
Journal of Data Analysis and Information Processing, 2017, 5, 115-130
http://www.scirp.org/journal/jdaip

ISSN Online: 2327-7203
ISSN Print: 2327-7211

DOI: 10.4236/jdaip.2017.53009 August 29, 2017

Time Series Forecasting with Multiple Deep
Learners: Selection from a Bayesian Network

Shusuke Kobayashi, Susumu Shirayama

Graduate School of Engineering, the University of Tokyo, Tokyo, Japan

Abstract
Considering the recent developments in deep learning, it has become increa-
singly important to verify what methods are valid for the prediction of multi-
variate time-series data. In this study, we propose a novel method of time-series
prediction employing multiple deep learners combined with a Bayesian net-
work where training data is divided into clusters using K-means clustering.
We decided how many clusters are the best for K-means with the Bayesian
information criteria. Depending on each cluster, the multiple deep learners
are trained. We used three types of deep learners: deep neural network
(DNN), recurrent neural network (RNN), and long short-term memory
(LSTM). A naive Bayes classifier is used to determine which deep learner is in
charge of predicting a particular time-series. Our proposed method will be
applied to a set of financial time-series data, the Nikkei Average Stock price,
to assess the accuracy of the predictions made. Compared with the conven-
tional method of employing a single deep learner to acquire all the data, it is
demonstrated by our proposed method that F-value and accuracy are im-
proved.

Keywords
Time-Series Data, Deep Learning, Bayesian Network, Recurrent Neural
Network, Long Short-Term Memory, Ensemble Learning, K-Means

1. Introduction

Deep learning has been developed to compensate for the shortcomings of pre-
vious neural networks [1] and is well known for its high performance in the
fields of character and image recognition [2]. In addition, deep learning’s influ-
ence is impacting various other fields [3] [4] [5], and its efficiency and accuracy
have been much bolstered by recent research. However, deep learning is subject
to three main drawbacks. For instance, obtaining and generating appropriate

How to cite this paper: Kobayashi, S. and
Shirayama, S. (2017) Time Series Forecasting
with Multiple Deep Learners: Selection
from a Bayesian Network. Journal of Data
Analysis and Information Processing, 5,
115-130.
https://doi.org/10.4236/jdaip.2017.53009

Received: July 10, 2017
Accepted: August 26, 2017
Published: August 29, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2017.53009
http://www.scirp.org
https://doi.org/10.4236/jdaip.2017.53009
http://creativecommons.org/licenses/by/4.0/

S. Kobayashi, S. Shirayama

116

training data is problematic, it suffers from excessively long calculation times.
Moreover, parameter selection is also difficult. While researchers are progressing
toward overcoming such issues, according to some reports, dealing with these
problems is difficult except for subjects in which the formation of feature spaces
such as images and sounds are the key to success [6].

However, while it is clear that deep learning is considered to underpin artifi-
cial intelligence and because the brain’s information processing mechanism is
not fully understood, it is possible to develop new learners by imitating what is
known about the information processing mechanisms of the brain. One way to
develop new learners is to use a Bayesian network [7]. Moreover, it is also con-
ceivable to combine multiple deep learners to create a single new learner. For ex-
ample, ensemble learning and complementary learning are representative learning
methods using multiple learners [8] [9] [10]. In addition, to realize a hierarchical
control mechanism, there are cases where multiple learners are used.

In this research, we develop a new learner using multiple deep learners in
combination with Bayesian networks as the selection method to choose the most
suitable type of learner for each set of test data.

In time-series data prediction with deep learning, overly long calculation times
are required for training. Moreover, a deep learner does not converge due to the
randomness of the time-series data. There is also an issue with employing a Baye-
sian network. In this paper, we try to reduce the computation time and improve
convergence by dividing training data into specific clusters using the K-means
method and creating multiple deep learners from the learning derived from the
divided training data. We also simplify the problem of ambiguity by using a Baye-
sian network to select a suitable deep learner for the task of prediction.

