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Abstract 
The quasi-static explicit finite element method (FEM) and element free Ga-
lerkin (EFG) method are applied to trace the post-buckling equilibrium path 
of thin-walled members in this paper. The factors that primarily control the 
explicit buckling solutions, such as the computation time, loading function 
and dynamic relaxation, are investigated and suggested for the buckling anal-
ysis of thin-walled members. Three examples of different buckling modes, 
namely snap-through, overall and local buckling, are studied based on the im-
plicit FEM, quasi-static explicit FEM and EFG method via the commercial 
software LS-DYNA. The convergence rate and accuracy of the explicit me-
thods are compared with the conventional implicit arc-length method. It is 
drawn that EFG quasi-static explicit buckling analysis presents the same ac-
curate results as implicit finite element solution, but is without convergence 
problem and of less-consumption of computing time than FEM.  
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1. Introduction 

Thin-walled members of various shapes have been widely used in civil and me-
chanical engineering. Under many conditions, when these members are sub-
jected to compressive loads, buckling and post-buckling behaviors usually dic-
tate the design considerations. Analytical solutions of buckling of thin-walled 
members can only obtain for the simple cases of elastic linear/nonlinear buck-
ling. Analysis of nonlinear buckling problems of plastic and large deformations 
primarily relies on the numerical methodology. 

In the nonlinear buckling analysis of thin-walled structural member, the im-
plicit arc-length algorithm is generally accepted as an effective numerical me-
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thod for tracing the post-buckling path [1] [2] [3]. It is well known that the im-
plicit method is established on the operation of stiffness matrix, where a large 
amount of computing resource is required for processing highly incremental 
iteration. For complex nonlinear problems, the disadvantage of non-conver- 
gence of this method is obvious and usually difficult to be overcome, for exam-
ple, the singularity of the stiffness matrix near the critical point. Therefore it is 
necessary to study the explicit method for solving highly nonlinear post-buck- 
ling problems. 

Quasi-static analysis is a simulation of static problem with motion analysis 
which restricts the load velocity so that the outcome of this analysis can only 
have a little inertia influence that can be neglected. As an explicit algorithm, the 
advantages of quasi-static buckling analysis lie in the lower computing cost and 
no convergence consideration. However, structural dynamic responses caused 
by loading speed and inertia force significantly influence the quasi-static explicit 
results. Usually very small loading step is needed to approach the static equili-
brium state at each loading moment, which inversely decreases the convergence 
rate. The efficiency of quasi-static explicit method mainly depends on the prob-
lems being solved. The key factors that can reduce the dynamic responses, like 
computing time, loading function and damping relaxation, must be specified in 
order to keeping the ratio of dynamic energy to internal energy within a low lev-
el. Zhuang [4] presented the conventional method of quasi-static analysis and 
compared the differences between implicit and explicit methods. Ji [5] used the 
quasi-static analysis for solving stable problems of stiffened plates under axial 
pressure, and obtained the structure responses which static analysis could not 
reach with a little time cost. Fan [6] did research on the effect of the duration 
and functional form of the time histories of loads by the analysis of a linear 
spring mass oscillator. Li [7] interpreted the principle of static calculation by 
using dynamic relaxation method and put forward a new method on value adop-
tion of mass damp and rigidity damp. Lee [8] applied the explicit arc-length 
method to trace the post-buckling equilibrium path of structures on the basis of 
dynamic relaxation method with kinetic damping. 

Finite element method (FEM) is a stable and reliable computing method 
through meshing the continuum into discrete units. When structures undergo 
large deformations, the computing accuracy is significantly influenced by the 
distortion of discrete units. In explicit method, a stable time step must be very 
small if the distortion of discrete units occurs, which greatly adds up the compu-
ting cost. Element-free method (EFM) is studied by many researchers for avoid-
ing the effects of discrete units on numerical consequence. Solution with EFM 
depends on the discrete nodes setting up within or at the edge of a domain. 
Shape function is constructed on local nodes, so there is no mesh-dependence 
problem. The primary advantage of this approach is that there is no singularity 
of stiffness matrix induced by distortion of discrete units in the solution of large 
deformation and discontinuity problems. Element free Galerkin (EFG) method 
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is based on the global Galerkin weak forms and the integration of background 
grids. The displacement approximation functions are generated by using the 
least squares approximation constructed via nodes in local fields. The computa-
tional accuracy and convergence rate of EFG methods have been demonstrated 
to be the same as FEM. The stability of this method is not affected by the irregu-
lar nodes, and furthermore, it can be combined with FEM and BEM (boundary 
element method) to improve the computing efficiency. 

