2014) Further Experiments in Biocomputational
Structural Analysis of Malware. Proceedings of the 10th IEEE International Confe-
rence on Natural Computation (ICNC), 19-21 August 2014, 605-610.
https://doi.org/10.1109/icnc.2014.6975904

[33] Kim, H.-A. and Karp, B. (2004) Autograph: Toward Automated, Distributed Worm
Signature Detection. SSYM’04 Proceedings of the 13th conference on USENIX Secu-
rity Symposium, San Diego, CA, 9-13 August, 13, 19-19.

[34] Kreibich, C. and Crowcroft, J. (2004) Honeycomb: Creating Intrusion Detection
Signatures Using Honeypots. ACM SIGCOMM Computer Communication Review,
34, 51-56. https://doi.org/10.1145/972374.972384

[35] Singh, S., Estan, C., Varghese, G. and Savage, S. (2004) Automated Worm Finger-
printing. OSDI’04 Proceedings of the 6th conference on Symposium on Operating
Systems Design & Implementation, San Francisco, CA, 06-08 December, 6, 4.

[36] Newsome, J., Karp, B. and Song, D. (2005) Polygraph: Automatically Generating
Signatures for Polymorphic Worms. IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 8-11 May, 226-241. https://doi.org/10.1109/SP.2005.15

[37] Wang, K., Cretu, G. andStolfo, S.J. (2005) Anomalous Payload-Based Worm Detec-
tion and Signature Generation. RAID’05 Proceedings of the 8th international confe-
rence on Recent Advances in Intrusion Detection, Seattle, WA, 7-9 September,
227-246. https://doi.org/10.1007/11663812_12

[38] Yegneswaran, V., Giffon, J. T., Barford, P. andJha, S. (2005) An Architecture for
Generating Semantic Aware Signatures. SSYM’05 Proceedings of the 14th Confe-
rence on USENIX Security Symposium, Baltimore, MD, 31 July-05 August, 14,
34-43.

[39] Li, Z., Sanghi, M., Chen, Y., Kao, M.-Y. and Chavez, B. (2006) Hamsa: Fast Signa-
ture Generation for Zero-Day Polymorphic Worms with Provable Attack Resi-
lience. IEEE Symposium on Security and Privacy, 21-24 May, 32-47.
https://doi.org/10.1109/SP.2006.18

[40] Rieck, K., Schwenk, G., Limmer, T., Holz, T. and Laskov, P. (2010) Botzilla: Detect-
ing the Phoning Home of Malicious Software. SAC’10 Proceedings of the 2010
ACM Symposium on Applied Computing,Sierre, Switzerland, 22-26 March,
1978-1984.

[41] Cui, W., Peinado, M., Wang, H. J. andLocasto, M. E. (2007) Shieldgen: Automatic-
data Patch Generation for Unknown Vulnerabilities with Informed Probing. IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 20-23 May, 252-266.
https://doi.org/10.1109/SP.2007.34

[42] Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G. andOsipkov, I. (2008) Spam-
ming Botnets: Signatures and Characteristics. ACM SIGCOMM Computer Com-
munication Review, 38, 171-182. http://doi.acm.org/10.1145/1402946.1402979

[43] Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C. andKirda, E. (2009) Auto-
matically Generating Models for Botnet Detection. ESORICS’09 Proceedings of the
14th European Conference on Research in Computer Security, Saint-Malo, France,

https://doi.org/10.4236/jis.2017.84020
https://doi.org/10.1109/cec.2016.7744156
https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2016.73
https://doi.org/10.1109/icnc.2014.6975904
https://doi.org/10.1145/972374.972384
https://doi.org/10.1109/SP.2005.15
https://doi.org/10.1007/11663812_12
https://doi.org/10.1109/SP.2006.18
https://doi.org/10.1109/SP.2007.34
http://doi.acm.org/10.1145/1402946.1402979

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 326 Journal of Information Security

21-23 September, 232-249.

