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Abstract 
Elliptical motions of orbital bodies are treated here using Fourier series, For-
tescue sequence components and Clarke’s instantaneous space vectors, quan-
tities largely employed on electrical power systems analyses. Using this me-
thodology, which evidences the analogy between orbital systems and auto-
nomous second-order electrical systems, a new theory is presented in this ar-
ticle, in which it is demonstrated that Newton’s gravitational fields can also be 
treated as a composition of Hook’s elastic type fields, using the superposition 
principle. In fact, there is an identity between the equations of both laws. 
Furthermore, an energy analysis is conducted, and new concepts of power are 
introduced, which can help a better understanding of the physical mechanism 
of these quantities on both mechanical and electrical systems. The author be-
lieves that, as a practical consequence, elastic type gravitational fields can be 
artificially produced with modern engineering technologies, leading to possi-
ble satellites navigation techniques, with less dependency of external sources 
of energy and, even, new forms of energy sources for general purposes. This 
reinterpretation of orbital mechanics may also be complementary to conven-
tional study, with implications for other theories such as relativistic, quantum, 
string theory and others. 
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1. Introduction 

On steady-state analyses of polyphase electrical circuits, operating under unba-
lanced and sinusoidal conditions, usually, electrical engineers use Fortescue’s 
method [1] to decompose those circuits on sets of balanced circuits, called posi-
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tive, negative and the zero-sequence symmetrical circuits. The correspondent 
electrical quantities are called symmetrical components, respectively, positive, 
negative and zero sequence components, whose respective phasors are of equal 
amplitudes and symmetrically spaced from each other, on a complex plane; ex-
cepted the zero-sequence phasors which are coincident. 

On dealing with unbalanced and non-sinusoidal circuits, Fourier analysis is 
applied to each phase of the polyphase systems and, then, sets of symmetrical 
sequence circuits are obtained for each harmonic order, using the same method 
above described. 

More recently, for three-phase circuits, a transformation, called Clarke’s 
transformation [2], transforms those circuits on equivalent two-phase circuits, 
which brings all the information of the original circuits, i.e., unbalanced or ba-
lanced and/or sinusoidal or non-sinusoidal electrical quantities, such as voltages, 
currents, fluxes and charges. Clarke’s transformation leads to a unique rotating 
vector, the instantaneous space vector (ISV) [2] [3] [4] [5] [6], on a complex 
plane. 

After applying Clarke’s transformation, then Fourier analysis is performed, 
and the positive complex Fourier coefficients, related to positive harmonic or-
ders, are separated from the negative ones, using rotating unity vectors that ro-
tate anti-clockwise and clockwise, respectively. 

This is an alternative way to obtain the Fortescue sequence components, since 
they are, in fact, the Fourier coefficients themselves. 

Fortescue’s method is performed on the frequency domain. Clarke’s, in turn, 
is performed on the time domain. In this work, Fourier analysis is applied to the 
study of elliptical orbital motions, which are represented on a complex plane, as 
compositions of two related orthogonal motions. In this way, all the mechanical 
quantities are treated as ISVs, and Clarke’s inverse transformation can be per-
formed to obtain the equivalent mechanical three-phase systems (other inverse 
transformations to polyphase systems are possible). In doing so, the analogy 
between orbital mechanical systems and three-phase electrical systems is evi-
denced. More precisely speaking, the dynamical behavior of elliptical orbital 
motions is analogous to the behavior of autonomous, second order, loss-less po-
lyphase electrical circuits, with only reactive elements, operating under unba-
lanced and non-sinusoidal conditions. 

The figures generated for the mechanical variables, on the complex plane, are 
all Lissajous figures of elliptical type. 

Fourier analyses for orbital studies are not new, however, here, emphases are 
given to the geometric and dynamic properties of such motions, using the 
above-mentioned transformations of Fortescue and Clarke. Furthermore, the 
author develops a careful analysis on how the stored energy is distributed among 
the harmonic motions and their flux between the positive and negative sequence 
inside each harmonic motion, and among motions of different harmonic orders. 
Those energy fluxes can be better studied on future works, when the intention is 
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how to manipulate them, when studying the possibility of new economical 
energy storage and consumption. 

As a major contribution of this work, it is demonstrated that Newton’s uni-
versal law for gravitational fields, the inverse square law, can be studied using 
Hook’s law for elastic objects. 

The author believes that new horizons are opened to the study and control of 
orbital dynamics, with possible applications of electric power systems control 
techniques, with low-loss reactive electromechanical elements. 

Finally, the used concepts can also be extended to electrostatic forces and to 
the astronomy realms, and beyond the Newtonian mechanics. 

2. Discrete Fourier Series of the Position, Velocity and Force 
Vectors of Elliptical Orbital Motions, in Terms of Sequence 
Components 

For orbital motions, Kepler’s equations are used for calculating the polar coor-
dinates of the position vector ρ  as a function of time since perihelion. The 
amplitude of the position vector is given by 

( )21

1 cos

a e

e
ρ

ϑ

−
=

+
                        (1) 

and its angle by 

ρϕ ϑ≡ .                             (2) 

where a is the semi-major axis and e  and ϑ  are respectively the eccentricity 
of the ellipse and the true anomaly. 