To demonstrate our model, we use a real-life application: predicting the Nik-
kei Average Stock price by taking into consideration the influence of multiple
stock markets. Specifically, we estimate the Nikkei Stock Average of the current
term based on the Nikkei Stock Average of the previous term as well as overseas
major stock price indicators such as NY Dow and FTSE 100. We evaluate the va-
lidity of our proposed method based on the accuracy of the estimation results.

2. Related Works

In this section, we introduce the related works of multiple learners.
In ensemble learning, outputs from each learner are integrated by weighted

averaging or a voting method [8]. In complementary learning, each learner is
combined with the group to compensate for each other’s disadvantages. Com-
plementary learning is a concept arising from the role sharing in the memory
mechanism of the hippocampus and cortex [9]. These learning methods tend to
mainly use weak learners. Conversely, to realize a hierarchical control mechan-
ism, there are cases where multiple learners are used. When the behavior of a
robot or multi-agent entity is controlled, a hierarchical control mechanism is of-
ten adopted as attention is paid to the fact that such task can be divided into
subtasks. Takahashi and Asada have proposed a robot behavior-acquisition me-

S. Kobayashi, S. Shirayama

117

thod by hierarchically constructing multiple learners of the same structure [10]. A
lower-level learner is responsible for different subtasks and learns low-level ac-
tions. A higher-level learner learns higher-level actions by exploiting a lower-level
learner’s knowledge.

Our proposed method, which will be described later, is based on the same
notion as the bagging method used in ensemble learning where training data
are divided and independently learned. The difference between our proposed
method and the bagging method is the division method, the integration of
multiple learners (the method of selecting suitable learners for each set of test
data) to improve learners’ accuracies in their acquisition of the material.
Therefore, similar to Takahashi and Asada [10], we do not hold to the premise
that tasks can be divided into subtasks. Our learner selection method is differ-
ent. However, our use of deep learning entities as learners is different to Ta-
kahashi and Asada’s approach as they simply used learners, which is a
Q-learning algorithm extended to a continuous state behavior space. Further-
more, prior research of learning methods has not fully established a method of
dividing training data, a method of integrating multiple learners, or a method
of hierarchizing learners. In addition, it has also failed to improve each learn-
er’s performance after learning.

3. Proposed Method

As we mentioned, because the information processing mechanism of the brain is
not fully understood, it is possible to develop new learners by imitating the in-
formation processing mechanism of the brain. In this research, we hypothesize
that the brain forms multiple learners in the initial stage of learning and im-
proves the performance of each learner in subsequent learning while selecting a
suitable learner.

To design learners based on this hypothesis, it is necessary to find ways of
constructing multiple learners, selecting a suitable learner, and improving the
accuracy of each learner by using feedback from a particular selected learner.
Hence, we assume that multiple learners have the same structure. The learners
are constructed by the clustering of input data. Selection of a suitable learner is
conducted with a naive Bayes classifier that forms the simplest Bayesian net-
work. Furthermore, after fixing learners, we construct a Bayesian network and
predict outcomes without changing the Bayesian network’s construction. How-
ever, it is preferable to improve each learner’s performance and the Bayesian
network by using feedback gained from the selected learners. This will form one
of our future research topics.

In the next section, we propose a method of constructing a single, unified
learner by using multiple deep learners. Moreover, in Section 3.2, we propose a
method of selecting a suitable learner with a naive Bayes classifier.

3.1. Learning with Multiple Deep Learners

In the analysis of time-series data with a deep learner, the prediction accuracy is

S. Kobayashi, S. Shirayama

118

uneven because the loss function of certain time-series data does not converge. It
is commonly assumed that the learning of weight parameters does not work due
to the non-stationary nature of the data. This problem often occurs when mul-
tiple time-series data are used as training data. In addition, the long computa-
tional times that are required is also an issue.

To solve these problems, we think it is effective to apply clustering methods,
such as K-means, SOM, and SVM, to training data; creating clusters; and con-
structing learners for each cluster. This is because training data divided into
some clusters and multiple learners constructed for each cluster enables us to
extract better patterns and improve convergence of the loss function compared
to constructing a single classifier from all the training data. This method also
enables the reduction of the computational time required. Moreover, classifiers
for selecting a suitable learner are constructed from clustering the results of
training data. This classifier achieves the task of associating test data to a suitable
learner.

