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Abstract 
Antiviral software systems (AVSs) have problems in identifying polymorphic 
variants of viruses without explicit signatures for such variants. Align-
ment-based techniques from bioinformatics may provide a novel way to gen-
erate signatures from consensuses found in polymorphic variant code. We 
demonstrate how multiple sequence alignment supplemented with gap penal-
ties leads to viral code signatures that generalize successfully to previously 
known polymorphic variants of JS. Cassandra virus and previously unknown 
polymorphic variants of W32.CTX/W32.Cholera and W32.Kitti viruses. The 
implications are that future smart AVSs may be able to generate effective sig-
natures automatically from actual viral code by varying gap penalties to cover 
for both known and unknown polymorphic variants. 
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1. Introduction 

The automatic extraction of virus and other malware signatures for use in anti-
viral software systems (AVSs) is of paramount importance due to the need to 
find effective solutions to defend systems against the increasing number and se-
verity of attacks [1]. It is generally accepted that these attacks now pose a global 
risk [2]. Early work on automatic signature extraction focused on simulating the 
way that human experts analyzed viruses and generated signatures for use in 
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AVSs [3]. 
Typically, suspicious code is identified due to anomalous behavior of a com-

puter system. Human experts then manually analyze the suspicious code to 
identify invariant code portions (syntactic analysis) or code portions that are 
regularly executed (semantic analysis). Such analysis leads to the generation of 
unique signatures for use by AVSs when scanning network packets, user files or 
memory. Before such signatures can be released, they must be checked against 
non-malware to ensure that the number of false positives is kept acceptably low. 
For instance, signatures based only on malware encryption/decryption informa-
tion are likely to lead to unacceptably high false positives due to the large pro-
portion of normal Internet traffic that also carries encryption/decryption infor-
mation for integrity (e.g. hash algorithms) and authentication (e.g. certified pub-
lic keys). But relying on human expertise alone to provide manually extracted 
signatures is becoming increasingly difficult with the growing volume of mal-
ware. As a result, interest continues to grow in methods to improve automatic 
signature extraction. Semantic approaches [4] [5], in addition to standard dy-
namic and execution behavior analysis [6] [7], now include methods such as 
control flow analysis [8] [9], behavior model checking [10] [11], executable 
graph mining [12] and formal semantic models of analysis [13]. The main prob-
lem with a semantic approach is that an infection must occur to produce ano-
malous behavior. Several execution traces may be required before signatures can 
be extracted manually, and there is always the risk that such signatures may not 
be effective for different execution paths of the same viral code. Syntactic or 
static approaches [14] [15] [16] on the other hand, while possibly preferable be-
cause of their ability to extract signatures that may apply to different variants of 
the same malware family and to generate signatures irrespective of differences in 
execution paths, have not managed to keep pace with the latest polymorphic and 
metamorphic techniques used by virus writers to obfuscate their malware [17] 
[18]. Static signature extraction methods must also disassemble or reverse engi-
neer executable code so that structural analysis of the source code is possible. 
Such analysis includes: statistical analysis of parameter values and searching for 
repeating strings [19] [20]; code feature selection [21]; feature extraction [22]; 
and n-grams analysis [23] [24] [25]. The mapping of executable code to a suita-
ble level of program representation that allows such structural analysis is prob-
lematic, however, due to such code being deliberately constructed to hide its 
functionality, such as through the use of redundant control instructions and va-
riable assignments. 

Predicting future metamorphic and polymorphic viral forms to prepare AVSs 
for as yet unknown variants has remained a distant research goal for both se-
mantic and syntactic techniques. The key to a successful syntactic approach 
would appear to lie in analyzing malware code directly and without execution, 
and so removing the need for reverse engineering. By comparing different 
structural variants of the same virus, a successful structural/static approach may 
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be able to identify common code patterns despite attempts to obfuscate through 
polymorphism because, if the virus is to perform its designated payload or func-
tion and remain a variant of a virus family, a common code must be present 
even if it is deliberately obscured. A purely syntactic approach, such as the one 
proposed in this paper, should detect new polymorphic viral variants indepen-
dently of semantic knowledge based on execution traces, command and control 
channels, deduplication and propagation vectors. That is, a purely syntactic ap-
proach to new variants should not require prior infection by those variants. 

In this study, we focus on a sequence-based automatic signature extraction 
method for identifying polymorphic malware using syntactic analysis of hex 
code. Theoretically, malware with polymorphism changes its code and keeps the 
functions intact, whereas malware with metamorphism changes sub-functionality 
and code while preserving overall functionality [26]. The implications of this 
theoretical division are unknown for automatic signature extraction. It is not 
even known if any metamorphic malware actually exists [27]. For that reason, 
we confine our approach to polymorphic malware capable of mutating into a 
potentially infinite number of functionally equivalent but structurally different 
variants (details below). 

Previous work in syntactic signature extraction [28] introduced the idea of 
using basic pairwise sequence alignment techniques from bioinformatics to 
identify “consensuses” (common occurrences of hex code) in pairs of variants, 
which was a signature for that pair. These consensuses were in turn multiply 
aligned with each other to generate a common consensus (i.e. a meta-signature) 
for all variants [29] [30]. A by-product of alignment is that variable-length viral 
sequences become of fixed length and longer through the introduction of gaps. 
Gaps are the segments that are generated when aligning amino acid or nucleo-
tide sequences so that similar and analogous residues in two or more sequences 
are paired with each other in the same column. These could also get deposited at 
areas where one or more sequences have some additional residues (produced by 
an insertion) or have missed some residues (produced by a deletion). Gaps are 
generally substituted with gap symbols such as blanks, asterisks or hyphens to 
make it pair up with sequences that have no gaps. If insertions and deletions 
never occurred, then sequences could simply be paired by shifting them along 
each other and only considering the alignment that best paired the existing re-
sidues. In previous work, the evaluation of these consensus-based techniques 
was restricted to all known, already identified, polymorphic variants. The sig-
natures extracted were therefore “variant-fit” rather than “variant-predictive”. 
The aim of this paper is to examine whether string searching algorithms of 
greater sophistication than those investigated previously by Naidu and Na-
rayanan [29], such as the Smith-Waterman algorithm which unlike previous 
work [29] includes different combinations of gap open and gap extend penal-
ties, can lead to the automatic generation of signatures not just for known va-
riants but also for unknown (future), or newly generated, variants. In order to 
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train and test these novel approaches to automatic signature detection we use 
three well-known viruses with their known (for JS. Cassandra virus) and un-
known (for W32.CTX/W32.Cholera and W32.Kitti viruses) polymorphic va-
riants (more details in Subsection 5.2). 

A significant number of known variants exist for JS. Cassandra; thus, this vi-
rus is considered useful for testing the hypothesis that relatively sophisticated 
gap open and extend facilities do indeed capture known variants that have al-
ready been shown to be captured using consensus identification without gap 
penalties [29]. W32.CTX/W32.Cholera virus and W32.Kitti virus, on the other 
hand, are used to generate new or unknown variants for testing the effects of the 
more sophisticated gap open and extend facilities on their newly corresponding 
viral syntactic signatures that are generated in this research. Well-established 
viruses are chosen because their structure and behavior are well understood. Vi-
rus generation, even for experimental purposes in academic computer laborato-
ries, is illegal in many countries. We state explicitly that the intention of our re-
search is to aid the global fight against cybercrime through understanding the 
mechanisms leading to new polymorphic variants so that appropriate automatic 
signature extraction techniques can be developed to help reduce their impact in 
future, smarter AVS technologies. 