[44] Rossow, C. and Dietrich, C. J. (2013) Provex: Detecting Botnets with Encrypted
Command and Control Channels. DIMVA’13 Proceedings of the 10th international
conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
Berlin, Germany, 18-19 July, 21-40. https://doi.org/10.1007/978-3-642-39235-1_2

[45] Caballero, J., Johnson, N.M., McCamant, S. and Song, D. (2009) Binary Code Ex-
traction and Interface Identification for Security Applications. Technical Report,
DTIC Document, No. UCB/EECS-2009-133.

[46] Rafique, M. Z. and Caballero, J. (2013) Firma: Malware Clustering and Network
Signature Generation with Mixed Network Behaviors. RAID 2013 Proceedings of
the 16th International Symposium on Research in Attacks, Intrusions, and Defenses,
Rodney Bay, St. Lucia, 23-25 October, 8145, 144-163.
https://doi.org/10.1007/978-3-642-41284-4_8

[47] Scheirer, W. and Chuah, M.C. (2008) Syntax vs. Semantics: Competing Approaches
to Dynamic Network Intrusion Detection. International Journal of Security and
Networks, 3, 24-35. https://doi.org/10.1504/IJSN.2008.016199

[48] Coull, S.E. and Szymanski, B.K. (2008) Sequence Alignment for Masquerade Detec-
tion. Computational Statistics & Data Analysis, 52, 4116-4131.

[49] Wespi, A., Dacier, M. and Debar, H. (1999) An Intrusion-Detection System Based
on the Teiresias Pattern-Discovery Algorithm. IBM Thomas J.Watson Research Di-
vision.

[50] Zhao, Y., Tang, Y., Wang, Y. and Chen, S. (2013) Generating Malware Signature
Using Transcoding from Sequential Data to Amino Acid Sequence. International
Conference on High Performance Computing and Simulation (HPCS), Helsinki,
Finland, 1-5 July, 266-272. https://doi.org/10.1109/HPCSim.2013.6641425

[51] Ki, Y., Kim, E. and Kim, H.K. (2015) A Novel Approach to Detect Malware Based
on API Call Sequence Analysis. International Journal of Distributed Sensor Net-
works, 2015, Article No. 4. https://doi.org/10.1155/2015/659101

[52] Kirat, D. and Vigna, G. (2015) Malgene: Automatic Extraction of Malware Analysis
Evasion Signature. CCS’15 Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, Colorado, USA, 12-16 October,
769-780. https://doi.org/10.1145/2810103.2813642

[53] Kumar, V. and Mishra, S.K. (2013) Detection of Malware by Using Sequence
Alignment Strategy and Data Mining Techniques. International Journal of Com-
puter Applications, 62.
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+Malwa
re+by+Using+Sequence+Alignment+Strategy+and+Data+Mining+Techniques&bt
nG=

[54] Oracle VM VirtualBox (2016) VirtualBox. https://www.virtualbox.org/

[55] JS.Cassandra by Second Part To Hell (2014) rRlF#4 (Redemption).
http://spth.virii.lu/rrlf4/rRlf.13.html

[56] Tutorials-Win32 Polymorphism (2014) VX Heavens. http://vxer.org/

[57] Viruses (2004) Second Part To Hell’s Artworks-VIRUSES. http://spth.virii.lu/

[58] Win32/CTX.6889.A (2004) NOD21 Website. http://www.nod21.com

[59] W32/CTX-A (2015) SOPHOS Website.
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/
W32~CTX-A/detailed-analysis.aspx

[60] Computer Virus Collection/Virus.Win32.CTX (2 Files)—VX Heaven (2009) Virus

https://doi.org/10.4236/jis.2017.84020
https://doi.org/10.1007/978-3-642-39235-1_2
https://doi.org/10.1007/978-3-642-41284-4_8
https://doi.org/10.1504/IJSN.2008.016199
https://doi.org/10.1109/HPCSim.2013.6641425
https://doi.org/10.1155/2015/659101
https://doi.org/10.1145/2810103.2813642
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+Malware+by+Using+Sequence+Alignment+Strategy+and+Data+Mining+Techniques&btnG
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+Malware+by+Using+Sequence+Alignment+Strategy+and+Data+Mining+Techniques&btnG
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+Malware+by+Using+Sequence+Alignment+Strategy+and+Data+Mining+Techniques&btnG
https://www.virtualbox.org/
http://spth.virii.lu/rrlf4/rRlf.13.html
http://vxer.org/
http://spth.virii.lu/
http://www.nod21.com/
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32%7ECTX-A/detailed-analysis.aspx
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32%7ECTX-A/detailed-analysis.aspx