Figure 1 shows the framework of learning with multiple deep learners. We
divided the training data into k classes (C1, ∙∙∙, Ck) and constructed k deep learn-
ers for each class. Figure 2 shows the framework of this prediction along with
the test data. To determine which deep learner is in charge of prediction, we
constructed a classifier for test data based on the clustering results of the training
data. In this paper, we use K-means as a clustering method. Training data was
divided into clusters with K-means and for each cluster, k learners were con-
structed. However, it is necessary to determine the number of clusters in ad-

Figure 1. Multiple deep learner’s structure.

Figure 2. Prediction with multiple learners.

S. Kobayashi, S. Shirayama

119

vance when we employ K-means. We decided the optimal number of clusters
using an X-means algorithm, which calculates the optimal number of clusters
best for K-means with the Bayesian information criterion. The X-means algo-
rithm was presented in Pelleg and Moore’s work [11].

Next, we use three types of deep learners, namely, deep neural network
(DNN), recurrent neural network (RNN), and long short-term memory (LSTM).
They are all well-established deep learning methods. To identify which deep
learner was most suitable for each test data, we also used a naive Bayes classifier
(the simplest type of Bayesian network). A naive Bayes classifier was constructed
from the clustering results of the training data. Figure 3 shows the framework of
how the naive Bayes classifier was created. In the next section, we present a
model of a naive Bayes classifier and the learning algorithm applied.

3.2. Selecting a Suitable Deep Learner

In this paper, we use a naive Bayes classifier to select a suitable deep learner for
each set of test data. This method solves the classification problem using Bayes’
theorem. The method hypothesizes conditional independence between feature
values and is the simplest type of Bayesian network.

Let ()T
1 2, , , Dx x x=x be input data and y Y∈ the output class. A naive

Bayes classifier has a graphical structure presented in Figure 4.
Furthermore, conditional probability ()p y x is defined as Expression (1)

from the Bayes’ theorem:

() () ()
()

p y p y
p y

p
=

x
x

x
 (1)

Figure 3. Learning of naive Bayes classifier.

Figure 4. Structure of a naive Bayes classifier.

S. Kobayashi, S. Shirayama

120

In the case of prediction, the predicted class ŷ is defined as the class of
which posterior probability ()p y x is the largest of all classes. Expression (2)
presents the model of a naive Bayes classifier:

() () ()
() ()

() ()
1 2

1

, , , D

D

d
d

p y p y p y

p y p x x x y

p y p x y
=

∝

=

= ∏

x x

 (2)

Let { }1, , , ,n NX = x x x be training data and { }1, , , ,n NY y y y= the
correct class. nx is D-dimensional vector. The correct class Y ({ }1,2, ,Y k=)
presents which k learner is associated to nx .

We hypothesize that each training dataset is generated independently. Let θ
be a parameter of probability distribution. The likelihood function (), ;L X Y θ
is defined as Expression (3):

() () () () ()
1 1 1

, ;
N N D

n n n n nd n
n n d

L X Y p y p y p y p x y
= = =

 = =
∏ ∏ ∏xθ (3)

Moreover, ndx is a vector component of nx . We can calculate the log
likelihood function ()log , ;L X Y θ using the logarithm in Expression (3). The
learning of a naive Bayes classifier results in the problem that we search for
parameters that fit data the best. In other words, it decides the parameters that
maximize the logarithmic likelihood.

Let us assume that ()nd np x y follows a normal distribution and ()np y
follows a uniform distribution. Expression (4) presents a log likelihood function:

() ()
()2

2
1 1

1log , ; log log 2π log
2 2

n

n
n

N D nd y d
n y d

n d y d

x
L X Y p y

µ
σ

σ= =

 − = + − − −

∑ ∑θ (4)

The number of a cluster is defined as l ({ }1,2, ,l k∈), and d represents
the number of a dimension. Let ()δ ⋅ be a delta function. We apply the
maximum likelihood method to Expression (4), solved for parameters and get
Expressions (5) and (6). Expressions (5) and (6) are the average and standard
deviation of ()nd np x y :

