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gies is shown to have some criteria under which an optimal solution exists. 
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1. Introduction 

The economies of oil producing nations depend heavily on oil price dynamics. 
These dynamics are the determinants of budgetary sizes and capital project 
allocations in nations with oil. As a result, it has gained attention even among 
mathematicians: Cai and Newt [1], Krugman [2] especially with the downturn 
dynamics of 2015; Lee and Huh [3]. Because to mathematicians, if nation A 
derives proceeds in a space X when the dynamics are positively increasing and 
sufficient for instance, the dynamics can be represented.1 Practically, if T is an 
arbitrary operator and X is a proceed space for A, one can write that 

:T X Y→                              (1) 

Now, given additional information on (1) above, vital considerations can be 
made. Suppose a price shock occurs when X is complete. Then (1) is a 
transformation from Banach space to any space. Consequently, understanding 
the nature of inverse maps that reverse Y to X could be the solution of certain 
interesting problems. The direct interpretation is that to do with the needed 
policy maps that can take (1) to completeness once again. 

 

 

1The converse is also true. 
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In the queuing literature, it is well known for N-homogenous jobs that the 
stationary probability of maintaining these jobs in a uni-server production 
center is given by 

( )1 N
NP ρ ρ= −                             (2) 

The parameter ρ  is the occupation rate of the center, Medhi [4]. 
Unfortunately, homogeneity of jobs is unrealistic, Krishnamoorthy [5]. Suppose 
X is isomorphic to a job space Z. Suddenly, an oil price shock2 occurs in the 
neighborhood of X. Trivially, the completeness property of Z will alter similar to 
that of X a.s. Consequently, the extended job space extZ  is nowhere dense in Z. 
Thus, working under homogenous assumptions in extZ  is simplistic a.s. A 
re-consideration of the job size bracket { } extN Z∈  is necessary for a complete 
discussion and analysis in extZ . Moreover, the understanding of needed maps 
that takes extZ  to Z is equivalent to that which takes X to Y given that the later 
space is a normed space. 

In the past, a lot of studies considered the stationary behavior of jobs in extZ  
and Z identical. Nowadays, there are re-considerations proving otherwise. For 
instance, Krishnamoorthi and Sreenivan [6], Kumar and Sharma [7] and more 
recently, Som and Kumar [8]. On managing queuing systems in extZ , Ke and 
Pearn [9] studied an M/M/1 queuing system with server breakdowns and 
vacations where the arrival rate varies according to the server status and the 
vacation norm determined by the number of arrivals during the vacation period. 
Jayachitra and Albert [10] studied an Erlangian model under server breakdowns 
and multiple vacations and provided a cost model to determine the optimal 
operating policy at minimum cost. What is inherent in most of these 
management models is that the optimal criterion is proved from the service 
process. Essentially, optimal criterion from the number of jobs in the system is 
scarce in the literature. 

Our aim is to present a methodology that studies the problem of strategies in 
imperfect production centers from the stationary number of jobs in the system. 
The most important gain is the generalization of known basic results. This extends 
the capacity of known results to centers with jobs of distinct characteristics. For 
instance, in service centers with normal jobs and constraint jobs, less time 
spending on jobs and delaying jobs, difficult to process jobs and easy to process 
jobs, etc. In this respect, our work is purely for operational research purpose 
geared towards best practices in centers with distinct job characteristics. We wish 
to provide the understanding of principal components of imperfect centers and 
develop optimal criteria under which production is maximized. 

It turns out that3 the problem herein is that of how best the coupling of system 
policies (T), occupation rates ( ρ ) and available constraints c can be tackled in 

extZ . 

 

 

2Similar to that of 2015 that takes oil price from 100+ USD to the neighborhood of 20+ USD. 
3From principal component analysis of several factors affecting a steady state system from the exte-
rior, policies, occupation rates and constraint size have the largest Eigen values. 
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2. Preliminary Results 

Lemma 1 An operationally useful policy map T  is necessarily compact and 
infinite dimensional in extZ . 

Proof. 
It is enough to show that an infinite dimensional compact operator cannot 

have a close range in a complete normed space.  
Let Z  and extZ  be arbitrary normed spaces where extZ  is complete. 