Our method here, after obtaining in this way the position vector ρ , which is 
a periodic function of time, starts with a Fourier analysis of the motion, accord-
ing to the Fourier theorem. Thus, the position vector is expressed as a Fourier 
series given by (all the vector quantities are represented on a complex plane 
α β− ) 

e
N N

ih t
h h

h N h N

ωρ ρ ρ
=− =−

= =∑ ∑                        (3) 

For circular and elliptical trajectories, the real and imaginary parts of ρ  are 
sinusoidal and periodical non-sinusoidal oscillations, respectively. Now, Equa-
tion (3) is expressed in terms of zero, positive and negative sequence compo-
nents, changing the summation limits [6]: 

0 0
1 1

N N

h h
h h

ρ ρ ρ ρ ρ ρ ρ+ −
+ −

= =

= + + = + +∑ ∑                     (4) 

Thus, the following identities show the position vector in terms of Kepler’s 
equation (left-hand side) and Fourier series (right-hand side): 

( )
( )

21

1 cos

a e
mag

e
ρ ρ

ϑ

−
= ≡

+
 ,                     (5) 

( )angρϕ ρ≡  ,                          (6) 
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where 

( ) ( ) ( )1 0 1e e eh hi i h t i h t
h h h h

ρ ρϕ ω ϕ ωρ ρ ρ ρ
+ +++ + + += = =  , 

( ) ( ) ( )1 0 1e e eh hi i h t i h t
h h h h

ρ ρϕ ω ϕ ωρ ρ ρ ρ
− −− − − −− − − −= = =   

and 1ω  is the fundamental frequency in rad/s. 
The vectors 

hρ
+


 and 
hρ
−


 are rotating vectors with constant magnitudes and 
constant angular velocities, i.e., they describe uniform circular trajectories, the 
first one rotates on the counterclockwise direction, with angular velocity 1hω , 
and the latter on the clockwise direction with angular velocity 1hω− . The 
Fourier coefficients hρ

+
  and hρ

−
  are respectively the positive and negative 

harmonic phasors. 
The sum of these two vectors 

h h hρ ρ ρ+ −= +                              (7) 

is another rotating vector, but with varying magnitude and angular velocity, 
which describes an ellipse illustrated in Figure 1 (Appendix A). 

Thus, Equation (4) can also be written as 

( )0 0
1 1

N N

h h h
h h

ρ ρ ρ ρ ρ ρ+ −

= =

= + + = +∑ ∑      ,                 (8) 

which shows that an elliptical trajectory described by the position vector ρ  is a 
composition of elliptical harmonic trajectories. 

In turn, the velocity vector can be obtained in terms of ρ+
  and ρ−

  (Ap-
pendix B) as 

1 1

1 1
1 1 1 1

d dd
d d d

d d
d d

,

h h

N N
h h

h h
N N N N

h h h h h h
h h h h

V
t t t

V V
t t

ih ih ik ik

ρ ρρ

ρ ρ

ω ρ ω ρ ρ ρ

+ −

+ −
+ −

= =

+ − + −

= = = =

= = +

= + = +

= − = −

∑ ∑

∑ ∑ ∑ ∑

 



 

 

   

             (9) 

where 1hk hω= . 
 

 
Figure 1. Illustration of the position vector trajectory for harmonic order 
𝒉𝒉, showing the positive and negative sequence motions, for the case of zero 
value for their initial angles. 
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The velocity vector is usually obtained as the time derivative of the position 
vector from Clarke’s equations, but its magnitude can be expressed by the 
Vis-viva equation; now it can also be obtained as a summation of terms with the 
harmonic position vectors hρ

+
  and hρ

−
 . Thus, its magnitude and angle can be 

given by the following identities: 

( )2 1V GM mag V
aρ

 
= − ≡ 

 
 ,              (10) 

( )V ang Vϕ ≡  .                         (11) 

Note that π
2Vh hρϕ ϕ= + , and that this orthogonality is related to the harmonic  

reactive power concept presented in chapter III. The total velocity V  is not 
orthogonal to the total position vector. Such properties from elementary kine-
matics are studied in detail in the same chapter, concerning the powers involved, 
and new power concepts are then presented. 

And the gravitational force, in turn, is obtained from Newton’s universal law 
equation, and now, alternatively, in terms of the harmonic position vectors 

hρ
+


 
and 

hρ
−


 

2 2 2 2
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N N

h h h h
h h

V V VF m m
t t t

m h h

m k k

ω ρ ω ρ

ρ ρ
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+ −

= =

+ −

= =

 
= = + 

 
 = − + − 
 
 = − + 
 

∑ ∑

∑ ∑

  



 

 

               (12) 

This conclusion stablishes that, on orbital motions, Newton’s universal gravi-
tational law, also known as Newton’s inverse-square law, and Hook’s elastic law 
can now be unified and written as an identity: 

2 2
2

1 1
e

N N
i

G h h h h
h h

GMmF m k kρϕ ρ ρ
ρ

+ −

= =

 = − ≡ − + 
 
∑ ∑

  .          (13) 

Hook’s law is evidenced on the right-hand sides of these identities, because 
each harmonic force component is proportional to the magnitude of the same 
harmonic order position vector, where Hook’s elastic constant is 2

hhk mk′ = . 
Thus, gravitational forces can be given as a weighted sum of harmonic posi-

tions vectors. This identity can also be interpreted as a statement that the gravi-
tational force is a summation of harmonic centripetal forces. 

To obtain the harmonic phasors hρ
+
 , the ISV ρ  is rewriting on new com-

plex d − q coordinate systems determined by the orthogonal unity vectors  

1eih t
dhu ω=  and 1

π
2e

ih t

qhu
ω +

= , which rotates on counterclockwise direction with  

angular velocity ℎ𝜔𝜔1, where 1h tω  is measured from the real axis α  from the 
α β−  stationary coordinate system and, for hρ

−
 , d-q rotates on clockwise di-

rection. 
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On these new coordinate systems, each harmonic rotating vectors of order h, 

hρ
+
  and hρ

−
 , become the stationary vectors 

hρ
+


 and 
hρ
−


, usually called pha-
sors, and all the other rotating vectors of different orders have zero mean values 
of its real and imaginary parts. The fundamental angular velocity 1ω  (funda-
mental frequency) is obtained from the third Kepplers’ law, which gives the orbit 
period D. 

This method is general for any closed elliptical orbit, considering that for each 
orbit, which are determined by the amplitude of its semi-major axis, its eccen-
tricity, the mass of the central and the orbiting bodies, the gravitational constant 
and the period, the fundamental frequency in Hz is calculated as mentioned 
above, and the time step is chosen such as to avoid aliasing. 