EFG method has been well used in the buckling analysis of thin-walled mem-
bers. Liu [9] developed an EFG formulation to calculate the buckling loads of 
symmetrically laminated composite plates based on the principle of minimum 
potential energy, and found that solving the eigenvalue problem is much more 
computationally efficient compared to the FEM. Chinnaboon [10] developed a 
BEM-based meshless method for buckling analysis of elastic plates with various 
boundary conditions that include elastic supports and restraints. Liew [11] used 
an EFG method to study the elastic buckling behavior of stiffened and un-stif- 
fened folded plates under partial in-plane edge loads. Tamijani [12] employed 
the EFG method for buckling and static analysis of plates with arbitrary curvili-
near stiffeners. Peng [13] obtained the critical buckling load of ribbed plates us-
ing the mesh-free method based on the first-order shear deformation theory. 
Xiang [14] predicted buckling behavior of microtubules based on an atomistic- 
continuum model. Lu [15] developed an adaptive enrichment mesh-free method 
to capture wrinkling and post-buckling behavior in sheet metal forming. Li [16] 
used mesh-free method for numerical simulations of large deformation of thin 
shell structures, which showed simplicity in both formulation and implementa-
tion as compared to shell theory approach. Lin [17] used a non-linear dynamic 
explicit scheme for the post-buckling analysis of thin-walled structure based on 
the meshless shell formulation. Compared with the finite element method, the 
mesh-free method possesses the same accuracy and can save some computing 
time as well as work out the problems that can’t be solved by the traditional 
FEM. 

The FEM and EFG quasi-static explicit methodologies are applied to trace the 
post-buckling path of thin-walled members in this paper. The key factors that 
control the convergence rate and dynamic responses, such as the computation 
time, loading function and damping relaxation, are discussed and suggested in 
the numerical buckling analysis. Three examples of thin-walled members oc-
curred snap-through, overall and locally buckling are studied in detail by qua-
si-static explicit FEM and EFG method, and the efficiency and accuracy of the 
applied methods are demonstrated through the comparison with the conven-
tional solution of implicit arc-length method. 

2. Formulation of Quasi-Static Explicit FEM and  
EFG Algorithms 

In explicit formulation, the basic dynamic equation of a volume element at time 
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t is written in the form of equation of equilibrium as follow: 

, , , 0 inij j i i tt i tf u u Vσ ρ µ+ − − =                   (1) 

The constitutive equation and the boundary equations are given by 
inij ijkl klD Vσ ε=                          (2) 

oni i uu u S=                            (3) 

onij j is n T Sσ=                          (4) 

where σ is the Gauss stress, fi is body force, ρ is density, μ is damping coefficient, 
ui,t and ui,tt are the first and second derivatives of displacement ui, Dijkl is stiffness 
tensor, εkl is strain tensor, nj is normal vector, and Ti is surface force. 

By applying the Galerkin method to the Equation (1), Equation (3) and Equa-
tion (4), the corresponding weak form is expressed as 

( ) ( ), , , d d 0i ij j i i tt i t i ij j i
V S

u f u u V u n T s
σ

δ σ ρ µ δ σ+ − − − − =∫ ∫        (5) 

Substituting Equation (2) to Equation (5), the weak form is then transformed 
into Equation (6). 

( ), , d d dij ijkl kl i i tt i i t i i i i
V V S

D u u u u V u f V u T s
σ

δε ε δ ρ δ µ δ δ+ + = +∫ ∫ ∫      (6) 

( )T T T T Td d d
V V S

D u u u u V u f V u T s
σ

δε ε δ ρ δ µ δ δ+ + = +∫ ∫ ∫        (7) 

In the FEM, the shape function, N(x), is created by interpolation in elements 
of a set of fixed nodes. The displacement function is given by 

( ) ( ) ( )
1

n

i i
i

u x N x u N x u
=

= =∑                   (8) 

where T T T
1 2, , , nN N N N =   , T T T

1 2, , , nu u u u =   . Substituting Equation (8) 
into Equation (7) leads to the equation as below: 

( ) ( )T T T T Td d d
V V S

u B DB N Nu t N Nu t V uN f V uN T s
σ

δ ρ µ δ δ + + = + ∫ ∫ ∫    (9) 

The above dynamic equilibrium equation can be reduced to the general form 
as follow. 