()

()
1

1

N

nd n
n

ld N

n
n

x y l

y l

δ
µ

δ

=

=

⋅ =
=

=

∑

∑
 (5)

() ()

()

2

1

1

N

nd ld n
n

ld N

n
n

x y l

y l

µ δ
σ

δ

=

=

− ⋅ =
=

=

∑

∑
 (6)

Therefore, in the learning of a naive Bayes classifier, Expressions (5) and (6)
are derived from training data X and correct data Y. In selecting a suitable deep
learner for test data, we use a naive Bayes classifier that is already trained. The
predicted class y is the class of the largest probability for test data, and it is

S. Kobayashi, S. Shirayama

121

determined by Expression (7). A naive Bayes classifier associates each test data
to k deep learners.

() () ()
1

ˆ arg max arg max
D

d
y y d

y p y p y p t y
=

 = =
∏t (7)

4. Experiment

As a case study, we predicted the future return of Nikkei Stock Average by
applying six economic time-series datasets to our proposed method. From the
previous day’s data, we predicted whether the return of the next day’s Nikkei
Stock Average would be larger than the average return of Nikkei Stock Average
or not.

4.1. How to Prepare the Data

We predicted the financial time-series using the method proposed in the previous
section. The time-series data used in this case study were the closing prices of
the daily data of the Nikkei Stock Average, New-York DOW, NASDAQ, S&
P500, FTSE100 and DAX from January 1, 2000, to December 31, 2014. The
New-York DOW, NASDAQ, and S & P500 are U.S. stock indicators. FTSE100 is
a U.K. stock indicator and DAX is a German stock indicator. These data were
sourced from Yahoo Finance [12] and the Federal Reserve Bank of St. Lois [13].

However, some dates do not show all 6 stock prices because the dates of holidays
in each country are different. In such cases, we assumed that markets that had
no data due to holidays remained unchanged and adopted the previous day’s
stock prices. We defined data from 2000 to 2013 as training data and data from
2014 as test data. Because time-series data typically has strong non-stationary
tendencies, it is difficult to deal with them in their raw format. Thus, we
transformed stock price data to returns.

Let time-series data be ()()0t t T≤ ≤p . According to Expression (8), we
transformed the stock price vector ()tp and ()1t −p to return ()tr :

() () (){ }log log 1 100t t t= − − ×r p p (8)

Return ()()1t t T≤ ≤r was derived by shifting the date one by one day.
We conducted the Dickey-Fuller test to check stationarity of return ()tr .The

null hypothesis for this test is that there is a unit root. The alternative hypothesis
is that the time-series is stationary. As a result of this test, the null hypothesis
was rejected at a significance level of 5%. We assumed stationarity of return
()tr and predicted deviation from the average return of Nikkei. We defined the

average as simple average because it is constant over time from the definition of
stationarity.

4.2. Result

We now present the experimental results of the prediction of financial time-series
data. From today’s data ()tr , we predicted whether the next day’s return
()1t +r of Nikkei Stock Average would be larger than the average return of

S. Kobayashi, S. Shirayama

122

Nikkei or not. The deep learners used in this experiment were DNN, RNN, and
LSTM. The input layer of DNN had 6 units. The two hidden layers had 6 units.
The output layer had 2 units. Weights of DNN were learned over 300 iterations.
Conversely, the input layer of RNN and LSTM had 6 units. The two hidden
layers had 6 units. The output layer had 2 units. The weights of RNN and LSTM
were learned over 100 iterations. First, we show results of the conventional
prediction method. In this experiment, we used only one deep learner. All
training data were used to train this single deep learner. Five experiments were
conducted for each learner.

As Table 1, Table 3 and Table 5 show, the F-values of DNN, RNN, and
LSTM were 61.40%, 71.55%, and 69.73%, respectively. The accuracy of DNN,
RNN, and LSTM were 65.77%, 71.69%, and 53.69%, respectively. The
computational time of DNN, RNN, and LSTM were 3.235 × 102 [s], 3.796 × 102
[s], and 1.531 × 102 [s], respectively.