In Section 2 and Section 3, we discuss the background of syntactic techniques 
and previous related work. In Section 4, we describe the problem statement. We 
then demonstrate our systems and methods in Section 5. Section 6 compares the 
results against state-of-the-art AVS products. Section 7 contains the conclusion. 

2. Background 

Because the same viral function can appear in many different physical code 
forms it has been posited that only semantic analysis will reveal commonalities 
among variants of the same virus for effective signature generation. As a result, 
syntactic techniques for signature extraction based on structural detection of 
malware are relatively unexplored in comparison to semantic techniques, and so 
there is very little in the way of related literature. What literature there is dis-
cussed in Section 3. In order to understand syntactic-based polymorphism de-
tection techniques it is useful to consider a simple example of linguistic signature 
extraction. Consider the following structurally-related sentences, where the first 
sentence is the original sentence, and the other three are polymorphic versions 
of it: 

The cat saw the mouse 
The mouse was seen by the cat 

We see that the cat saw the mouse 
We see that the mouse was seen by the cat 

Signature extraction is similar to finding the two patterns “cat saw mouse” 
and “mouse seen cat” that will help to detect all four sentences as variants de-
spite the variable length of the sentences, the movement of tokens within the 
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sentences and introduction of extra material. If options and alternatives are al-
lowed, “{we see} [cat|mouse] [saw|seen] [cat|mouse]” is an approximate regular 
expression (rule-based signature) for all four sentences that also allows for deri-
vations of new structural variants not so far encountered (e.g. “that the cat was 
seen by the mouse was seen by us”). These signature examples are of course 
simplistic when compared to the real task of automatic signature extraction. 
Viral signatures must also take into account dependencies between non-adjacent 
code in order to deal with specific polymorphic features as well as possible rear-
rangements of code that alter the left-to-right order of signatures. In reality, the 
first four sentences above would be in hex (machine code) format and require 
accurate disassembly to a language amenable to structural analysis, and the sig-
nature then converted back to hex for real-time scanning of network packets and 
cached files. Signatures must also be checked for their uniqueness. That is, be-
fore the generated signature can be released it must be able to distinguish its 
source malware from all other malware as well as be consistent with as many va-
riants of that malware as possible. It is generally believed that in 2017 a contem-
porary AVS may contain between a quarter of a million to half a million signa-
tures due to the increasing rate of release of new malware. Updates to AVSs may 
require removing old and no longer effective signatures as well as adding new 
signatures, and this can be expected to become more time-consuming with the 
growth in occurrences of new malware. 

A sequence-based approach to signature extraction was previously proposed 
and demonstrated using the Smith-Waterman algorithm (SWA) without gap 
penalties [29]. SWA is used extensively in bioinformatics for sequence alignment 
(finding common subsequences or consensuses among a set of variable length 
sequences), and previous work demonstrated the feasibility of using such con-
sensuses in viral hex code as signatures. The approach was further refined [30] 
by adopting SWA with six different substitution matrices. Results showed that 
it was possible to extract signatures/meta-signatures after applying data 
mining rule-extraction techniques to the extracted signatures. Such signa-
tures/meta-signatures can, in turn, be employed as rule-based string templates 
for creating more specific, variant-oriented polymorphic malware signatures for 
detecting known variants belonging to the same virus family. In other words, 
previous work has shown how to progress syntactically (i.e. without execution 
traces) from viral code consensus identification for a set of variants of the same 
virus family (training set) to generation of signatures in either a regular expres-
sion or rule format for identification of other known variants of the same virus 
family (test set). 

Another related advancement in a syntactic approach was also recently re-
ported [31]. Two different dynamic programming methods, namely, Needle-
man-Wunsch and SWA were investigated. However, this work was limited to a 
single polymorphic malware family (JS. Cassandra) and used fixed parameters 
which were not tuned [31]. It was found that SWA gave the best results with 
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100% of known variants being identified. 
What has improved considerably since the historical view that only semantic 

analysis will reveal viral signatures is the growth in our knowledge of se-
quence-based syntactic and structural search algorithms in bioinformatics. Such 
algorithms do not just search for the presence or absence of characters in certain 
positions but also use pre-loaded substitution matrices that give substitution 
probabilities and/or allow such substitution matrices to be generated using 
probabilistic techniques. Of greater importance to this paper is that such algo-
rithms manipulate (shift) the strings/sequences to allow for insertion and dele-
tion of characters to maximize the number of matching characters. Previous 
work [32] showed that such string manipulation algorithms from bioinformatics 
work best with biologically represented strings (amino acids, nucleotide bases) 
rather than arbitrary character sets. This is due to the possible inclusion of heu-
ristic biological information in the algorithms that determines to some extent 
the matching process (e.g. built-in information concerning mutation rates be-
tween amino acids or nucleotide bases). The implications of rewriting already 
well-understood and publicly available sequence-based bioinformatics algo-
rithms to work on hex code (numeric data) are not known. For these reasons 
and to allow comparison with previous work, conversion of hex code to an ap-
propriate biological representation is required before sequence matching, with 
conversion back to hex code for signature generation. We used a simple iden-
tity (ID) substitution matrix for our alignment experiments instead of other 
well-known biological substitution/mutation matrices, such as BLOSUM (Block 
Substitution Matrix) and PAM (Point Accepted Mutation). ID provides the most 
parsimonious method in that no assumptions are made as to how symbols may 
be related to each other. Also, the use of ID allows the effects of gap opening and 
closing to be accurately assessed without being compromised by probabilistic 
substitution matrices. 

3. Related Work 

Previous research related to this work has primarily focused on worms. Syntactic 
approaches include Autograph [33], Honeycomb [34] and Early Bird [35], all of 
which generate signatures that constitute individual adjoining byte strings (to-
kens). Another syntactic approach is Polygraph [36], which identifies an array of 
tokens, a subsequence of tokens and Bayes signatures based on probabilistic 
methods to detect polymorphic worms. Semantic approaches include PAYL 
[37], which produces subsequence signature tokens that associate ingress/egress 
payload notifications to detect the initial replication of worms. Other semantic 
approaches include: Nemean [38], which focuses on identifying signatures that 
defend against worms; Hamsa [39], which produces a set of signature tokens 
that can deal with polymorphic worms by investigating their invariant activity; 
and Botzilla [40], which produces signatures for the malicious activities (traffic) 
created by a malware binary executed several times within a controlled domain. 
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Nearly all previous approaches deal with only one malware family and it is cur-
rently not known how generalizable these methods are for capturing variants 
belonging to different families. A future, “smart” AVS needs to generate multiple 
signatures with very low false positives that can fully capture variants emanating 
from many different corresponding polymorphic viral families with multiple 
malicious activities (polymorphic engines). In our approach, new structural va-
riants were generated by us in the laboratory using the information included in 
documents concerning the corresponding polymorphic viral family (more de-
tails in Subsection 5.2). This use of newly generated novel variants differentiates 
our approach from all previous research that exclusively uses existing malware 
samples from an online repository. 