3. Energy and Power Analysis 

An ideal orbital motion is an autonomous conservative (non-dissipative) second 
order system, i.e., a system with no external exchange of energy, with two inter-
nal storage energy elements: the gravitational field and the moving mass. 

Considering this motion as a composition of two orthogonal motions, the ki-
netic and potential energies are exchanged between these two motions, in this 
way (Appendices C and D): 

For ideal circular motions, there is an exchange of kinetic energy between the 
two orthogonal motions, as well as of potential energy, but not between these 
two forms of energy, such that the sum of the kinetic energy and the sum of the 
potential energy are constant. That oscillating energies are related to force and 
velocity in quadrature and their rate of oscillation is called here imaginary pow-
er. 

For ideal elliptical motions, in turn, there is also an exchange of kinetic energy 
between the two motions, as well as of potential energy, and an exchange of ki-
netic energy from one motion with that potential energy from the other motion, 
such that the sum of the kinetic energy and the sum of the potential energy are 
not constant. That oscillation of energy between the two forms is related to force 
and velocity in the same direction (but not in phase) and its rate of oscillation is 
called here real power. 

The amount of this latter oscillating energy depends on the trajectory eccen-
tricity. 

There is no a consensual interpretation for the analogous forms of those ener-
gies on electrical circuits analyses [7]. 

3.1. Kinetic Energy 

Considering the harmonic elliptical motion of order ℎ, the correspondent har-
monic kinetic energy, in terms of sequence components, is 

( ) ( ) ( )2 22 *1 1 1 2 cos
2 2 2h h h h h h h h Vh VhK mV mV V m V V V V ϕ ϕ+ − + − + − = = = + + −  

   (14) 

The average value of this energy can be given as 
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21
2havg h hK K mV+−= =                     (15) 

where 

,h h hK K K+− + −= +                       (16) 

( )2

1

1 ,
2 2

h
h h

QK m V
hω

+
+ += =                     (17) 

( )2

1

1 ,
2 2

h
h h

QK m V
hω

−
− −= = −                    (18) 

and hQ+ , 
hQ−  are respectively the positive and negative sequence harmonic 

imaginary (reactive) powers. 
Now, in terms of sequence components, the total kinetic energy of the motion 

is given as 

( )( )

( ) ( )

( ) ( ) ( )

* *

*2 *

2 2

2 2

1 1 1
2 2 2
1
2
1 2 cos ,
2 V V

K mV mVV m V V V V

m V V V V V V

m V V V V ϕ ϕ

+ − + −

+ − + − − +

+ − + −
+ −

= = = + +

 = + + +  

 = + + −  

     

          (19) 

where e ViV V ϕ ++ +=  and e ViV V ϕ −− −= , wherein both magnitudes and both angles 
vary at variable rate. 

The average kinetic energy of the total motion during one cycle, can be given 
as 

( )
1

N

av h h
h

K K K+ −

=

= +∑ .                    (20) 

The rate of the total kinetic energy variation is the total power exchanged be-
tween the gravitational field and the moving mass. 

So far, we have seen that the elliptical motion of a satellite around a central 
body is composed of a summation of harmonic elliptical motions, each one 
concerned to the respective harmonic position vector. For every harmonic mo-
tion, there are potential and kinetic energies. Part of these energies is constant 
and another part oscillates between these two forms of energy. The amount of 
oscillating energies depends on the trajectory eccentricity. For example, a circu-
lar trajectory (e = 0) has only constant energy stored, i.e., there is no energy ex-
changed between the potential field and the moving mass. 

3.2. Potential Energy 

Considering the gravitational potential energy referenced to a point at infinity, 

G GU F ρ= −                             (21) 

and the potential elastic energy, referenced to the origin of the coordinate sys-
tem, 

1
2Hook GU F ρ= ,                           (22) 
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the gravitational energy, which is the sum of the kinetic and potential gravita-
tional energies, 

G GE K U= + ,                       (23) 

where 0GE <  and 0GU < ; and the elastic energy, which is the sum of the ki-
netic and potential elastic energies, 

Hook HookE K U= + ,                    (24) 

where 0HookE >  and 0HookU > , are related in the following way: 

1
2G HookE E= − ,                       (25) 

where 

1

N

Hook Hook h
h

E E
=

= ∑                        (26) 

and 

hHook h h HookE K U= + ,                     (27) 

1
2Hook h h hE F ρ= .                       (28) 

And, from (13), we have 
2

h h hF mk ρ= −                           (29) 

3.3. Power 

To deal with gravitational energies and their rate of variation in terms of Hook’s 
equations, it is adopted in this work the instantaneous complex power (ICP) ap-
proach [3] [4] [5] [6] [8] [9]. This approach helps understanding how each har-
monic motion contributes with the total power (see Appendix D). 

For each harmonic pair of force and velocity, the ICP is 

( )( )
( ) ( ) ( ) ( )

**

* * * *

.

h h h h h h h

h h h h h h h h

h h h h

S F V F F V V

F V F V F V F V

S S S S

+ − + −

+ + − − + − − +

+ − +− −+

= = + +

= + + +

= + + +

      

       

 

    (30) 

The real part of 
hS +  and 

hS − , hP+  and hP− , respectively, are the positive 
and the negative sequence real powers and are nil in the case of non-dissipative 
motions (for example: no atmosphere resistance), and the imaginary part, hQ+  
and hQ− , respectively, are the positive and the negative sequence imaginary 
powers and they are constant. 

The remaining terms of Equation (30) are related to the power oscillation be-
tween the kinetic form and the gravitational form for each harmonic order mo-
tion. Thus, the subtotal power oscillation due to all harmonic pairs is (Appendix 
D1) 

( ) ( )* *

Ph Ph Ph h h h hQ Q Q Real F V F V+− −+ + − − +
∑ ∑ ∑

 = + = +  ∑       .       (31) 
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There are also oscillating powers between the potential field and the moving 
mass due to forces and velocities of different harmonic orders (Appendix D2). 