In Figure 5, we show how the loss function of training data and test data
changed. Let ()T

1 2, , , St t t= t be label data and ()T
1 2, , , Sy y y= y outputs

of a neural network where S denotes the number of the output neurons. N
represents the amount of data. The softmax error E is defined as Expression (9).

(a)

(b) (c)

Figure 5. Cross entropy. (a) DNN; (b) RNN; (c) LSTM.

Table 1. F-value and accuracy of test data (DNN).

 F-value accuracy

Conventional method 0.6140 ± 0.00293 0.6577 ± 0.0148

Proposed method 0.5854 ± 0.01131 0.6877 ± 0.00411

S. Kobayashi, S. Shirayama

123

() ()

1 1
log

N S
n n

i i
n i

E t y
= =

= −∑∑ (9)

where the superscript (n) denotes the n-th number of the training data.
Figure 5(a) presents results when all data were applied to only one DNN.

Figure 5(b) presents the results in the case of applying all data to only one RNN.
In the same way, Figure 5(c) presents how loss functions change when we apply
all data to a single LSTM.

Next, we present the results of our proposed method. In this experiment,
we constructed multiple deep learners in accordance with our method. The
construction of the multiple learners and the production of the predictions are
as follows.

After we applied X-means to training data and determined the optimum
division of number K, we constructed k clusters with K-means and k deep
learners. We applied test data to a naive Bayes classifier learned by clustering
the results of training data. With this naive Bayes classifier, we associated each
test dataset to a suitable deep learner and predicted whether the following
day’s retun of Nikkei Stock Average would be above the average or not. Five
experiments were also conducted in order to measure F-value, accuracy, and
computational time.

F-value of multiple DNN, RNN, and LSTM were 58.54%, 72.40%, and 81.42%,
respectively. The accuracy of multiple DNN, RNN, and LSTM were 68.77%,
72.62%, and 69.08%, respectively. In addition, the computational time of
multiple DNN, RNN, and LSTM were 2.064 × 102 [s], 2.077 × 103 [s], and 1.533 ×
103 [s], respectively.

The results of each experiment are summarized in Tables 1-6. The top row of
each Table presents the results in the case of applying the conventional method,
whereas the lower row presents the results when our method was used.

Table 2. Computational time of test data (DNN).

 Computational time [s]

Conventional method 3.235 × 102 ± 2.578

Proposed method 2.064 × 102 ± 6.642

Table 3. F-value and accuracy of test data (RNN).

 F-value accuracy

Conventional method 0.7155 ± 0.02712 0.7169 ± 0.02657

Proposed method 0.7240 ± 0.01284 0.7262 ± 0.01389

Table 4. Computational time of test data (RNN).

 Computational time [s]

Conventional method 3.796 × 103 ± 1.259 × 101

Propose method 2.077 × 103 ± 3.591 × 101

S. Kobayashi, S. Shirayama

124

Table 5. F-value and accuracy of test data (LSTM).

 F-value accuracy

Conventional method 0.6973 ± 0.02192 0.5369 ± 0.02462

Proposed method 0.8142 ± 0.000615 0.6908 ± 0.002107

Table 6. Computational time of test data (LSTM).

 Computational time [s]

Conventional method 1.532 × 103 ± 6.041

Propose method 1.533 × 103 ± 6.797

Moreover, we show the change in error functions when our method was

applied. The optimum division number derived from X-means varies depending
on how the initial clusters in the algorithm of X-means were decided although
the behavior of the error functions showed similarity.

As an example, we present graphs illustrating how loss functions changes.
With the X-means algorithm, the optimum division number N was determined
and training data was divided into N classes from C1 to CN. The number of each
cluster for three deep learners is as follows. Table 7 represents how much data is
comprised in each cluster in the case of using multiple DNN. Table 8 shows the
data in each cluster in the case of using multiple RNN. Table 9 shows how much
data each cluster has in the case of using multiple LSTM.

Figure 6 illustrates when DNN was used as deep learners. Figure 7 shows the
change of the loss function when RNN was used as deep learners. Similarly,
Figure 8 shows graphs of when LSTM was used as a deep learner.