Suppose that  

: extT Z Z→  

is infinite dimensional and compact. 
Suppose to the contrary that TZ  is closed. Then TZ  is complete. 
Thus, 

1
Z

n
Z nB

∞

=

=


                               (3) 

where ZB  is the unit ball of jobs in Z. 
It follows directly from (3) that 

1
.Z

n
TZ nTB

∞

=

=


                             (4) 

Since T is compact and ZnTB  is bounded, then ZnTB  is compact. 
Given that dimT = ∞ ; ZnTB  is nowhere dense in TZ . Hence, TZ  is of 

the first Baire category. 
This contradiction completes the prove.                              □ 
Lemma 2 Let { } 0n n

z
≥

 be a job sequence in extZ . If { } 0n n
z

≥
 has a convergent 

point z  in Z , then the measurable policy map T  such that nTz Tz→  is a 
strong job policy. 

Proof. It suffices to show that if Z  and extZ  are normed job spaces, then 
for any { } 0n extn

z Z
≥
∈  and a point z Z∈  given that ( ), extT K Z Z∈  and 

w
nz z→ , then nTz Tz→  strongly. 
Let n ny Tz=  and y Tz= . We show that w

ny y→ . Suppose that * *y Z∈  
and define *z  by  

( ) ( )* * .z z y Tz=                            (5) 

Clearly *z  is linear. Similarly, since T is compact *z  is compact. Thus, *z  
is bounded. 

Given that w
nz z→ , we have ( ) ( )* *

nz z z a→ . Hence, ( ) ( )* *
ny Tz y Tz→ . 

Now to show the last component of the lemma, suppose that nTz  does not 
converge to Tz . Then ( nTz ) has a sub sequence ( nTz ′ ) such that nTa Ta α′ − >  
for some 0α > . Since w

nz z′ → , then ( nz ′ ) is bounded. Given that T is 
compact, then ( nTz ′ ) has a Cauchy sub-sequence. 

Consequently, 

0.nTz Tz′′ − →                             (6) 
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This contradiction completes the proof.                              □ 
Lemma 3 A job policy *T  on extZ  is compact if a corresponding job policy 

T Z∈  is compact. 
Proof. Suppose that Z is a normed space and extZ  is a Banach space. 
Furthermore, suppose that T is compact. Let ( *

ny ) be a sequence in ( )* *,extB Z Z . 
If ψ  is a functional such that for any 0n > , we have  

( ) ( )*,n y y yψ =                            (7) 

Then 

( ) ( )* *,n ny y y y y yψ = ≤ ≤                     (8) 

Thus, nψ ’s are uniformly bounded. In addition,  

( ) ( ) ( )*, .n n ny y y y y y yψ ψ ′ ′ ′− = − ≤ −                 (9) 

Thus, nψ ’s are equicontinuous and so ( ){ }:n Zy y TBψ ∈  is compact. This 
implies that there exist a sub sequence 

( ){ } ( ){ }* *,n nTz z T yψ ′ =                           (10) 

which converges uniformly on ( ), extB Z Z . Hence T* is compact.           □ 
Lemma 4 Given { } { } { } { } { } { };N c n c n= ⊕ = ; then 

[ ] ( )1
.

1

c c
E N

ρ ρ ρ
ρ

+ −  =
−

                       (11) 

Proof. Denote by ( )V z  the probability generating function (PGF) for the 
new jobs { }n N∈  when there are 0c ≥  fixed constraint jobs in a system such 
that 

( )
0

;  0,1, 2,3,c n
c n

c n
V z P z n

∞
⊕

⊕
⊕ =

= =∑                   (12) 

That means 

( ) 2 3
1 2 3 ; 0,1, 2,3,c c c cV z P P z P z P z n+ + += + + + + =           (13) 

And in view of (2), we have 

( ) ( ) ( ) ( )1 2 21 1 1c c cV z z zρ ρ ρ ρ ρ ρ+ += − + − + − +           (14) 

So that 

( ) ( )1
1

c cz
V z

z
ρ ρ
ρ

−
=

−
                        (15) 

The lemma holds upon differentiating (15) at 1z = .                    □ 
It is interesting to note that if 0c =  in (11) above, then  

{ } { } { } { } { }c n n n⊕ = ⊕ = . Consequently, there is only one job group { }n  in 
the system (homogenous).4 In this case, the result goes to that of a classical 
production center with homogenous jobs as expected. 