( ) ( ) ( ) ( )* * * *

1 1

Pij Pij Pij

N N

i j i j i j i j
i j

j i

Q Q Q

Real F V F V F V F V+ + + − − + − −

= =
≠

±
∑ ∑ ∑= +

 = + + +  ∑∑



  

       

  (32) 

The total power oscillation between the gravitational potential field and the 
moving mass, which is the time derivative of the total kinetic energy is given by 

P Ph Pij Ph Ph Pij PijQ Q Q Q Q Q Q± ±
∑ ∑ ∑ ∑ ∑ ∑ ∑= + = + + + 

       .         (33) 

4. Case Study 

In this chapter, there are shown the discrete complex Fourier (DCF) analysis and 
synthesis results concerned to one cycle of variation of the position, velocity and 
force vectors. All the numerical operations were algebraic, developed in time 
domain. 

Initially, the original position, velocity and force vectors are computed using 
the conventional laws for orbital motions, i.e., Kepler’s equations, the Vis-viva 
equation and Newton’s law for universal gravitation, respectively, except the ve-
locity vector angle, not obtained from Vis-viva equation. The used approxima-
tion for obtaining the position vector is that presented in [10]. 

Then, for validating the proposed theory in this work, a Fourier analysis is 
performed on the original position vector, then it is synthetized, as well as, the 
velocity and force vectors, using the right-hand sides of the respective identities 
(5), (6), (10), (11) and (12), for one cycle of the orbit, and compared to those on 
the left hand sides. 

All the results were computed using Google’s Drive spreadsheets. Those ob-
tained from the conventional methods will be referred to as Kepler’s results, or 
original results. Those obtained by Fourier analysis and synthesis will be referred 
to as Hook’s results, or computed results. 

The orbital motion studied is a satellite’s low earth orbit motion, with the fol-
lowing parameters: mass m = 1 kg, the semi-major axis 8000000 ma = , the in-
itial instant 0 0 st = , the initial eccentric anomaly 0

0 10E = , the gravitational 
constant multiplied by the earth mass 3 23.986005m sGM =  the calculated pe-
riod is 7121.08 sP = , and the fundamental frequency is 4

1 8.82 1 r d0 a sω −= × . 
The calculated total energy (gravitational energy) using Vis-viva equation is 

24912531.25 JGE = ; the calculated average kinetic energy using equation (20) is 
24912.44 kJavK =  (error % = 0.00) and the position vector is sampled at con-

stant rate with time step 84.77 s, with a total of 84 samples/cycle. 
The following results, computed for e = 0.3 (only for analytical purpose, be-

cause for this eccentricity the satellite falls on the earth), show how the position 
vector at Perihelion and Aphelion is composed by the terms of equation (4). Re-
ferring to this equation, it was verified that all the harmonic position vectors line 
up at Perihelion and every even harmonic position vector subtracts at the Aphe-
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lion, shifting, in this way, the center of the ellipse from the center of the coordi-
nate system. The total shifting is due to this one and to the shifting due to the 
zero-sequence vector in opposite direction, i.e., the Aphelion direction. 

Starting with the focus distance 2400.00 kmc =  from c ae= , the position 
vector magnitude at Perihelion is 0 5600.00 kma c

ρϕ
ρ = = − = , and position vec-

tor magnitude at Aphelion is 180   10400.00 kma c
ρϕ

ρ = = + = . 
The computed Hook’s position vector magnitude at Perihelion  

   0 5603.31 km
ρϕ

ρ = =  (error % = 0.06); and the computed Hook’s focus distance

0 8000.00 5603.31 2396.69 kmc a
ρϕ

ρ == − = − =  (error % = −0.14). 
The position vector magnitude at Perihelion of the computed ellipse, exclud-

ing the zero-sequence position vector 0ρ  is 

( ) ( )0 0 1 0
9203.29 kmN

hhρ ρ
ϕ ϕ

ρ ρρ
= = =

− = =∑    

where the zero-sequence position vector was computed as 
( ) ( )0 180

0 0 3600.0e e0 kmi iρϕρ ρ == . And the computed position vector magnitude  

at Aphelion, in the same way, is ( ) ( )0 180 1 180
10397.73 kmN

hhρ ρ
ϕ ϕ

ρ ρ ρ
= = =

− = =∑    

(error % = −0.02). 
Thus, by other way, the position vector magnitude at Perihelion of the com-

puted ellipse including the zero sequence vector is 

( )0 01    0
9203.29 3600.00 5603.29 kmN

hhρ
ρ

ϕ
ϕ

ρ ρ ρ= = =
= + = − =∑   

So, as we have mentioned above, these results showed how the position vector 
at Perihelion and Aphelion is composed by the terms of Equation (4). 

Table 1 shows the computed complex Fourier sequences components (Fouri-
er coefficients) of Hook’s position vector for three eccentricity values (illustrated 
on Figure 3 and Figure 4). Note that the angles for each sequence component 
harmonic are equals, and all the angles are multiples of that one of fundamental 
frequency. In other words: The initial harmonic phase angles for the displace-
ment vectors are multiple of the mean anomaly M: 0 0h h hMρ ρϕ ϕ+ −= =  

Table 2 shows the results for the angular momentum calculation, for three 
orbit positions and e = 0.3. These results show the precision of the method on 
the computation of the position and velocity vectors, which can also be seen in 
the figures ahead. 

Table 3 was obtained for three orbit positions and three eccentricity values. 
The following computed figures are referred to as “original” for Keplers’ re-

sults and “computed” for Hook’s results. They illustrate the principal characte-
ristics of the studied orbital motion and show the numerical precision of the re-
sults, for eccentricity e = 0.3. 

Figure 2 shows the satellite’s trajectory, i.e. the position vector variation; Fig-
ure 3 and Figure 4 show the harmonic vector spectrum (obtained from the re-
sults of Table 1). 
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Table 1. Computed complex fourier sequences components (fourier coefficients) of Hook’s position vector for three eccentricity 
values. 