Other semantic-based research exists for different types of malware, includ-
ing: ShieldGen [41], which generates network signatures for unseen vulnerabili-
ties that are protocol-aware (for instance, the protocol mode with which an in-
vasive message can be posted); AutoRE [42], which produces a spam signature 
creation architecture from spam emails that use botnets to detect them; and 
Wurzinger et al.’s [43] approach, which identifies botnets that are under the in-
fluence of botmaster (malicious body) using network signatures by examining 
the response from a compromised host to a received command and by generat-
ing detection models. ProVex [44] is also a semantic-based approach which ge-
nerates signatures to identify botnets that use encrypted command and control 
(C&C) systems after being given the keys and decryption routine employed by 
the malware using binary code reuse strategy, and is based on the research pro-
posed by Caballero et al.’s approach [45]. FIRMA [46], also a semantic-based 
approach, can be employed to detect similar C&C systems but does not produce 
signatures for these. A number of syntactic and semantic-based strategies were 
proposed by Scheirer et al.’s approach [47] for the identification of many poly-
morphic worms and use intrusion detection techniques such as sliding window 
schemes and instruction semantics, with further refinements by Scheirer et al. In 
comparison to these semantic-based approaches, we propose a purely syntactic 
approach which generates variable-length syntactic viral signatures that identify 
known and unknown variants belonging to a polymorphic viral family, inde-
pendently of execution traces, and, critically for a syntactic approach, without 
needing numerous infections for the purpose of malware association. 

There has also been some related research on sequence alignment approaches 
using a semantic approach in other security areas. For instance, sequence align-
ment was used to identify masquerade detection by comparing “audit data” (ac-
tual examples of attempted malicious activity via command line entry using au-
thenticated accounts) with legitimate user signatures extracted from their actual 
command line entries [48]. Another example is intrusion detection [49], where 
variable length patterns from training data consisting of system call traces of 
commands under normal execution were analyzed by a sequence-based algo-
rithm called Teiresias. Other sequence alignment approaches that are based on 
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semantics include Zhao et al.’s [50] approach, which generates signatures 
through an inverse transcoding method by converting the malware sequential 
information, such as system call sequences, propagation dataflow, etc., into 
amino acid sequences and then aligning them using multiple sequence align-
ment tool. Ki et al.’s [51] approach generates sequences that are typical API call 
sequence motifs of malicious activities belonging to several malware samples and 
employed multiple sequence alignment tool to align those malware samples to 
extract signatures. They then used data mining and machine learning algorithms 
to calculate statistical measures, such as accuracy, precision, etc., to test the ex-
tracted signatures but did not test the signatures against new variants. MalGene 
[52] uses sequence alignment techniques on two sequences of system call events 
belonging to two different analysis environments: one environment in which the 
malware evades the AVS, and the other in which it exhibits the malicious activi-
ties. These events are used to construct an “evasion signature” using sequence 
alignment. However, this semantic approach requires system call sequences 
from both analysis environments which in turn requires the use of system mon-
itoring, which adds an overhead. In contrast, our syntactic approach is indepen-
dent of any prior semantic knowledge. The syntactic approach most closely re-
lated to ours [53] adds nothing new to what was reported by Chen et al.’s ap-
proach in 2012 [28], and repeats the structural sequence alignment and data 
mining approaches adopted in that paper and subsequently enhanced by [29] 
[30] [31]. 

To conclude this section, previous use of sequence alignment has for the most 
part been semantic in nature, relying on system behavior patterns rather than 
code or structural patterns for the identification of malware or fraudulent activ-
ity. Also, because of their semantic nature, the generalizability of the results to 
new variants created through polymorphism is unknown, as is the generalizabil-
ity, if any, of signatures to malware of different families. Our syntactic-driven 
approach, on the other hand, is based on the intuition that most new (polymor-
phic) variants are simple syntactic alterations of existing malware. The “expres-
sive power” of signatures can be evaluated by identifying how well these signa-
tures generalize to new and unseen variants of the same family, all derived 
through polymorphic (structural) changes to the code, as well as across different 
families. The advantage of a syntactic approach is that no semantics is required. 
That is, there is no need for an infection before a signature is generated. Finally, 
most semantic approaches in the literature do not address the problem of false 
positive rates. This is because there are many different ways that a program can 
run and false positive rates may be impossible to quantify for signatures ex-
tracted from a limited number of execution traces on one variant of malware. 
With a syntactic approach, on the other hand, signatures can be checked against 
static code and objects, including files, without needing to execute any code. For 
instance, one method of distributing malware is to generate new polymorphic 
variants and store them undetected in user files until triggered, and syntactic 
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signatures may be effective in catching such variants before execution. The ad-
vantages of a syntactic approach are obvious for future smart AVS technology, 
but so far there has been very little attempt to analyze the effectiveness of a 
purely syntactic approach systematically and across different malware families. 
For instance, the signatures generated from our approach are able to satisfy the 
false positive rate requisite of 0.1%. More importantly, as will be shown below, 
the number of malware training examples needed to extract a signature for use 
against unseen test examples is surprisingly small given the sequence alignment 
approach adopted in our experiments. 

4. Problem Statement 

Our previous work [29] [30] [31] has shown that sequence alignment techniques 
supplemented with Smith-Waterman algorithm lead to signatures that genera-
lized successfully to unseen but previously known variants of polymorphic vi-
ruses. This prior work adopted a fixed combination of gap open and gap extend 
penalties for the automatic generation of virus signatures. However, it is not 
known how well this method generalizes to new, unknown variants or what the 
effect of gap penalties is. In this paper, we use ten different combinations of gap 
open and gap extend penalties to determine whether changes in these penalty 
parameters can help to identify signatures for known as well as unknown poly-
morphic variants which we generate in the laboratory, thereby extending the 
ability of future AVSs to identify variants not previously encountered. 

5. Systems and Methods 
5.1. Technical Safeguards 

Hex (Hexadecimal) dump extraction (Step-1) and testing (Step-8) were under-
taken on a stand-alone system to prevent possible unintended infection of other 
systems. Downloading of polymorphic malware (and known variants) as well as 
the generation of unknown variants was performed using “Oracle VM Virtual-
Box” [54] (an x86 software package with virtualization capability) with a 
pre-installed Linux-based (Ubuntu) operating system image. Due to possible 
security sensitivity, some of the methods below (Step-1 and Step-8) are not de-
scribed in detail, especially details concerning generating hex dumps from po-
lymorphic malware, which are omitted. Interested readers are requested to con-
tact the corresponding author, using their academic email addresses, for further 
information. Our method consists of eight steps (see Figure 1 below). 

5.2. Hex Dump Extraction 

JS. Cassandra virus was written in 2003 by a virus author known as ‘Second Part 
To Hell/SPTH’ in Austria. Unlike any other JavaScript virus, JS. Cassandra is 
comprised of four distinct polymorphic engines: polymorphic engine I, which in-
cludes Garbage or Junk codes; polymorphic engine II, which modifies its Body 
(Body Changing); polymorphic engine III, which modifies its Variables (Variable  
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Figure 1. Biosequence analysis method comprising of eight steps. 

 
Changing); and polymorphic engine IV, which modifies its Numbers (Number 
Changing) [55] [56]. The original JS. Cassandra virus with its source code was 
downloaded from the virus author’s (Second Part to Hell) website [55]. All 351 
known (existing) polymorphic variants of the JS. Cassandra virus were success-
fully retrieved [57]. 