 

 

4This is the only case the classical M/M/1 model depicts in its expectation. 
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Lemma 5 For a finite capacity imperfect production center with two distinct 
job groups { }n  and { }c , we have  

[ ]
( ) ( )( ) ( )1 1 1

1

c K Kc K
E N

ρ ρ ρ ρ ρ ρ

ρ

 − − + − − =
−

          (16) 

Proof. In view of (2) and for N K= < ∞ , it can be shown that the PGF 
( )W z  is 

( )
( )( ) ( )( )1 1

1

c Kz z
W z

z

ρ ρ ρ

ρ

− −
=

−
                 (17) 

Differentiating (17) w.r.t z, we have  

( ) ( )( ) ( )( ) ( )( ) ( )

( )

1 1

2

1 1 1 1
( )

1

c K c Kz c z z K z z
W z

z

ρ ρ ρ ρ ρ ρ ρ ρ φ

ρ

− + − − − − − − +  ′ =
−

(18) 

where 

( ) ( )( ) ( )( )1 1c Kz z zφ ρ ρ ρ ρ= − −                     (19) 

Which gives 

[ ]
( )( ) ( ) ( )

( )

2

2

1 1 1 1

1

c K Kc K
E

ρ ρ ρ ρ ρ ρ ρ

ρ

 − − − + − −   =
−

N         (20) 

upon substituting z = 1 in (18) above. Finally, the lemma holds if (20) is 
rearranged and simplified.                                           □ 

Corollary 6 From the numerical results (Tables 1-6 in the appendix), it is 
clear that 

1) ( )cρ ρ→ . 
2) ( ){ } ( ){ },N N cρ ρ→ .  
Lemma 7 (First Criterion) A maximizer of the group { }N  is the solution 

for the policy map-constraint-occupation rate problem ( ).G  such that 

( ), , , , , , 0.T cG N N N N T cρ ρ∂ ∂ ∂ =                  (21) 

Proof. We seek a solution ( ), ,N c Tρ  for ( ).G  such that 

( ) ( ). , , , , , .c TG N F N N N T cρ ρ= ∂ + ∂ ∂               (22) 

where ( ).F  is a real valued semi-linear continuous function with respect to all 
its arguments. (22) is equivalent to  

( ) ( ) ( ). , , , , , , .c TG N N h T c N N h T c Nρρ ρ= ∂ + ∂ + ∂ +        (23) 

By Lemma 1, T is necessarily compact. Let T be a fixed point of G(.). Then (23) 
reduces to 

( ) ( ), , , , .c N h c N N h c Nρρ ρ∂ = − ∂ −                (24) 
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Consider a differentiable arc ( ): cρ ρ→B  in the ( ),cρ  plane such that 
points on ( )( ),c cρ→B . 

By multivariate chain rule on the left hand side of (24), we have  

( )( ) ( )( ) ( )( ) ( )dd , , , .
d dc

c
N c c N c c N c c

c cρ

ρ
ρ ρ ρ= ∂ + ∂        (25) 

Assuming that ( ),N cρ  solves (21) and combining (24) and (25) and 
rearranging, we have 

( )( ) ( ) ( ) ( )( ) ( )dd , .. , ..
d d

c
N c c h N c c h

c c ρ

ρ
ρ ρ

 
= − + ∂ − 
 

       (26) 

So5 that the couple differential equations  

( )( ) ( ) ( )( )( )d , , , ,
d

N c c h c c N c cρ ρ ρ
ρ

=               (27) 

and 

( )( ) ( ) ( )( )( )( )d , , , ,
d

N c c h c c N c c
c

ρ ρ ρ= −            (28) 

constitute in general a solution for ( ).G  for ( )( ),N c cρ  when T is a fixed 
point of ( ).G .                                                    □ 