5. Discussion

In our research, we hypothesized that the brain forms multiple learners at the
initial stage of learning and improves the performance of each learner while se-
lecting the most suitable learner in subsequent learning tasks. In this paper, we
proposed a method of constructing multiple learners and a method of selecting a
suitable learner for each dataset.

Our proposed method is as follows:
1) The optimum division number of clustering is determined using X-means.
2) Training data is divided using K-means and multiple learners for each

cluster constructed with DNN, RNN, and LSTM.
3) A naive Bayes classifier is constructed by the clustering result of training

data.
4) A suitable deep learner for each test dataset is selected with the constructed

naive Bayes classifier.
5) Prediction is conducted by the selected learner.
Predictive experiments on financial time-series data of six stock indicators

were performed using the proposed method. Our experiments suggest that when
multiple learners are used, most loss functions decrease compared with the case

S. Kobayashi, S. Shirayama

125

Table 7. Amount of data in each cluster (DNN).

Cluster Training Test

C1 37 2

C2 2069 184

C3 74 2

C4 71 2

C5 131 7

C6 11 0

C7 234 3

C8 427 20

C9 598 40

Table 8. Amount of data in each cluster (RNN).

Cluster Training Test

C1 28 0

C2 2129 188

C3 14 0

C4 138 8

C5 44 0

C6 8 0

C7 96 2

C8 403 18

C9 191 4

C10 568 38

C11 4 2

C12 5 0

C13 6 0

C14 3 0

C15 15 0

Table 9. Amount of data in each cluster (LSTM).

Cluster Training Test

C1 2129 187

C2 37 2

C3 84 2

C4 74 2

C5 133 7

C6 568 39

C7 224 3

C8 403 18

S. Kobayashi, S. Shirayama

126

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Cross entropy. (a) C1; (b) C2; (c) C3; (d) C4; (e) C5; (f) C7; (g) C8; (h) C9.

where all data are learned by a single learner. In the case of using multiple
LSTM, F-values are improved greatly compared to using multiple DNN and
RNN. Conversely, the accuracy in the case of using multiple LSTM was a little
higher than that of multiple DNN. However, it was a little lower than the accu-

S. Kobayashi, S. Shirayama

127

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7. Cross entropy. (a) C2; (b) C4; (c) C7; (d) C8; (e) C9; (f) C10; (g) C11.

racy in the case of use of multiple RNN. Furthermore, when LSTM was used as
multiple learners, the computational time became shorter than when an RNN
was used.

These results indicate that our proposed method enables us to deal with the
non-stationary nature of time-series data and extract more accurate patterns.

S. Kobayashi, S. Shirayama

128

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Cross entropy. (a) C1; (b) C2; (c) C3; (d) C4; (e) C5; (f) C6; (g) C7; (h) C8.

We suppose that LSTM is especially effective in the prediction of time-series da-
ta that have remarkable features. In our proposed method, the division of
time-series data by K-means clustering corresponds to extracting the remarkable
features of such data. We believe that it is possible to improve the proposed me-

S. Kobayashi, S. Shirayama

129

thod further by determining more suitable parameters for deep learners accord-
ing to each cluster.

6. Conclusions

We propose a new method of constructing multiple deep learners and deter-
mining which deep learner is in charge of the test data with a naive Bayes clas-
sifier. Experiments suggested that when multiple learners were used, the loss
functions showed a decreasing trend as compared with the case where all the
data were learned by a single learner. As a result, F-values and the accuracy of
our method are better than those of the conventional method. Moreover, our
proposed method also shortens the computational time required.

Concerning this research topic, the future issues under consideration are as
follows:

First, the validity of the method of assigning test data will be considered. In
this paper, we used a naive Bayes classifier to assign test data to a suitable learner.
However, in terms of the prediction method, it is also possible to use the K-means
method or SVM instead of the naive Bayes classifier. It is necessary to compare
the experimental results of our method with research using K-means or SVM.

Second, improving each learner and the Bayesian network itself by using
feedback from a selected learner is considered. In this paper, after fixing multiple
learners, we constructed a Bayesian network and performed predictive experi-
ments without changing the construction of the Bayesian network. However,
considering the information processing mechanism of the human brain, it is
preferable to give feedback on prediction result to learners and the Bayesian
network.