 Position vector—Amplitude (m), Angle (degrees) 

h 
Positive sequence Negative sequence 

e = 0.1, Mo = 9.01 e = 0.2, Mo = 8.01 e = 0.3, Mo = 7.02 e = 0.1, Mo = 9.01 e = 0.2, Mo = 8.01 e = 0.3, Mo = 7.02 

1 7.96E+06/9.01 7.84E+06/8.01 7.64E+06 /7.02 1.00E+04/9.01 4.05E+04/8.01 9.29E+04/7.02 

2 3.97E+05/18.01 7.76E+05/16.02 1.12E+06/14.03 3.34E+02/18.01 2.70E+03/16.02 9.40E+03/14.03 

3 2.97E+04/27.02 1.15E+05/24.03 2.46E+05/21.05 1.88E+01/27.02 3.03E+02/24.03 1.58E+03/21.05 

4 2.63E+03/36.02 2.03E+04/32.04 6.40E+04/28.06 8.13E−01/36.02 2.49E+01/32.04 8.59E+02/28.06 

5 2.56E+02/45.03 3.91E+03/40.05 1.80E+04/35.08 8.91E−02/45.03 1.83E+00/40.05 5.80E+01/35.08 

6 2.70E+01/54.03 8.69E+02/48.06 6.63E+03/42.09 5.98E−01/54.03 7.74E+01/48.06 1.35E+03/42.09 

7 2.99E+00/63.04 2.05E+02/56.07 2.59E+03/49.11 1.16E−02/63.04 3.20E+00/56.07 9.19E+01/49.11 

8 2.56E−01/72.04 3.06E+01/64.08 4.65E+02/56.12 7.21E−04/72.04 3.35E−01/64.08 1.08E+01/56.12 

9 3.14E−02/81.05 7.63E+00/72.09 1.79E+02/63.14 1.19E−04/81.05 1.13E−01/72.09 5.73E+00/63.14 

10 3.17E−03/90.05 1.55E+00/80.10 5.47E+01/70.15 1.49E−05/90.07 2.82E−02/80.10 2.09E+00/70.15 

11 3.07E−04/99.06 2.99E−01/88.11 1.58E+01/77.17 1.81E−06/99.26 7.36E−03/88.11 9.36E−01/77.17 

12 2.89E−05/108.07 5.63E−02/96.12 4.41E+00/84.18 2.18E−07/109.32 1.85E−03/96.12 3.78E−01/84.18 

13 −−−−−−−− 1.09E−02/104.13 1.41E+00/91.20 −−−−−−−− 7.93E−05/104.14 2.71E−02/91.20 

14 −−−−−−−− 2.06E−03/112.14 4.51E−01/98.21 −−−−−−−−− 8.60E−06/112.14 5.93E−03/98.21 

15 −−−−−− 2.65E−05/120.14 1.00E−02/105.23 −−−−−−−− 3.17E−06/120.02 1.49E−03/105.23 

 
Table 2. Computed Hook’s angular momentum (e = 0.3) 

True anomaly (rad) Angular Momentum (𝑚𝑚2𝑘𝑘𝑘𝑘/𝑠𝑠) 

0.24 53,889,267,155.99 

0.38 53,881,103,300.35 

0.52 53,877,893,316.53 

 
Table 3. Computed Hook’s results for the position, velocity e force vector for three positions of the position vector and 
three eccentricity values. 

Position vector-Amplitude (m), Angle (degrees) Velocity vector-Amplitude (m/s), Angle (degrees) 
Force vector-Amplitude (N), Angle 

(degrees) 
e = 0.1  

Mo = 9.01 
e = 0.2  

Mo = 8.01 
e = 0.3  

Mo = 7.02 
e = 0.1  

Mo = 9.01 
e = 0.2  

Mo = 8.01 
e = 0.3  

Mo = 7.02 
e = 0.1  

Mo = 9.01 
e = 0.2  

Mo = 8.01 
e = 0.3  

Mo = 7.02 

7.21E+06/11.08 6.43E+06/12.35 5.65E+06/13.9 7.79E+03/100.02 8.62E+03/100.11 9.56E+06/100.27 7.66/191.07 9.66/192.3 12.64/194.00 

7.23E+06/116.31 6.46E+06/18.82 5.71E+06/22.02 7.78E+03/104.79 8.58E+03/105.54 9.48E+03/106.64 7.63/196.30 9.57/198.81 12.39/202.06 

7.25E+06/21.52 6.51E+06/25.21 5.80E+06/29.93 7.76E+03/109.55 8.52E+03/110.93 9.37E+03/112.90 7.59/201.51 9.44/205.19 12.04/209.91 

 
Figures 5-7 show, respectively, the magnitude variation of the position, the 

velocity and the force vectors, during one cycle, for the computed values from 
Kepler’s equations (original), compared with those obtained from Hook’s 
(computed). 
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Figure 2. Keppler’s trajectory. 

 

 
Figure 3. Position vector spectrum. 

 

 
Figure 4. Position vector spectrum (negative sequence). 

 
Figure 8 and Figure 9 show, respectively, the energy balance for the gravita-

tional and elastic systems for instantaneous quantities computed at the initial  
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Figure 5. Position vector magnitude variation. 

 

 
Figure 6. Velocity vector magnitude variation. 

 

 
Figure 7. Force vector magnitude variation. 

 
instant 𝑡𝑡0, according the equations presented in Chapter III, where (a) kinetic, 
(b) average kinetic , (c) potential, (d) average potential, (a + c) total energy, (b + 
d) average total. 
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Figure 8. Gravitational energy. 

 

 
Figure 9. Elastic energy. 

 
The computed kinetic energy shown in Figure 10 was obtained using Equa-

tion (19) and compared with that one obtained using the velocity from Vis-viva 
equation. Its average value was obtained using Equation (20). 

Figure 11 shows the computed kinetic power obtained using Equation (33) 
and compared with the time derivative of the original one, obtained using the 
Vis-viva equation. 

