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Abstract 
A formula to investigate the wave effect in a multi-lens system is presented on 
the basis of a path integral formalism by generalizing the work by Nakamura 
and Deguchi (1999). The wave effect of a system with two lenses is investi-
gated in an analytic way as a simple application to demonstrate usefulness of 
the formula and variety of wave effect in multi-lens system. 
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1. Introduction 

Recently several authors have investigated wave effect in gravitational lensing 
phenomenon, motivated by the possibility that the wave effect might be detected 
in future gravitational wave observatories [1]-[7]. The wave effect can be 
investigated by solving wave equation, in principle. However, it is difficult to 
solve the wave equation analytically for general configuration of lenses, excepting 
the simple case of a single Schwarzschild lens (e.g., [8] [9], see also [10] and 
references therein, cf. [3]). Indeed, investigation of the wave effect so far is 
restricted to special case of single lens model with the spherical symmetry, i.e., 
the Schwarzschild lens model and the singular isothermal sphere lens model (see 
[1]). 

Nakamura and Deguchi developed an elegant formalism for gravitational lens 
using the path integral approach [6]. The primary purpose of the present paper 
is to derive a useful formula to investigate the wave effect in general multi-lens 
system, by generalizing the formalism by Nakamura and Deguchi. We also apply 
it to a system with two Schwarzschild lenses to demonstrate usefulness of the 
formula. This paper is organized as follows: In Section 2, we present a 
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generalized formula for multi-lens system. In Section 3, an application of the 
formula to a simple configuration with two lenses is considered. Section 4 is 
devoted to summary and conclusion. We use the convention 1c = . 

2. Generalized Formulation 

We start by reviewing the path integral formalism for gravitational lens 
phenomenon [6]. We consider the Newtonian spacetime with the metric  

( )( ) ( )( )( )2 2 2 2 2 2 2 2d 1 2 , , d 1 2 , , d d sin d ,s U r t U r r r rθ ϕ θ ϕ θ θ ϕ= − + + − + +  (1) 

where ( ), ,U r θ ϕ  is the Newtonian potential. Propagation of massless field φ  
is described by the wave equation  

( ), 0,g g t
x x

µν
µ ν φ
∂ ∂ − = ∂ ∂ 

r
               

(2) 

where g is the determinant of the metric and r represents the spatial coordinates 
( ), ,r θ ϕ . We consider a monochromatic wave from a point source with the 
wave number k. We set  

( ) ( ) ( ), e ,ik t rAt F
r

φ − −=r r
                 

(3) 

where A is a constant, then Equation (2) yields  

( )
2 2

2
2 2 2 2 2

1 1 1 12 sin 4 , , 0.
sin sin

F F F Fik k U r F
rr r r

θ θ ϕ
θ θ θ θ ϕ

∂ ∂ ∂ ∂ ∂ + + + − = ∂ ∂ ∂∂ ∂   
(4) 

Assuming that the first term is negligible compared with the second term and 
1θ � , Equation (4) reduces to  

( )
2

2
2 2

1 1 1 2 , , .
2

F F Fi kr kU r F
r

θ θ ϕ
θ θ θ θ ϕ
 ∂ ∂ ∂ ∂ = − + +  ∂ ∂ ∂ ∂         

(5) 

Due to analogy of Equation (5) with the Schrödinger equation, using the path 
integral formulation of quantum mechanics, the solution can be written as 
follows,  

( ) ( ) ( )( )2 2
0

1, , exp d 2 , ,
2

r
F r ik r r r U r rθ ϕ

  = Θ Θ − Θ    
∫ ∫ �

      
(6) 

where the dot denotes the differentiation with respect to r  and Θ  is used to 
represent the variables ( ),θ ϕ , which are related by ( )cos , sinθ ϕ θ ϕΘ = . The 
expression (6) means the sum of all possible path ( )rΘ , fixing the initial point 
(source’s position) and the final point (observer’s position). 