Win32.Cholera/W32.Cholera/W32.CTX is a polymorphic virus which attacks 
executable PE (Portable Executable) files and was first identified in 2010. This 
virus is programmed in assembly language, and it employs an EPO (Entry Point 
Obfuscation) approach, which makes its identification difficult [58] [59]. The 
original source files were downloaded from “VX Heaven” [60] website. 198 new 
polymorphic variants of “W32.Cholera” virus were generated by executing one 
of the original virus files (in this case, a file named “Virus.Win32.CTX.10853”). 

Win32.Kitti/W32.Kitti is a polymorphic virus which works with the help of an 
overlapping code as an obfuscation technique and was first identified in 2011. 
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This virus modifies its instructions to create new instructions with the same se-
mantics but a different structure using an overlapping code process [61] [62] 
[63]. The original virus file along with its source code in assembly language was 
downloaded from the “Second Part to Hell” [64] website. 1105 new polymorphic 
variants of “W32.Kitti” virus were generated by executing the original virus file 
(in this case a file named ‘oc.exe’). 

The method consists of 8 steps, summarized as follows. Step-1 deals with virus 
code variant generation and separating the training set from the test set. Step-2 
deals with converting the hex code into a form acceptable for sequence align-
ment. Because variant generation leads to variable length code, Step-3 deals with 
the process of first pairwise (local) sequence alignment on the training set using 
the SWA to produce equal-length sequences for consensus extraction. Gap open 
and gap close penalties are introduced in this step. Step-4 deals with the extrac-
tion of common training subsequences (i.e. consensuses, or signatures) using a 
similarity measure. Step-5 deals with the process of multiple sequence alignment 
on these training signatures. Step-6 deals with the extraction of consensuses after 
the process of multiple sequence alignment. Step-7 deals with the process of 
second pairwise (local) sequence alignment between the consensuses (obtained 
from Step-6) and training set (obtained from Step-2) using the SWA and extrac-
tion of meta-signatures. Lastly, Step-8 deals with converting signatures back into 
viral hex code for the purposes of signature and meta-signature testing. More 
details concerning each step are provided below. 

Summarizing our method, sequence alignment works on variable length viral 
hex strings to produce equal length hex strings through opening and closing 
gaps. These equal length strings can be analyzed to produce first-level consen-
suses (signatures), which represent common subsequences at specific locations 
for the pairwise alignments. These consensuses/signatures can themselves be 
analyzed using multiple sequence alignment to produce second-level raw con-
sensuses that can be further analyzed to identify similarities with each other to 
produce meta-signatures for the six variants in that test family. These me-
ta-signatures are then used to test against all existing variants. 

Step-1 (Virus code variant generation): The JS. Cassandra virus and all its 
known variants were written in the JavaScript programming language, and their 
source code was readily available. Five variants out of the 351 known variants 
were taken for our training purposes plus the original “JS. Cassandra.js” virus (a 
total of six variants). In the case of the W32.CTX virus, five variants out of 198 
newly generated polymorphic variants were taken for our training purposes plus 
the original “Virus.Win32.CTX.10853” virus (a total of six variants). In the case 
of the W32.Kitti virus, five variants of the 1105 newly generated polymorphic 
variants were taken for our training purpose as well as the original “oc.exe” virus 
(a total of six variants). New variant generation was achieved by using informa-
tion obtained from various sources concerning polymorphic versions (details 
available on request). The percentage of training to test ratio of training variants 
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for JS. Cassandra virus is 1.7% (6:352), for W32.CTX virus is 3.01% (6:199), and 
for W32.Kitti virus is 0.54% (6:1106). A CRC32b hash value was generated for 
each of these 18 training variants and no duplicates were found, indicating that 
they were unique. Only six variants (the original plus five variants in each case) 
are chosen for training (i.e. for generating signatures and meta-signatures) in 
line with previous work [29] [30] [31]. 

All 18 training variants were checked using the “VirusTotal” [65] (a free on-
line scanner for malware) website to confirm that malicious functionality was 
preserved in the 18 variants. “VirusTotal” employs 55 well-known AVS products 
and so provides good assurance that our variant generation for the W32.CTX 
and W32.Kitti viruses was effective. Table 1 gives the detection ratio based on 
the 55 state-of-the-art AVS products obtained from the “VirusTotal” website for 
the 18 training variants, indicating that on average only 53.69% and 73.33% of 
the 55 AVS products successfully detected the 15 variants and three original po-
lymorphic viruses, respectively. Hex dumps were then extracted from the 18 va-
riants using “sigtool” (available on the ClamAV (“Clam AntiVirus”) [66] web-
site). A severely reduced proportion of training to test samples was used to re-
flect the current difficulty in identifying signatures that generalize from a small,  
 
Table 1. Detection ratio based on the 55 state-of-the-art AVS products obtained from the 
VirusTotal website for the 18 malicious variants. 

Polymorphic Malware 1 Filename Detection Ratio 

JS. Cassandra Virus 

JS. Cassandra.js (Original Virus) 39/55 

v_000.js (Variant 1) 19/55 

v_002.js (Variant 2) 21/55 

v_003.js (Variant 3) 15/55 

v_004.js (Variant 4) 17/55 

v_005.js (Variant 5) 17/55 

Polymorphic Malware 2 Filename Detection Ratio 

W32.CTX/W32.Cholera 
Virus 

W32.CTX.Cholera.Virus.10853  
(Original Virus) 

38/55 

actmovie.exe (Variant 1) 41/55 

cisvc.exe (Variant 2) 42/55 

dcomcnfg.exe (Variant 3) 37/55 

forcedos.exe (Variant 4) 39/55 

MRT.exe (Variant 5) 39/55 

Polymorphic Malware 3 Filename Detection Ratio 

W32.Kitti Virus 

OC.exe (Original Virus) 44/55 

absdmfcj.exe (Variant 1) 41/55 

adehsjud.exe (Variant 2) 41/55 

crilunah.exe (Variant 3) 44/55 

nafybgho.exe (Variant 4) 12/55 

nalgjahg.exe (Variant 5) 18/55 

https://doi.org/10.4236/jis.2017.84020


V. Naidu et al. 
 

 

DOI: 10.4236/jis.2017.84020 308 Journal of Information Security 
 

previously encountered set of known variants to a potentially infinite set of new 
variants. 

5.3. Hex to Amino Acid Conversion 

Step-2 (Converting the viral code into a form acceptable for sequence 
alignment): In this step, the extracted 18 hex dump sequences belonging to the 
three polymorphic malware families were converted into amino acid sequences. 
Conversion of hexadecimal into amino acid sequences for input to JAligner [67] 
was performed using the rules shown in Table 2. A short example of the conver-
sion of hexadecimal code into 16 amino acid characters is shown below: 

4d5a800001000000 (16-bit hexadecimal code) 
KDLAQGGGGHGGGGGGG (16 amino acid characters) 

5.4. First Pairwise (Local) Sequence Alignment and Signature  
Extraction 

The string matching SWA was used to perform pairwise local alignment and to 
extract the most common substring/pattern from the three different families of 
polymorphic variants. Signature and meta-signature in this section are defined 
as follows. A signature is a single string (or a common substring/pattern) that 
can identify a single or (in some cases) a few known and unknown variants, 
whereas a meta-signature is a string (or a common substring/pattern) that can 
identify most or all known variants as well as some or all unknown (or new) va-
riants. 