Figure 12 shows the gravitational potential energy variation (Equation (21)) 
using Keppler’s equations and Hook’s. 

5. A Proposition for the Starting Point for a Practical  
Synthesis of the Quantities Related to Orbital Motions 

As we have seen that closed gravitational trajectories on a plane can be inter-
preted as a composition of periodic motions on each axis of a system of ortho-
gonal coordinates, generating the known Lissajous figures, we can extend this 
concept for motions on three symmetrically displaced axes, named phase, a b 
and c axes, given respectively by the unity vectors 0a , a and 2a  where  
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Figure 10. Kinetic energy variation. 

 

 
Figure 11. Kinetic power variation. 

 

 
Figure 12. Gravitational potential energy variation. 
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( )22
3 a b ca a iα βρ ρ ρ ρ ρ ρ= + + = + ,                (34) 

where aρ , bρ  and cρ  are periodical oscillations respectively on each axis, 
called phase quantities. 
To do that inverse operation, knowing the position vector ρ , its projection on 
axes a b and c gives, respectively, the scalar quantities aρ , bρ  and cρ  [6]. 

Looking the position vector in this way, they can be called instantaneous space 
vectors (ISVs), by analogy with electrical polyphase circuits, where they can 
represent voltages, currents and fluxes (the correspondent electrical variables are 
respectively charge for position in the mechanical system qρ ↔ , current for 
velocity v i↔  and voltage for force f v↔ ). 

The property of ISVs carrying positive, negative and zero sequence compo-
nents were studied by Akagy, Ferreiro, Willems, Emanuel and the author [3] [4] 
[5] [6] [8] [9]. But, in fact, that property, for only the cases of positive and nega-
tive sequences, is evidenced in the terns of the Fourier series. Fortescue deals 
with those components on phase analyses of unbalanced three-phase electrical 
circuits, Clarke with both the three-phase and the equivalent two-phase circuit 
obtained after Clarke transformation, and the complex Fourier series approach 
deals only with the equivalent two-phase circuit, without mentioning the possi-
bly relations with n-phase oscillating systems. 

Thus, having stablished those relations between three-phase systems and the 
equivalent two-phase systems, synthesis of ISVs may be carried out using power 
electronics techniques and electromechanical devices. In this way, many alterna-
tives can be proposed for future research; more precisely, acting with conven-
tional propulsion systems or hybrid electromechanical systems having in mind 
that each harmonic variable of positive and/or negative sequence can be con-
trolled individually or in harmonic ranges. 

Using equivalent three-phase mechanical or electrical systems (motions in 
three symmetrical directions), the kinetic and potential stored energies are re-
spectively given as ([6], Appendix) 

2 23 3
4 4LK mV E LI= ⇔ = ,                   (35) 

23 3
4 4Hook G UU F E CVρ= ⇔ = ,                  (36) 

where LE , L  and I are respectively magnetic energy, inductance and current 
and UE , C  and V, respectively, potential energy, capacitance and voltage. 

Those energy equations show that the oscillating variables on each direction 
(phase on electrical systems) of a three-axis mechanical motion have their mag-
nitudes decreased, which means material savings and more energy storage ca-
pacity. 

More precisely, speaking of a spacecraft, each harmonic motion following an 
elliptical trajectory, composed of positive and negative sequence motions, may 
be canceled by an opposing motion produced, for example, by the composition 
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of the motions of two internal rotating bodies (each rotation in the conventional 
manner to produce artificial gravity and attached to the center of the spacecraft 
by means of an elastic spring or an equivalent solenoid electromagnetic dam-
per), which rotates in opposite directions to cancel, respectively, the corres-
ponding positive and negative harmonic motions of the spacecraft or, for a more 
practical solution, each harmonic trajectory with its correspondent variables 
may be obtained using two orthogonal coordinated internal harmonic motions, 
or three symmetrical coordinated internal harmonic motions, produced for ex-
ample by two (or three) magnetic pistons moving inside a cylindrical electrically 
controlled solenoid (a kind of active linear solenoidal dampers) or linear elec-
tromagnetic motors. For these cases, Equations (35) and (36) may be considered. 

This study is in the field of mechanical vibrations and the resonance pheno-
mena applied to the motions of two bodies, joined by an elastic device, moving 
in a gravitational field. All the above mentioned process is a tuning process be-
tween the chosen natural frequency motion of the spacecraft and the artificial 
vibrating system. 

The complex geometry of the total motion as well as of each harmonic com-
ponent must be carefully considered. 

This method must be applied first to harmonic motions of high frequency, 
since the amount of energy is smaller than those of low frequencies, as well as 
their amplitudes and centripetal forces; which implies easier practical imple-
mentation, to cancel the gravitational components of a range of harmonic mo-
tions. In this way, the spacecraft’s original elliptical motion takes another ellip-
tical motion with less harmonic contents. 

The greater the eccentricity of the orbit, the greater the amount of harmonic 
energy that can be dealt with using practical applications, because, as we have 
seen, harmonic frequencies increase, whose correspondent trajectories are 
smaller; what decreases the dimensions of the electromechanical systems. 

Additionally, the results shown in this work point to the possibility that a free 
fall of an object close to the earth surface, because, due the tangential velocity of 
the earth location, they follow an elliptical trajectory with eccentricity ap-
proaching to one (before hitting the ground). In this case there must be har-
monics of high orders, which may be tuned with electromechanical devices. All 
these considerations are all hypothetical and must be proven practically. 

For applications near the earth surface there are anchorages on conventional 
anchor foundations. 

6. Conclusions 

A numerical simulation of an elliptical orbital motion was implemented in this 
work, using Fourier analysis and synthesis of the related mechanical quantities, 
as well as, an energy and power study. 

The great differential of the used methodology was the complementary use of 
Fortescue and Clark’s methods of analysis. 
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The results confirmed a new concept for gravitational forces, which stablishes 
that “Newton’s Universal Law for gravitational forces on orbital motions can be 
considered as a sum of harmonic forces of Hook’s elastic type, which is a 
weighted series of harmonic position vectors”. 