Lemma 8 (Second Criterion) Any continuously differentiable solution 
( ),N cρ  for ( ).G  satisfying the first criterion above must coincide with the 

original solution ( )( ),N c cρ   along the base curve ( )cρ ρ= . 
Proof. Since (27) and (28) are coupled systems, only in rare cases analytic 

solution exists in closed form. However, if we specify an initial value for 0c , 0ρ  
and 0N , then the existence of a unique solution pair ( )cρ  and ( )( ),N c cρ   
is guaranteed. A solution ( )( )ˆ ,N c cρ  that did not pass through the origin 
leading to ( )( ),N c cρ   cannot be a solution for ( ).G  since it is nowhere 
differentiable around ( ).G .                                         □ 

Lemma 9 (Optimality Criterion) Suppose maxT T→  so that the constraint 
dependent occupation rate ( ) ( )max 0,1c cρ ρ→ ∈ . A solution ( )( ),N c cρ  that 
passes through the origin ( )( ),N c cρ   for ( ).G  is optimal a.s. 

Proof. Given that maxT T→ , we have ( ) ( )max 0,1c cρ ρ→ ∈ . By the numerical 
approximation (Tables 1-6 in the appendix) ( )( ) ( )( )max, ,N c c N c cρ ρ→ . 
Given that ( ).G  is ( )( ),N c cρ  dependent, it is then trivial.              □ 

3. Scope for Future Work 

There is a scope in extending our results to some special cases of the problem 
solved in this work. For instance, when the function ( )..h  is independent of N 
or when ( )..h  and ( )..h  are linear or even non-linear combination of ρ  
and T and N. The author are grateful to all literature sources used. 

 

 

5 ( ) ( ) ( )( )( ).. , , , .c c N c cρ ρ=  
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Appendix 

For a numerical approximation, we study the model in (11) under various sizes 
of constraint numbers c and varying occupation rate ρ  for [ ]E N . The 
following numerical results are obtained. 
 

Table 1. E[N] when c = 0. 

S N  ρ  [ ]E N  

1 0.1 0.1111111 

2 0.5 1.0000000 

3 0.7 2.3333333 

4 0.8 4.0000000 

5 0.9 9.0000000 

6 0.99 99.000000 

7 0.999 999.00000 

8 0.9999 9999.0000 

9 0.99999 99999.000 

10 0.999999 999999.00 

 

Table 2. E[N] when c = 10. 

S N  ρ  [ ]E N  

1 0.5 0.0107422 

2 0.65 0.1596297 

3 0.75 0.7320757 

4 0.8 1.5032386 

5 0.85 3.0843657 

6 0.9 6.6248904 

7 0.99 98.577647 

8 0.999 998.95528 

9 0.9999 9998.9955 

10 0.99999 99998.999 

 

Table 3. E[N] when c = 23. 

S N  ρ  [ ]E N  

1 0.75 0.0347842 

2 0.80 0.1593799 

3 0.85 0.6823583 

4 0.89 2.1310988 

5 0.90 2.8361402 

6 0.95 12.908988 

7 0.97 27.462288 

8 0.99 96.820943 

9 0.999 998.75077 
10 0.9999 9998.9747 
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Table 4. E[N] when ρ = 0.5. 

S N  c [ ]E N  

1 0 1.000000 

2 3 0.500000 

3 5 0.187500 

4 7 0.062500 

5 9 0.019531 

6 10 0.010742 

7 11 0.005859 

8 13 0.001709 

9 14 0.000916 

10 15 0.0004883 

 

Table 5. E[N] when ρ = 0.75. 

S N  c [ ]E N  

1 0 3.000000 

2 5 1.898436 

3 10 0.7320757 

4 15 0.240542 

5 20 0.072938 

6 25 0.021071 

7 30 0.005893 

8 35 0.001610 

9 40 0.000432 

10 45 0.000115 

 

Table 6. E[N] when ρ = 0.9. 

S N  c [ ]E N  

1 0 9.000000 

2 5 8.266860 

3 10 6.624890 

4 15 4.941387 

5 20 3.525723 

6 25 2.440853 

7 30 1.653255 

8 35 1.101388 

9 40 0.724263 

10 45 0.471310 
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