Third, case studies will be conducted using the proposed method with differ-
ent data. In this paper, we applied financial time-series data to our method. It is
considered that depending on the data, the deep learner’s method of producing
optimum prediction results and the method of assigning test data to multiple
learners change. We experimented after deciding the learner’s method and the
method of assigning test data in advance. However, a future development would
be to construct a framework that could mechanically determine which model
would give the best predictions based on the data provided.

References
[1] Schmidhuber, J. (2015) Deep Learning in Neural Networks: An Overview. Neural

Networks, 61, 85-117.

[2] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S. and Lew, M.S. (2016) Deep Learning
for Visual Understanding: A Review. Neurocomputing, 187, 27-48.

[3] Chao, J., Shen, F. and Zhao, J. (2011) Forecasting Exchange Rate with Deep Belief
Networks. Proceedings of 2011 International Joint Conference on Neural Networks,
San Jose, CA, 31 July-5 August 2011, 1259-1266.

[4] Ribeiro, B. and Lopes, N. (2011) Deep Belief Networks for Financial Prediction.
Lecture Notes in Computer Science, 7064, 766-773.
https://doi.org/10.1109/IJCNN.2011.6033368

https://doi.org/10.1109/IJCNN.2011.6033368

S. Kobayashi, S. Shirayama

130

[5] Bengio, Y., Courville, A. and Vincent, P. (2014) Deep Learning: Methods and Ap-
plications. Foundations and Trends in Signal Processing, 7, 197-387.
https://doi.org/10.1561/2000000039

[6] Samek, W., Binder, A., Montavon, G., Lapuschkin, S. and Muller, K.-R. (2016) Eva-
luating the Visualization of What a Deep Neural Network Has Learned. IEEE
Transactions on Neural Networks and Learning Systems, PP, 1-14.
https://doi.org/10.1109/TNNLS.2016.2599820

[7] Zuo, Y. and Kita, E. (2012) Stock Price Forecast Using Bayesian Network. Expert
Systems with Applications, 372, 6729-6737.

[8] Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J. and Woozniak, M. (2017)
Ensemble Learning for Data Stream Analysis: A Survey. Information Fusion, 37,
132-156.

[9] Schapiro, A.C., Turk-Browne, N.B., Botvinick, M.M. and Norman, K.A. (2017)
Complementary Learning Systems within the Hippocampus: A Neural Network
Modelling Approach to Reconciling Episodic Memory with Statistical Learning.
Philosophical Transaction of the Royal Society B, 372, 20160049.
https://doi.org/10.1098/rstb.2016.0049

[10] Takahashi, Y., Takeda, M. and Asada, M. (1999) Continuous Valued Q-Learning for
Vision-Guided Behavior Acquisition. Proceedings of 1999 IEEE/SICE/RSJ Interna-
tional Conference on Multisensor Fusion and Integration for Intelligent Systems,
Taiwan, August 15-18 1999, 255-260.

[11] Pelleg, D. and Moore, A. (2000) X-Means: Extending K-Means with Efficient Esti-
mation of the Number of Clusters. Proceedings of 17th International Conference on
Machine Learning, Stanford, CA, 29 June-2 July 2000, 727-734.

[12] Yahoo! Finance. http://finance.yahoo.com/

[13] Economic Research Federal Reserve Bank of St. Louis.
http://research.stlouisfed.org/

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jdaip@scirp.org

https://doi.org/10.1561/2000000039
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1098/rstb.2016.0049
http://finance.yahoo.com/
http://research.stlouisfed.org/
http://papersubmission.scirp.org/
mailto:jdaip@scirp.org

	Time Series Forecasting with Multiple Deep Learners: Selection from a Bayesian Network
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Proposed Method
	3.1. Learning with Multiple Deep Learners
	3.2. Selecting a Suitable Deep Learner

	4. Experiment
	4.1. How to Prepare the Data
	4.2. Result

	5. Discussion
	6. Conclusions
	References