Step-3 (First pairwise (local) sequence alignment using the SWA): In this 
step, a pairwise (local) alignment was performed on all six training strings for 
each family using the SWA with an ID substitution matrix (i.e. alignment was 
performed through matching in particular positions rather than preloaded bio-
logically informed mutation rates) between two sequential converted amino acid 
sequences using JAligner [67]. Ten different combinations of gap open and gap 
extend penalties were used while conducting the pairwise local alignments. A 
gap penalty of zero means no penalty for any gaps introduced in the alignment  
 
Table 2. Rules for converting hexadecimal into amino acid. 

Hexadecimal Amino Acid Hexadecimal Amino Acid 

0 G 8 Q 

1 H 9 P 

2 I a A 

3 R b B 

4 K c C 

5 L d D 

6 M e E 

7 N f F 
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[68] [69]. In our case, we have six variants, i.e. V1, V2, V3, V4, V5 and V6 
(where V1 is the original virus and V2-V6 are its polymorphic variants). For in-
stance, between V1 and V2, ten different combinations of gap open and gap ex-
tend penalties were applied, which led to ten different pairwise local alignments. 
We applied a similar procedure on the remaining four pairs i.e. on V2 and V3, 
V3 and V4, V4 and V5, and V5 and V6, respectively. In total, 150 pairwise local 
alignments were carried out in this step, 50 for each of the three viruses. In the 
case of the W32.Kitti virus, only the first 46,000 amino acid characters (i.e. 
around 18.5%) were aligned due to the significantly longer lengths of amino acid 
sequences belonging to its six variants. In the case of amino acid sequences, JA-
ligner [67] allows pairwise alignment of two sequences of maximum combined 
sequence length of up to 92,000, only after dedicating the initial Java memory 
size of 13,312 MB and maximum heap memory size of 15,360 MB to JAligner. 

Step-4 (Extraction of signatures): After the local alignment process, com-
mon substrings, or signatures, from the pairwise local alignments which had the 
highest percentage of identities and similarities were extracted (i.e. a threshold of 
85% and over), resulting in 57 common substrings from the 61 pairwise local 
alignments. Ten common substrings were extracted from the 26 pairwise local 
alignments for the JS. Cassandra virus, 17 from the ten pairwise local alignments 
for W32.CTX/W32.Cholera virus and 30 from the 25 pairwise local alignments 
for W32.Kitti virus. The minimum and maximum sequence lengths of signatures 
obtained for JS. Cassandra virus were 53 and 198, respectively, with a mean 
(sum, median and standard deviation of 1064, 107 and 45.563, respectively) of 
106.4 for ten signatures in their amino acid representation. The minimum and 
maximum sequence lengths of signatures obtained for W32.CTX virus were 30 
and 1069, respectively, with a mean (sum, median and standard deviation of 
7410, 276 and 397.665, respectively) of 436 for 17 signatures in their amino acid 
representation. The minimum and maximum sequence lengths of signatures 
obtained for W32.Kitti virus were 790 and 1868, respectively, with a mean (sum, 
median and standard deviation of 50,662, 1868 and 407.706, respectively) of 
1689 for 30 signatures in their amino acid representation. 

5.5. Multiple Sequence Alignment and Consensus Extraction 

Step-5 (Multiple sequence alignment on signatures): In this step, a multiple 
alignment was performed on the signatures (i.e. common substrings) obtained 
in Step-4 using T-Coffee [70] available on the EMBL-EBI website, with align-
ment being constrained to the ID matrix. In total, three separate multiple align-
ments were performed (i.e. on 10, 17 and 30 signatures, respectively), one for 
each of the three polymorphic malware types. The main purpose of alignment 
here is to produce second-level consensuses (more details in Step-6). 

Step-6 (Extraction of consensuses after multiple sequence alignment): 
T-Coffee [70], similar to other alignment tools, produces a consensus sequence 
that represents the most common residues (amino acid representations) in each 
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position of multiple sequences after alignment. In this step, the consensus was 
stored and the process was repeated three times, once for each polymorphic 
malware. Three consensuses were extracted in this step. One of these consensus-
es with a sequence length of 203 for the JS. Cassandra virus is shown below in 
hex representation: 

4a4e4f49da598f4a09cad3585d1a0b9c9bdd5b990a13585d1a0b9c985b991bdb4a
0a4a8e4e4e4e4a4ac9cf4f49cad3585d1a0b9c9bdd5b990a13585d1a0b9c985b991bd
b4a0a4a8e4e4e4e4a4ac9ca49cad4dd1c9a5b99cb999c9bdb50da185c90dbd9194a0 

5.6. Second Pairwise (Local) Sequence Alignment and  
Meta-Signature Extraction 

Step-7 (Second pairwise (local) sequence alignment using the SWA and Ex-
traction of meta-signatures): In this step, a pairwise (local) alignment between 
the consensus and the sequence of the original virus/variant was performed us-
ing the SWA with an ID matrix using JAligner [67]. In total, three separate pair-
wise local alignments were performed, one for each type of polymorphic mal-
ware. The fixed combination of gap open (i.e. 10) and gap extend (i.e. 1) penalty 
(as used in [29] [30] [31]) was used in this step. The outcome of this alignment is 
a common substring, or meta-signature, that will be used to detect all the known 
(and the unknown/new) polymorphic variants of that family. In total, three me-
ta-signatures for JS. Cassandra virus, three meta-signatures for W32.CTX/Cholera 
virus and five meta-signatures for W32.Kitti virus were extracted in this step. 
One of the eleven common substrings (i.e. the meta-signatures) of sequence 
length 56 obtained from this step for the JS. Cassandra virus is shown below in 
hex representation: 

28272b4d6174682e726f756e64284d6174682e72616e646f6d28292a 

5.7. Amino Acid to Hex Conversion and Meta-Signature  
(and Signature) Testing 

Step-8 (Converting the sequences back into viral hex code and signature 
testing): In this final step, the eleven meta-signatures from Step-7 (and the 57 
signatures obtained in Step-4) in their amino acid sequence representation were 
converted back to hexadecimal format for testing purposes. The eleven hex me-
ta-signatures and the 57 signatures obtained in Step-4 were tested against the 
three polymorphic malware types along with their known and unknown variants 
using ClamAV (i.e. Clamscan antivirus scanner) software. One of the eleven hex 
meta-signatures, with a sequence length 76, obtained from this step for the JS. 
Cassandra virus is shown below: 

393939292b273d3d272b4d6174682e726f756e64284d6174682e72616e646f6d28
292a393939 

5.8. Summary 

By downloading the JS. Cassandra polymorphic virus and its known variants in 
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its original JavaScript coding as well as generating new (unknown) variants of 
the other two viruses, the authenticity of the variants has been assured. By 
checking all 18 training variants against a number of AVS systems, we have pro-
vided assurance that these variants are genuinely malicious. The first pairwise 
alignment was conducted using ten different combinations of gap open and gap 
extend penalties, and the second pairwise alignment was conducted using a fixed 
combination of gap open (i.e. 10) and gap extend penalty (i.e. 1). There were no 
gap open and gap extend penalty options available for the process of multiple 
sequence alignment. After signature extraction, all biologically-represented sig-
natures and meta-signatures were converted back to hex code for evaluation 
(details below). All the signature/meta-signature testing against the polymorphic 
variants was conducted using the latest version of the Clamscan antivirus scan-
ner [66]. 