Let us consider multi-lens system, including n lenses as shown in Figure 1, in 
which the source is located at the origin of coordinate and an observer is located 
at ( ) ( ), ,N Nr rΘ = Θ . The radius between the source and the observer is 
discretized by N segments, and each discrete radius from the source is labeled by 

jr  with j from 1 to N. Separation neighboring two discrete radii is ε . We 
assume that the n lenses are located at the radius 

ml
r r=  with m from 1 to n, 

and that the thin lens approximation is valid for the lenses. In this case the  
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Figure 1. Configuration of multi-lens system and coordinates for path integral formula. 

 

 

Figure 2. Lensing system considered in section 3. 
 

explicit expression of Equation (6) is written as Equation (24) in Appendix (see 
also [6]). After some computation, the path integral expression reduces to (see 
Appendix for details)  

( ) ( )

( )

( )

1 2 1 2
1 1 2 1

1 2 1 2

2 3 2 3
2 2 3 2

2 3 2 3

22

, ,

22

, ,

22

, ,

, d exp
2π 2

d exp
2π 2

d exp
2π 2

n n
n n n

n n

l l l l
N N l l l l

l l l l

l l l l
l l l l

l l l l

l N l N
l l N l

l N l N

r r r rkF r ik
i r r

r r r rk ik
i r r

r r r rk ik
i r r

ψ

ψ

ψ

  
Θ = Θ Θ −Θ − Θ      

  
 × Θ Θ −Θ − Θ     

×


× Θ Θ −Θ − Θ



∫

∫

∫

�

 
       

(7) 

with  

( ) ( )2 d , ,lm

m lm

r r
l r r

rU r
δ

δ
ψ

+

−
Θ = Θ∫                 

(8) 

where 
1 1,m m m ml l l lr r r
− −

= − , 
1nl Nr r
+
= , and 

ml
Θ  is the variable on the mth lens 

plane. As expected, stationary condition of the phase of the integrand in 
Equation (7) reproduces the lens equation in the multi-lens system [10]  

( )1

1
1

2

1 ,

0,
2

m m
l m m mm

m m

n
l l

l l l
m l l

r r
r

ψ+

+′
+

Θ
=

 
∇ Θ −Θ − Θ =  

 
∑

         
(9) 

for each 1, ,m n′ = � , which hints at a way to the geometrical optics limit. The 
Gaussian approximation around a stationary solution yields the result in the 
geometrical optics limit (see also [6]). 

3. Application to a Simple Configuration 

In this section we consider a simple case with two lenses. Figure 2 shows the 
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configuration: The Schwarzschild lenses with mass 1M  and 2M  are located at 
the radius 1r  and 2r , respectively. The model considered here is not general, 
because the source and the two lenses are arranged to be on a straight line. 
However, this simplification allows us to perform integration of Equation (7) 
analytically. We start by rewriting Equation (7)  

( )

( )

221 2 1
1 1 2 1

1,2 1,2

222 3 2 3
2 2 3 2

2,3 2,3

d exp
2π 2

d exp
2π 2

r r r rkF ik
i r r

r r r rk ik
i r r

ψ

ψ

  
= Θ Θ −Θ − Θ      

  
× Θ Θ −Θ − Θ      

∫

∫      

(10) 

with  

( ) ( )4 ln ,j j jGMψ Θ = Θ                 
(11) 

for 1, 2j = , where ,i j j ir r r= −  and the position of an observer is ( )3 3,r Θ . 
From Eqution (10) we have  

( )

( )

1

2

1 4 2 21 2 1 2 1 2
1 1 1 2 0 1 20

1,2 1,2 1,2

1 4 2 22 3 2 3 2 3
2 2 2 3 0 2 30

2,3 2,3 2,3

d exp
2

d exp ,
2

ikGM

ikGM

r r r r kr rkF ik J
i r r r

r r r r kr rk ik J
i r r r

θ θ θ θ θ θ

θ θ θ θ θ θ

∞ −

∞ −

   
= +         

   
× +         

∫

∫
      (12) 

where j jθΘ =  and ( )0J y  is the Bessel function of the first kind. Integration 
with respect to 1θ  can be performed (see [10])  

( )1 2π 1 4 22 3 2 31 2
1 2 2 20

2,3 1,2 2,3

2 2 31 2
1 1 1 2 0 2 3

1,2 2,3

e e 1 2 d exp
2 2

1 2 ,1 ; ,
2

kGM ikGMi r r r rr rkF ikGM ik
i r r r

kr rikr rF ikGM J
r r

α θ θ θ

θ θ θ

∞ −
  

= Γ − +      
   −

× −      
   

∫

  

(13) 

where α  is a real number which represents a constant phase and ( )1 1 ,  ;F a b y  
is the Kummer’s function. With the use of the definition of the Bessel function  

( ) ( )
( )

2

0 2
0

1
,

2!