The two summations on the right-hand side of Equation (4) show that the el-
liptical motion of a satellite around a central body is composed of N harmonic 
elliptical motions, each one produced by the composition of positive sequence 
and the negative sequence circular trajectories. 

The method here employed is also an alternative way to calculate the orbital 
velocity magnitude and angle. 

The numerical results shown in the tables, as well as in the figures, validated 
the method with good precision through the comparison of all the quantities 
produced from Kepler and Newton’s law and those produced in terms of har-
monic vectors despite of limitations of the computational means employed. In 
this way, it was numerically verified that Newtons inverse square law for gravita-
tional forces, on orbital motions, can be thought as a series of harmonic forces of 
Hooks elastic types or, in other words, as a weighted series of harmonic position 
vectors. 

The following properties were verified for this type of motion: 
The number of harmonics depends on the ellipses eccentricity. 
The initial harmonic phase angles for the displacement vectors are multiple of 

the mean anomaly M: 

0 0h h hMρ ρϕ ϕ+ −= =  

The Vis-viva equation as well as Newton’s inverse square law equation can be, 
alternatively, replaced by Equations (10) and (13), respectively, for obtaining the 
correspondent quantities. The Vis-viva equation gives only the magnitude of the 
velocity vector, but Equations (10) and (11) give both its magnitude and its an-
gle. 

It was observed, with the adopted approximation [10], that the negative se-
quence vectors magnitudes, as well as the harmonic components of the Fourier 
series, increase with the ellipses eccentricity for simulations with eccentricity 
varying between zero and 0.3. Thus, it is expected that this tendency is true for 
eccentricity values tending to 1 (radial trajectory), which is almost a right line 
trajectory and the number of harmonics tends to infinity, and the positive and 
negative sequence vector tend to equality. This case can be thought as a free fall 
of a body. 

If those hypotheses are confirmed, this methodology can be extended to 
non-periodical motions, using Fourier transform and the harmonic spectrum is 
almost symmetrical regarding to the axis passing through zero frequency. Also, 
this methodology can be extended to the cinematics and dynamics of any planar 
periodical, and, if the above hypothesis is confirmed, non-periodical motions. 
Moreover, an analogy between three-phase electrical circuits and gravitational 
motions was evidenced. Indeed, the theory here presented is implicit on the 
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study of power and energy stored on capacitor banks. Thus, the same considera-
tions can be done for electrical systems, concerning those quantities: the stored 
energy on a capacitor bank can be given as the product of voltage and electrical 
charge, shifting in this way the reference point from the coordinate system ori-
gin to infinity. 

Those conclusions bring forth the idea that gravitational forces can be ob-
tained by, for example, electromechanical devices and, in this way, new tech-
niques for satellite navigations can be developed, as well as new forms of gravita-
tional energy extractions. 
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Appendix A 

The harmonic component of position vector 

h h hρ ρ ρ+ −= +   , 

where 

( ) ( ) ( )1 0 1e e eh hi i h t i h t
h h h h

ρ ρϕ ω ϕ ωρ ρ ρ ρ
+ +++ + + += = =  , 

( ) ( ) ( )1 0 1e e eh hi i h t i h t
h h h h

ρ ρϕ ω ϕ ωρ ρ ρ ρ
− −− − − −− − − −= = =  , 

expressed on Cartesian coordinates, 

( ) ( )
( ) ( )

1 0 1 0

1 0 1 0

cos sin

cos sin

h h h h

h h h

h t i h t

h t i h t

ρ ρ

ρ ρ

ρ ρ ω ϕ ω ϕ

ρ ω ϕ ω ϕ

+ + +

− − −

 = + + + 
 + − − − 



 

at the perihelion position where 0 0 0h hρ ρϕ ϕ+ −= = , results that 

( ) ( ) ( ) ( )1 1cos sinh h h h hh t i h tρ ρ ρ ω ρ ρ ω+ − + −= + + − . 

Now, considering that h h aρ ρ+ −+ = , the semi-major ellipses’ axis, and 

h h bρ ρ+ −− = , the semi-minor axis, the ellipses’ condition, 

( ) ( )2 2 2 2
1 1

2 2

cos sin
1

a h t b h t
a b

ω ω
+ =  

is fulfilled. 

Appendix B 

The following are the expressions of the positive and negative sequence har-
monic position vectors: 

( ) ( ) ( )1 0 1e e eh hi i h t i h t
h h h h

ρ ρϕ ω ϕ ωρ ρ ρ ρ
+ +++ + + += = =  , 

( ) ( ) ( )1 0 1e e eh hi i h t i h t
h h h h

ρ ρϕ ω ϕ ωρ ρ ρ ρ
− −− − − −− − − −= = =  , 

their first derivatives 

( )1
1 1

d
e

d
i h th

h hih ih
t

ωρ
ω ρ ω ρ

+
+ += =



  , 

( )1
1 1

d
e

d
i h th

h hih ih
t

ωρ
ω ρ ω ρ

−
−− −= − = −



   

and second derivatives 

2 2 2
1 1

dd
d

d

h

h

t
i h

t

ρ

ω ρ

+

+

 
 
  =



 , 

2 2 2
1 1

dd
d

d

h

h

t
i h

t

ρ

ω ρ

−

−

 
 
  =



 . 
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Appendix C 

The constant gravitational energy is the sum of the instantaneous kinetic and 
potential energies, and equal to the sum of their average values: 

G G GE K U K U= + = + . 

In turn, the average value of the kinetic energy is half the average potential 
energy value, with opposite sign: 

1
2 GK U= − . 

Thus, 

GK E= − . 

For the constant elastic energy, 

Hook Hook HookE k U K U= + = + . 

But, in this case, the average value of the kinetic energy is equal to the average 
potential energy value, 

HookK U= . 