6. Results and Evaluation of State-of-the-Art AVS Products 

Table 3 provides the results of the pairwise local alignments that were per-
formed in Step-3. Only the desired pairwise local alignment results with the 
highest percentage of identities and similarities are shown in Table 3. 

From Table 3, it can be seen that the percentages of identities and similarities 
were higher than 85%, indicating that there were high percentages of the code 
conserved in the sequences. In the case of W32.Kitti virus, the percentage of 
identities and similarities was 100%. In the case of W32.CTX virus, the percen-
tages of identities and similarities were over 94% and in some cases 100%. As 
expected, Table 3 indicates that the amount of gap increases with lower gap 
open penalties (see Columns “Gap Open Penalty” and “Gaps Percentage”), indi-
cating that the amount of insertions or deletions to maximize the amount of 
matches was also lower. In previously adopted methods [29] [30] [31] a fixed 
combination of gap open (i.e. 10) and gap extend (i.e. 1) penalty was used. The 
work reported here has instead explored various combinations of gap open and 
gap extend penalties (conducted in Step-3) to explore the effect of these penalties 
on variant detection. It can be seen from the results in Table 3 that the percen-
tages of identities and similarities were higher (i.e. over 97%) when the gap open 
and gap extend penalties were higher, indicating that the (pairwise local) align-
ments were compact, thereby restricting the amount of gaps (with lower gap 
percentages) and increasing their importance (see Columns “Gap Open Penal-
ty”, “Gap Extend Penalty” and “Gaps Percentage” in Table 3). 

Tables 4-6 provide the detection rate results for the three malware types along 
with their known and unknown variants. The detection was carried out using 
Clamscan and the most effective signatures obtained in Step-4. The most effec-
tive signatures were determined to be the signatures that detected over 90% of 
the variants. These signatures were placed inside our own generated (.ndb) da-
tabase [29], which is used by Clamscan as a recommended database file format 
for signature testing purposes. Detection performance for each of the three viruses  
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Table 3. Results of the pairwise local alignments that were performed in Step-3. 

Polymorphic 
Malware 1 

Pairwise Alignment 
Gap Open 

Penalty 
Gap Extend 

Penalty 
Identity 

Percentage 
Similarity 
Percentage 

Gaps 
Percentage 

Alignment 
Length 

Alignment 
Score 

JS. Cassandra 
Virus 

Original JS. Cassandra 
virus and Variant 1 

15 1 98.51% 98.51% 1.49% 134 116.00 

20 0.5 98.51% 98.51% 1.49% 134 111.50 

20 1 98.51% 98.51% 1.49% 134 111.00 

25 0.5 100.00% 100.00% 0.00% 108 108.00 

25 1 100.00% 100.00% 0.00% 108 108.00 

Variant 1 and Variant 2 

15 1 88.84% 88.84% 11.16% 215 139.00 

20 0.5 88.84% 88.84% 11.16% 215 140.00 

20 1 100.00% 100.00% 0.00% 138 138.00 

25 0.5 100.00% 100.00% 0.00% 138 138.00 

25 1 100.00% 100.00% 0.00% 138 138.00 

Variant 2 and Variant 3 

15 1 100.00% 100.00% 0.00% 106 106.00 

20 1 100.00% 100.00% 0.00% 106 106.00 

25 0.5 100.00% 100.00% 0.00% 106 106.00 

25 1 100.00% 100.00% 0.00% 106 106.00 

Variant 3 and Variant 4 

10 1 95.19% 95.19% 4.81% 208 170.00 

15 0.5 95.19% 95.19% 4.81% 208 164.00 

15 1 95.19% 95.19% 4.81% 208 160.00 

20 0.5 95.19% 95.19% 4.81% 208 154.00 

20 1 95.19% 95.19% 4.81% 208 150.00 

25 0.5 95.19% 95.19% 4.81% 208 144.00 

25 1 95.19% 95.19% 4.81% 208 140.00 

Variant 4 and Variant 5 

10 1 100.00% 100.00% 0.00% 198 198.00 

15 1 100.00% 100.00% 0.00% 198 198.00 

20 1 100.00% 100.00% 0.00% 198 198.00 

25 0.5 100.00% 100.00% 0.00% 198 198.00 

25 1 100.00% 100.00% 0.00% 198 198.00 

Polymorphic 
Malware 2 

Pairwise Alignment 
Gap Open 

Penalty 
Gap Extend 

Penalty 
Identity 

Percentage 
Similarity 
Percentage 

Gaps 
Percentage 

Alignment 
Length 

Alignment 
Score 

W32.CTX/W32.
Cholera 
Virus 

Original W32.CTX virus 
and Variant 1 

25 1 99.29% 99.29% 0.71% 1553 1507.00 

Variant 1 and Variant 2 5 1 96.15% 96.15% 3.85% 2309 2015.00 

Variant 2 and Variant 3 10 1 96.41% 96.41% 3.59% 2060 1804.00 

Variant 3 and Variant 4 5 1 94.40% 94.40% 5.60% 2017 1707.00 

Variant 4 and Variant 5 

10 1 100.00% 100.00% 0.00% 736 736.00 

15 1 100.00% 100.00% 0.00% 736 736.00 

20 0.5 100.00% 100.00% 0.00% 736 736.00 
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20 1 100.00% 100.00% 0.00% 736 736.00 

25 0.5 100.00% 100.00% 0.00% 736 736.00 

25 1 100.00% 100.00% 0.00% 736 736.00 

Polymorphic 
Malware 3 

Pairwise Alignment 
Gap Open 

Penalty 
Gap Extend 

Penalty 
Identity 

Percentage 
Similarity 
Percentage 

Gaps 
Percentage 

Alignment 
Length 

Alignment 
Score 

W32.Kitti 
Virus 

Original W32.Kitti virus 
and Variant 1 

5 1 86.35% 86.35% 13.65% 3297 2061.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 1 and Variant 2 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 2 and Variant 3 

5 1 88.12% 88.12% 11.88% 3266 2130.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 3 and Variant 4 

5 1 88.18% 88.18% 11.82% 3265 2129.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

Variant 4 and Variant 5 

5 0.5 87.03% 87.03% 12.97% 3285 2349.00 

5 1 90.51% 90.51% 9.49% 3225 2217.00 

10 1 100.00% 100.00% 0.00% 1868 1868.00 

15 1 100.00% 100.00% 0.00% 1868 1868.00 

20 1 100.00% 100.00% 0.00% 1868 1868.00 

25 1 100.00% 100.00% 0.00% 1868 1868.00 

 
was measured using the following metrics: true positive rate (sensitivity), true 
negative rate (specificity), positive predictive value (precision), detection ratio 
(accuracy) and F1 score (the harmonic mean of the positive predictive value and 
true positive rate) and are presented in Tables 4-6. In total, 57 signatures were 
tested, but only the results using the most effective signatures are shown in 
Tables 4-6. 

The performance of our virus detection method was compared with that of 
the top commercial products available at the time of the research in 2016 as  
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Table 4. Detection rates for detection of JS. Cassandra Polymorphic Malware and its known variants by testing the Top Five 2016 
[71] state-of-the-art AVS products and our top signatures obtained in Step-4 using Clamscan. 