L L

L

zJ z
L

∞

=

−  =  
 

∑
                

(14) 

we have (see [11])  

( ) ( ) ( )
( )

( )

( ) ( )

1 2π
1 22

0

2 1 1 2

e e 1 2 1 2
!

1 2 ,1 2 ,1 ;1 ,

L
kG M Mi

L

L

i
F ikGM z L ikGM

L

xz F ikGM L ikGM z

α
∞

+′

=

−
= Γ − Γ + −

× − + − −

∑

    

(15) 

where we defined  

( )
( )

3 2 1

2 3 1

,
r r r

z
r r r

−
=

−                    
(16) 

( )
2

2 3 3

3 2

,
2
kr rx

r r
θ

=
−                     

(17) 
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α′  is a real constant and ( )2 1 , ,  ;F a b c y  is the Hypergeometric function. In 
the limit ( )3 0 0xθ = = , Eqution (15) reduces to  

( ) ( ) ( )
( )

1 2π
1 2

2 1 1 2

e e 1 2 1 2

1 2 ,1 2 ,1 ;1 ,

kG M MiF ikGM ikGM z

F ikGM ikGM z

α +′= Γ − Γ −

× − − −         
(18) 

and we have  

( )
1 2

22 21 2
2 1 1 24π 4π

4π 4π 1 2 ,1 2 ,1 ;1 .
1 e 1 ekGM kGM

kGM kGMF z F ikGM ikGM z− −= − − −
− −  

(19) 

We consider the coincidence limit that the distance between the two lenses 
becomes zero, i.e., 1 2r r= . In this case, from previous investigation (e.g., [10]), 
F  should be  

( ) ( ) ( ) ( )( )1 2π
1 1 1 1 2e 1 2 1 2 ,1 ; ,kG M Mx ikGM F ikG M M ix+≡ Γ − − + −    (20) 

excepting a constant phase factor. We compare our result with Eqution (20). 
First, let us consider the limit 1 2r r= , i.e., 0z =  of Eqution (15). Using the 
mathematical formula  

( ) ( ) ( )
( ) ( )( )

( )( )
( ) ( ) ( )( )

( ) ( )
( )( )

1 2

1 2 2 1 1 2

2
1 2

2 1 1 2 1 2

1 2 1 2

1 2

2 1 1 2 1 2

1 2 1 2 1 2 ,1 2 ,1 ;1

1 2

2 ,2 , 1 2  ;

1 2 1 2 1 2
2 2

1 2 ,1 2 ,2 2  ; ,

ikG M M

ikGM ikGM z F ikGM ikGM z

z ikG M M

F ikGM ikGM ikG M M z

ikGM ikGM ikG M M
z

ikGM ikGM

F ikGM ikGM ikG M M z

+

Γ − Γ − − − −

= Γ − +

× − + +

Γ − Γ − Γ − + +
+

Γ Γ

× − − − +   

(21) 

in the case ( )3 0 0xθ = = , we can easily have  

( )
( ) ( )

1 2

22 1 2
4π0

4π
lim 0 .

1 e kG M Mz

kG M M
F

− +→

+
= =

−


            
(22) 

This is the expected result. Note that 2F  is regarded as the magnification 
factor. Figure 3 plots ( )0R F=  , as a function of z, where we fixed 

1 2 1kGM kGM= = . Thus the maximum magnification depends on lens 
configuration significantly. Figure 4 plots ( )R F x=   as a function of x 
when fixing 0.5z =  and 1 2 1kGM kGM= = , which indicates that interference 
pattern also depends on lens configuration. In these figures we have fixed  

 

 

Figure 3. ( )0R F=   as a function of z with fixing 1 2 1kGM kGM= = . 
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Figure 4. ( )R F x=   as a function of x with fixing 0.5z =  and 1 2 1kGM kGM= = . 