V. Naidu et al.

DOI: 10.4236/jis.2017.84020 327 Journal of Information Security

Collection (VX Heaven). http://vxer.org/vl.php?dir=Virus.Win32.CTX

[61] Second Part to Hell’s Artworks-VIRUSES (2013) Second Part To Hell’s Artworks.
http://spth.virii.lu/virii.htm

[62] Second Part to Hell’s Artworks-INDEX (2014) Second Part To Hell’s Artworks.
http://spth.virii.lu/main.htm

[63] Valhalla 4 Announcement (2013) VX Heaven Forum. http://vxer.org/

[64] Viruses: w32.kitti.rar (2013) Second Part To Hell’s Artworks.
http://spth.virii.lu/w32.kitti.rar

[65] VirusTotal (2016) Free Online Virus, Malware and URL Scanner.
https://www.virustotal.com/

[66] ClamavNet (2015) ClamAV® is an Open Source Antivirus Engine for Detecting
Trojans, Viruses, Malware & Other Malicious Threats. https://www.clamav.net/

[67] Moustafa, A. (2010) JAligner: Java Implementation of the Smith-Waterman Algo-
rithm for Biological Sequence Alignment. Retrieved from SourceForge:
http://jaligner.sourceforge.net/

[68] Clustal (2012) Clustal: Multiple Sequence Alignment. Retrieved from Clustal:
http://www.clustal.org/download/clustalw_help.txt

[69] Yan, R., Wang, X., Huang, L., Lin, J., Cai, W. and Zhang, Z. (2014) GPCRserver: An
Accurate and Novel G Protein-Coupled Receptor Predictor. Molecular BioSystems,
10, 2495-2504. https://doi.org/10.1039/C4MB00272E

[70] Notredame, C., Higgins, D. G., & Heringa, J. (2000) T-Coffee: A Novel Method for
Fast and Accurate Multiple Sequence Alignment. Journal of Molecular Biology, 302,
205-217. Retrieved from EMBL-EBI: http://www.ebi.ac.uk/Tools/msa/tcoffee/
https://doi.org/10.1006/jmbi.2000.4042

[71] TopTenReviews (2016) Top 10 Best Antivirus Software for 2016—Top Ten Reviews.
http://www.toptenreviews.com/

https://doi.org/10.4236/jis.2017.84020
http://vxer.org/vl.php?dir=Virus.Win32.CTX
http://spth.virii.lu/virii.htm
http://spth.virii.lu/main.htm
http://vxer.org/
http://spth.virii.lu/w32.kitti.rar
https://www.virustotal.com/
https://www.clamav.net/
http://jaligner.sourceforge.net/
http://www.clustal.org/download/clustalw_help.txt
https://doi.org/10.1039/C4MB00272E
http://www.ebi.ac.uk/Tools/msa/tcoffee/
https://doi.org/10.1006/jmbi.2000.4042
http://www.toptenreviews.com/

	Exploring the Effects of Gap-Penalties in Sequence-Alignment Approach to Polymorphic Virus Detection
	Abstract
	Keywords
	1. Introduction
	2. Background
	3. Related Work
	4. Problem Statement
	5. Systems and Methods
	5.1. Technical Safeguards
	5.2. Hex Dump Extraction
	5.3. Hex to Amino Acid Conversion
	5.4. First Pairwise (Local) Sequence Alignment and Signature Extraction
	5.5. Multiple Sequence Alignment and Consensus Extraction
	5.6. Second Pairwise (Local) Sequence Alignment and Meta-Signature Extraction
	5.7. Amino Acid to Hex Conversion and Meta-Signature (and Signature) Testing
	5.8. Summary

	6. Results and Evaluation of State-of-the-Art AVS Products
	7. Conclusions
	References