Polymorphic 
Malware 

Pairwise Alignment/AVS 
Product 

Top Five State-of-the-art AVS Products and 
Our Top Signatures (S) 

Detection Ratio (with Accuracy) and 
Statistical Measures 

JS. Cassandra 
Virus 

AntiVirus Ranked No. 1 Bitdefender Antivirus 

Detection Ratio (Accuracy) 1/352 (0.2841%) 

Sensitivity/Recall 0.2841% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 0.5666% 

AntiVirus Ranked No. 2 Kaspersky Anti-Virus 

Detection Ratio (Accuracy) 1/352 (0.2841%) 

Sensitivity/Recall 0.2841% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 0.5666% 

AntiVirus Ranked No. 3 McAfee AntiVirus 

Detection Ratio (Accuracy) 152/352 (43.18%) 

Sensitivity/Recall 43.18% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 60.31% 

AntiVirus Ranked No. 4 Norton Security 

Detection Ratio (Accuracy) 5/352 (1.42%) 

Sensitivity/Recall 1.42% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 2.80% 

AntiVirus Ranked No. 5 F-Secure Anti-Virus 

Detection Ratio (Accuracy) 1/352 (0.2841%) 

Sensitivity/Recall 0.2841%) 

Specificity 0.00% 

Precision 100.00% 

F1 Score 0.5666% 

Original JS. Cassandra virus and 
Variant 1 

S1 

Detection Ratio (Accuracy) 340/352 (96.59%) 

Sensitivity/Recall 96.59% 

Specificity 0.00% 

Precision 100% 

F1 Score 98.26% 

Variant 1 and Variant 2 S4 

Detection Ratio (Accuracy) 339/352 (96.31%) 

Sensitivity/Recall 96.31% 

Specificity 0.00% 

Precision 100% 

F1 Score 98.12% 
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Variant 2 and Variant 3 

S5, S8 

Detection Ratio (Accuracy) 339/352 (96.31%) 

Sensitivity/Recall 96.31% 

Specificity 0.00% 

Precision 100% 

F1 Score 98.12% 

S6 

Detection Ratio (Accuracy) 325/352 (92.33%) 

Sensitivity/Recall 92.33% 

Specificity 0.00% 

Precision 100% 

F1 Score 96.01% 

S7 

Detection Ratio (Accuracy) 340/352 (96.59%) 

Sensitivity/Recall 96.59% 

Specificity 0.00% 

Precision 100% 

F1 Score 98.26% 

Variant 3 and Variant 4 S10 

Detection Ratio (Accuracy) 325/352 (92.33%) 

Sensitivity/Recall 92.33% 

Specificity 0.00% 

Precision 100% 

F1 Score 96.01% 

 
reported by the “TopTenReviews” [71] website. The top five AVS products in 
this listing were tested using the same three viruses along with their known and 
unknown variants, and the results are presented in Tables 4-6. 

From Tables 4-6, it can be seen that most of our signatures obtained in Step-4 
detected the polymorphic variants, except for two of the 57 signatures that de-
tected none of the variants (not shown in Tables 4-6). In the case of W32.Kitti 
virus, for 26 out of the 28 most effective signatures the detection rates were 100% 
and for the remaining two, the detection rates were over 99% (Table 6). In the 
case of W32.CTX virus, for four out of the eight most effective signatures the 
detection rates were 100% and for the remaining four, the detection rates were 
over 91% (Table 5). For the JS. Cassandra virus, the detection rates were above 
92% using seven of the 12 signatures (Table 4). From Tables 4-6 (based on the 
detection ratio, accuracy and statistical measures, such as sensitivity, specificity, 
etc., needed for malware detection), it can also be seen that none of the top five 
AVS products fully detected the polymorphic variants except for the Kaspersky 
Anti-Virus, which successfully detected all of the new polymorphic variants of 
the W32.Kitti virus. In some cases, the top five AVS products could only suc-
cessfully detect the original virus and none of its variants (either known or un-
known). 
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Table 5. Detection rates for detection of W32.CTX/W32.Cholera Polymorphic Malware and its new/unknown variants by testing 
the Top Five 2016 [71] state-of-the-art AVS products and our top signatures obtained in Step-4 using Clamscan. 

Polymorphic 
Malware 

Pairwise Alignment/AVS 
Product 

Top Five State-of-the-art AVS Products and 
Our Top Signatures (S) 

Detection Ratio (with Accuracy) and  
Statistical Measures 

W32.CTX/W32.
Cholera Virus 

AntiVirus Ranked No. 1 Bitdefender Antivirus 

Detection Ratio (Accuracy) 176/200 (88.00%) 

Sensitivity/Recall 88.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 93.62% 

AntiVirus Ranked No. 2 Kaspersky Anti-Virus 

Detection Ratio (Accuracy) 86/200 (43.00%) 

Sensitivity/Recall 43.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 60.14% 

AntiVirus Ranked No. 3 McAfee AntiVirus 

Detection Ratio (Accuracy) 27/200 (13.50%) 

Sensitivity/Recall 13.50% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 23.79% 

AntiVirus Ranked No. 4 Norton Security 

Detection Ratio (Accuracy) 177/200 (88.50%) 

Sensitivity/Recall 88.50% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 93.89% 

AntiVirus Ranked No. 5 F-Secure Anti-Virus 

Detection Ratio (Accuracy) 191/200 (95.50%) 

Sensitivity/Recall 95.50% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 97.69% 

Variant 1 and Variant 2 S4 

Detection Ratio (Accuracy) 183/200 (91.50%) 

Sensitivity/Recall 91.50% 

Specificity 0.00% 

Precision 100% 

F1 Score 95.56% 

Variant 2 and Variant 3 S7 

Detection Ratio (Accuracy) 189/200 (94.50%) 

Sensitivity/Recall 94.50% 

Specificity 0.00% 

Precision 100% 

F1 Score 97.17% 
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Variant 3 and Variant 4 

S12 

Detection Ratio (Accuracy) 189/200 (94.50%) 

Sensitivity/Recall 94.50% 

Specificity 0.00% 

Precision 100% 

F1 Score 97.17% 

S13, S15-S16 

Detection Ratio (Accuracy) 200/200 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

S14 

Detection Ratio (Accuracy) 192/200 (96.00%) 

Sensitivity/Recall 96.00% 

Specificity 0.00% 

Precision 100% 

F1 Score 97.96% 

Variant 4 and Variant 5 S17 

Detection Ratio (Accuracy) 200/200 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

 
The eleven meta-signatures, obtained from Step-7, were tested on the three 

viruses along with their known and unknown variants using Clamscan by plac-
ing these meta-signatures inside our own generated (.ndb) database [29]. Figure 
2 shows that all 352 (accuracy of 100%) JS. Cassandra variants (including the 
original virus) were successfully detected by the Clamscan antivirus scanner us-
ing our .ndb database. One of the three meta-signatures obtained for JS. Cassan-
dra in Step-7 detected all 352 JS. Cassandra variants (output is shown in Figure 
2). Two of the other three meta-signatures detected 340 out of 352 (with an ac-
curacy of 96.59%) and 15 out of 352 (with an accuracy of 4.26%) JS. Cassandra 
variants, respectively. Figure 3 shows that all 200 of the W32.CTX variants (in-
cluding the two original viruses) were successfully detected by the Clamscan an-
tivirus scanner. Figure 4 shows that all 1106 of the W32.Kitti variants (including 
the original virus) were successfully detected by one of the three successful (with 
100% accuracy) meta-signatures. The remaining two out of the overall five me-
ta-signatures detected none of the 1106 variants. One of the three meta-signatures 
obtained for the W32.CTX virus in Step-7 detected all 200 W32.CTX variants (as 
shown in Figure 3) while another detected 189 of the 200 variants (94.5% accu-
racy). However, the final meta-signature detected only 19 of the 200 W32.CTX 
variants (9.5% accuracy). None of the scans (as shown in Figures 2-4) took  
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Table 6. Detection rates for detection of W32.Kitti Polymorphic Malware and its new/unknown variants by testing the Top Five 
2016 [71] state-of-the-art AVS products and our top signatures obtained in Step-4 using Clamscan. 