Therefore, 

1
2 HookK E=  

As the kinetic energy has the same value on any reference system, comparing 
the kinetic energy of both systems, imply that 

1
2G HookE E= − . 

Q.E.D. 

Appendix D 

In this Appendix, we are going to see how is the power contribution of every 
harmonic motion (positive and negative sequences harmonic motions) to the 
total power given as the derivative of kinetic energy given by Equation (14); se-
parating them as harmonic powers related to forces and velocities of same har-
monic order, and harmonic powers related to forces and velocities of different 
harmonic orders. 

The instantaneous complex power (ICP) concept is presented in [4] [5] [6] [8] 
[9]. ICP is a time-varying complex quantity given by 

( )( )**S FV F F V V

F V F V F V F V

+ − + −

+ + + − − + − −

= = + +

= + + +

      

       

 

here 

d
d
VF m
t

+
+ =



  and 
d
d
VF m
t

−
− =



  
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D1. Harmonic Powers Due to Forces and Velocities of Same  
Harmonic Order 

For each harmonic pair of force and velocity, the ICP is 

( )( )
( ) ( ) ( ) ( )

**

* * * *

h h h h h h h

h h h h h h h h

h h h h

S F V F F V V

F V F V F V F V

S S S S

+ − + −

+ + − − + − − +

+ − ±

= = + +

= + + +

= + + + 

      

         

The first two terms on the right-hand side of this expression, hS +  and hS − , 
are constant and are called complex powers, and the other two, hS ±

  and hS   
are oscillating powers, and are called ICPs. 

The real part of hS +  and hS − , hP+  and hP− , respectively, are the positive 
and the negative sequence real powers and are nil in the case of non-dissipative 
motions (for example: no atmosphere resistance): 

( ) 0h hP Real S+ += =  

( ) 0h hP Real S− −= =  

and the imaginary part, hQ+  and hQ− , respectively, are the positive and the 
negative sequence imaginary powers and they are constant: 

( ) ( )2

h h hQ Imag S h m Vω+ + += =  

( ) ( )2

h h hQ Imag S h m Vω− − −= = −  

Real powers are related to force vectors in phase with velocity vectors, and 
imaginary powers are related to those vectors in quadrature. 

As we are interpreting the orbital motion as two coordinated motions, on two 
orthogonal axes on a plane, the physical meaning of these imaginary powers is 
that they are the pick values of the rate of kinetic energy exchanged between the 
two axes, which are sinusoidal quantities, respectively on the equivalent positive 
and negative sequence motions (the same interpretation is used to define reac-
tive powers on electrical circuit analysis). 

Note that they are related to the harmonic sequence kinetic energies in this 
way: 

( )21
2 2

h
h h

QK m V
hω

+
+ += =  

( )21
2 2

h
h h

QK m V
hω

−
− −= = −  

where hK +  and hK −  are, respectively, the kinetic energy associated to the 
harmonic positive and negative sequence motions. They are constant quantities. 

The sum of these two harmonic kinetic energies given by 

h h hK K K+ −± = +  

is the average kinetic energy during a cycle, related to this harmonic motion (see 
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equation 15): 

21
2havg h hK K mV±  = =  

 
 

The amount 

( )
1

N

av h h
h

K K K+ −

=

= +∑  

is the average kinetic energy of the total motion during one cycle. 
Considering now the ICP terms hS ±

  and hS   of the expression for hS , we 
have that, as in the cases of the above mentioned real and imaginary powers, 
their real PhQ±

 , PhQ

  and imaginary QhQ±
 , QhQ

  parts are also results of force 
and velocity components, respectively in phase and in quadrature. But, here, 
these components are not constant during a cycle of the motion, i.e., they vary 
with frequency 2hω , and their average values are nil (in an analogous electrical 
circuit, due the fact that the elements of the analyzed system are storage energy, 
or reactive, elements, even been powers produced by voltages and in-phase cur-
rent vectors, these powers are named instantaneous reactive powers, or nonac-
tive powers ([7], p. 156). The term inactive is due to the fact that the power flow 
is a system internal power flow. Thus, the same denominations are adopted here. 
It can be verified for these harmonic instantaneous reactive powers that 

Ph PhQ Q± = 

   

and 

0Qh QhQ Q± + =

  . 

The physical meaning of this is that there is a power oscillation between the 
kinetic form and the gravitational form for each harmonic order motion, given 
by 

2Ph Ph Ph PhQ Q Q Q± ±= + =

    . 

Thus, the subtotal power oscillation, which is due to all harmonic pairs is 

( ) ( )* *

Ph Ph Ph h h h hQ Q Q Real F V F V+− −+ + − − +
∑ ∑ ∑

 = + = +  ∑       . 

D2. Harmonic Powers Due to Forces and Velocities of  
Different Harmonic Orders 

There are also oscillating powers between the potential field and the moving 
mass due to forces and velocities of different harmonic orders. Let us represent 
them by ijS ±

  and ijS  , given respectively by 

( ) ( )* *

ij i I i IS F V F V+ + + −± = +      

and 

( ) ( )* *

ij i I i IS F V F V− + − −= +

      
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The real part of these powers 

( )Pij ijQ Real S± ±=   

and 

( )Qij ijQ Real S= 

   

are the rate of energy exchanged between the moving mass of the harmonic mo-
tion of order i and the potential field of harmonic motion of order j. 

Thus, the subtotal power oscillation due to all harmonic of different orders is 

( ) ( ) ( ) ( )* * * *

1 1

Pij Pij Pij

N N

i j i j i j i j
i j

j i

Q Q Q

Real F V F V F V F V+ + + − − + − −

= =
≠

±
∑ ∑ ∑= +

 = + + +  ∑∑



  

       

 

and the total power oscillation is the summation of these two subtotal powers 

P Ph Pij Ph Ph Pij PijQ Q Q Q Q Q Q± ±
∑ ∑ ∑ ∑ ∑ ∑ ∑= + = + + + 

        

NOTE *: the zero-sequence vector has another meaning in electrical circuit 
analysis. 
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