 

1 2 1kGM kGM= = , but result depends significantly on the parameters 1kGM ,

2kGM  and z , as shown in Figure 4, which suggests variety of wave effect 
depending on lens configuration. 

4. Summary and Conclusion 

In the present paper, we have presented a general formula to investigate wave 
effect in multi-lens system, which has been derived with the use of path integral 
approach. The formula is expressed in terms of integration with respect to 
variables of lens planes. It is difficult to perform the integration in general cases, 
but a system with two Schwarzschild lenses is an example for which the 
integration can be performed in an analytic way. The model considered in the 
present paper is simplified and limited, however, it suggests variety of wave 
effect in multi-lens phenomenon. It is required to develop a numerical method 
to perform integration in general lens configuration in future work.  
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A. Derivation of Equation (7) 

In this Appendix, we review derivation of Equation (7) from Equation (6). We 
consider the configuration depicted as Figure 1. The source is located at the 
origin of coordinate and the position of an observer is specified by 
( ) ( ), ,N Nr rΘ = Θ . The space between the source and the observer is discritized 
by 1N −  planes. The radius of each plane is labeled by jr  for 1, , 1j N= −� . 
Note that Nr  specifies the plane of the observer. jΘ  is (angle) variable on the 
jth plane. We consider the system with n lenses, and assume that mth lens is 
located at the radius 

ml
r . Assuming the validity of the thin lens approximation, 

we introduce the two dimensional potential  

( ) ( )2 d , ,l

m l

r r
l r r

rU r
δ

δ
ψ

+

−
Θ = Θ∫                

(23) 

for 1, ,m n= � , respectively. In this case, the path integral formula (6) can be 
written as  

( )
221 1

1 1

1 11

d
exp ,

2 m

N N n
j j j j j

l
j mj j

r r
F ik

A
ψ

− −
+ +

= ==

   Θ Θ −Θ
  = − Θ         

∑ ∑∏∫ 


    
(24) 

where the normalization is chosen  

1

2π ,j
j j

iA
kr r +

=


                     
(25) 

so that 1F =  in the limit 0ψ = . Then, Equation (24) is rephrased as  

( )

1 1

2 2

1
11

221 1
1 1

11

221 1
1 1

21 1
1 1

d
exp

2

d
exp

2

d
exp

2nn

l l
j j j j j

jj j

l l
j j j j j

l
j lj l j

N N
j j j j

j lj l j

r r
F ik

A

r r
ik

A

r r
ik

A

ψ

− −
+ +

==

− −
+ +

==

− −
+ +

==

   Θ Θ −Θ
  =          
   Θ Θ −Θ
  × − Θ         

×

 Θ Θ −
×  
  

∑∏∫

∑∏∫

∑∏∫

�







 ( )
2

,
n

j
lψ

  Θ
  − Θ

    


    

(26) 

where   is the separation between two neighboring planes. With the use of the 
following equality, which can be proven by the mathematical induction,  

1 1
1

1
1

1 12 22 12
1 1 ,

1

m m
m m m

m m m
m mm m m

l l
l l j l

j j j j l l j j l j
j l j ll l j l

r r r r
r r r u

r r r r

+ +
+

+

+

− −
+

+ +
= = +

−
Θ −Θ = Θ −Θ + Θ −

− −∑ ∑  

with  

( )
( )

1 1
,

1

,m m
m

m

l l m j j
l j

j l

r j l r
u

j r r
+ +

+

Θ + − Θ
=

−
              

(27) 

we have  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2
1 2 1 1

2 1 2 1

2 3 2 3
2 3 2 2

3 2 3 2

22

22

22

d exp
2π 2

d exp
2π 2

d exp
2π 2

n n
n n n

n n

l l l l
l l l l

l l l l

l l l l
l l l l

l l l l

l N l N
l N l l

N l N l

r r r rkF ik
i r r r r

r r r rk ik
i r r r r

r r r rk ik
i r r r r

ψ

ψ

ψ

  
  = Θ Θ −Θ − Θ
  − −  
  
  × Θ Θ −Θ − Θ
  − −  

×


× Θ Θ −Θ − Θ

− −

∫

∫

∫

�

,
 
  
  

    

(28) 

which is equivalent to Eqution (7). 
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