Polymorphic 
Malware 

Pairwise Alignment/AVS 
Product 

Top Five State-of-the-art AVS Products 
and Our Top Signatures (S) 

Detection Ratio (with Accuracy) and Statistical 
Measures 

W32.Kitti 
Virus 

AntiVirus Ranked No. 1 Bitdefender Antivirus 

Detection Ratio (Accuracy) 324/1106 (29.29%) 

Sensitivity/Recall 29.29% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 45.31% 

AntiVirus Ranked No. 2 Kaspersky Anti-Virus 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

AntiVirus Ranked No. 3 McAfee AntiVirus 

Detection Ratio (Accuracy) 293/1106 (26.49%) 

Sensitivity/Recall 26.49% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 41.88% 

AntiVirus Ranked No. 4 Norton Security 

Detection Ratio (Accuracy) 450/1106 (40.69%) 

Sensitivity/Recall 40.69% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 57.84% 

AntiVirus Ranked No. 5 F-Secure Anti-Virus 

Detection Ratio (Accuracy) 333/1106 (30.11%) 

Sensitivity/Recall 30.11% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 46.28% 

Original W32.Kitti virus and 
Variant 1 

S1-S6 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

Variant 1 and Variant 2 S7-S10 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 
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Continued 

 

Variant 2 and Variant 3 

S11, S13-S16 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

S12 

Detection Ratio (Accuracy) 1105/1106 (99.91%) 

Sensitivity/Recall 99.91% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 99.95% 

Variant 3 and Variant 4 

S17, S19-S22 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 100.00% 

S18 

Detection Ratio (Accuracy) 1105/1106 (99.91%) 

Sensitivity/Recall 99.91% 

Specificity 0.00% 

Precision 100.00% 

F1 Score 99.95% 

Variant 4 and Variant 5 S23, S25, S27-S30 

Detection Ratio (Accuracy) 1106/1106 (100.00%) 

Sensitivity/Recall 100.00% 

Specificity 0.00% 

Precision and F1 Score 100.00% 

 

 
Figure 2. Screenshot of the scan result obtained from Clamscan antivirus 
scanner for 352 JS. Cassandra viral variants using the meta-signature. 
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Figure 3. Screenshot of the scan result obtained from Clamscan antivirus scanner 
for 200 W32.CTX viral variants using the meta-signature. 

 

 
Figure 4. Screenshot of the scan result obtained from Clamscan antivirus scanner 
for 1106 W32.Kitti viral variants using the meta-signature. 

 
longer than 15 seconds, with most taking just a couple of seconds. Six signatures 
(i.e. three signatures and three meta-signatures) were checked for false positives 
on 8173 Windows system files: one signature and two meta-signatures obtained 
for JS. Cassandra virus, one signature and one meta-signature obtained for 
W32.Kitti virus, and one signature obtained for W32.CTX virus. Figure 5 shows 
that only two of the 8173 Windows system files were detected as false positives  
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Figure 5. Screenshot of the scan result obtained from Clamscan antivirus scanner for 
8173 Windows system files using the six signatures. 
 
(0.024% false positive rate) using the six signatures, satisfying the false positive 
rate requisite of 0.1%. 

7. Conclusions 

The aim of our research was to test whether increasingly sophisticated gap open 
and extend penalties help to produce signatures capable of capturing new poly-
morphic variants. The results indicate that relatively sophisticated gap penalties 
captured known variants (training set) of JS. Cassandra virus (see Figure 2). 
Furthermore, the increasingly sophisticated gap penalties captured unknown va-
riants (test set) of W32.CTX and W32.Kitti viruses, respectively, indicating the 
feasibility of more sophisticated gap open and gap extend facilities (see Figure 3 
and Figure 4). Remarkably, our research demonstrated that it is possible to 
detect known (training set) as well as unknown (test sets) variants using the 
training signatures obtained from a very small proportion (typically 3% and be-
low) of training variants of that test family. Detection of test variants using the 
training signatures could revolutionize our understanding on the detection and 
generation of polymorphic variants. The three virus families selected are 5 - 11 
years old. But as our analysis shows, current AVS products still cannot success-
fully and consistently identify all their known variants (see Table 1, Table 4, 
Table 5 and Table 6). 

As can be seen from our research, significant concerns exist as to whether 
modern AVS software systems can or will identify new/unknown (future) va-
riants of polymorphic malware. The ultimate goal for any future, smart AVS 
would be to identify all potential new/unknown (future) polymorphic variants 
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utilizing a syntactic method to detect variants both within a virus family as well 
as across virus families. Our findings show that increasing the gap open and gap 
extend penalties decreases the number of gaps (in some cases to the point where 
no gaps exist) in the final alignment (see Columns “Gap Open Penalty”, “Gap 
Extend Penalty” and “Gaps Percentage” in Table 3). Moreover, the signatures 
obtained from the alignment with few or no gaps have proven to be more effec-
tive and successful in detecting known and unknown polymorphic variants than 
alignment with many gaps. From the results provided in Tables: Tables 3-5, it 
can be concluded that some of the final alignments, i.e., those with gap percen-
tages of 0.5 or higher, have moderately effective signatures (an accuracy of less 
than 100%). From the results presented in Table 1 and Table 6, it can be con-
cluded that the final alignments with no gap percentages (i.e. 0.00%) have highly 
effective signatures (i.e. with an accuracy of 100%). Most importantly, the results 
from Table 3 indicate that the conversion of malware code into biological re-
presentations has served the task of identifying common code subsequences. 

Future work: While gap extend and gap open penalties are used in Step-3 to 
extract first-level signatures, the effect of such penalties on meta-signature ex-
traction also requires investigation. The meta-signatures generated are currently 
linear. Conversion of these linear signatures to rule-based templates will need to 
be undertaken to compress their representation. 

Limitations of our study: Our focus on well-known and historic viruses does 
not take into account the rapid evolution of other forms of malware, such as 
ransomware and DDoS attacks that involve external manipulation. Furthermore, 
we do not take into account the unknown (new) variants generated from poly-
morphic virus construction kits. Building such a library of unknown polymor-
phic variants will allow us to investigate the impact of a new polymorphic mal-
ware detection system in relation to old and existing malware variants. However, 
nearly all malware has a self-replicating component irrespective of its function. 
On the assumption that our signatures and meta-signatures are capturing essen-
tial aspects of malware replication, the results described here may be applicable 
to other malware types (not just viruses or worms) that also involve a replication 
step. 
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