( ) ( ) ( ) ( )Ma t Ca t Ka t Q t+ + =                  (10) 

in which 
T Td , d

e e

e e
V V

e e e e
M M N N V C C N N Vρ µ= = = =∑ ∑ ∑ ∑∫ ∫   

( )T T Td , d de
e e

e e
V V S

e e e e
K K B DB V Q Q N f V N T S

σ
= = = = +∑ ∑ ∑ ∑∫ ∫ ∫  

Different from FEM, the numerical discretization in EFG method is based on 
the moving least-squares (MLS) approximation [18]. The displacement function, 
u(x), is approximated by using the polynomial basis as follows: 

( ) ( ) ( ) ( ) ( )T

1

m

i i
i

u x p x a x p x a x
=

= =∑               (11) 
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where m is the order of completeness in this approximation, the monomial pi(x) 
is the basis function, and ai(x) is the coefficient of the approximation. ai(x) de-
pends on the sampling point xi that is collected by a weighting function  
( ) ( )iw x w x x= − , which is nonzero in a small domain called influence domain. 
The weighted residual can be written as L2-Norm, namely 

( ) ( ) ( ) ( ) ( )
2

2

1 1 1

N N m

I I I I i I i I
I I i

J w x u x u w x p x a x u
= = =

 = − = −     
∑ ∑ ∑      (12) 

In MLS approximation, at an arbitrary point x, a(x) is chosen on the basis of 
minimizing the weighted residual, then we have: 

( ) ( ) ( )1a x A x B x u−=                     (13) 

Substitute Equation (13) to Equation (11), it gives 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T 1

1

m

i i
i

u x p x a x p x a x p x A x B x u N x u−

=

= = = =∑   (14) 

in which: 

( ) ( ) ( ) ( )T

1

N

I I I
I

A x w x p x p x
=

= ∑  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 N NB x w x p x w x p x w x p x =    

By applying Equation (14) to Equation (10), the quasi-static explicit EFG 
formulation can be obtained. 

3. Factors in Quasi-Static Explicit Buckling Analysis 

In quasi-static explicit buckling analysis, to achieve the real dynamic loading 
process and the progress of unbalanced stress waves between elements, a large 
amount of time increment steps are usually required to obtain stable solutions. 
The kinetic energy usually increases rapidly with the enlargement of deforma-
tion after peak load point. For improving computing efficiency and having a sta-
ble solution, measures have to be employed to accelerate the computing process, 
and at the same time, the dynamic responses expressed by the ratio of kinetic 
energy to internal energy must be kept within 5% - 10%. The key factors in this 
slow-dynamic technique are how to choose the load duration and minimize the 
undesired dynamic effect originated from the inertia force of the governing equ-
ation. The response of structures is mainly controlled by the first mode, so the 
computation time in quasi-static explicit buckling analysis is usually set up more 
than ten times of the first mode period T. 

Rapid movement can generate stress wave, which results in shock or inaccu-
rate numerical solutions. Therefore, the curve of loading function must be 
smooth. The commonly used loading functions are shown as below: 

Linear function curve: ( ) 0F t F t T=  
Parabolic function curve: ( ) ( )2

0F t F t T=  
Versin function curve: ( ) ( )( )0 1 cos π 2F t F t T= −  

https://doi.org/10.4236/ojce.2017.73030


L. H. Huang et al. 
 

 

DOI: 10.4236/ojce.2017.73030 437 Open Journal of Civil Engineering 

 

Cycloid function curve: ( ) ( )( )0 sin 2π 2πF t F t T t T= −  
Dynamic relaxation is originated in the steady-state solution of single degree 

of freedom damping system. The basic idea lies in keeping a system in an over 
damping state by setting the Rayleigh damping to a large value to weaken the 
dynamic effect on the system. 

The damping of an actual structure can be expressed by the Rayleigh damping, 
namely C M Kα β= + , where M is the mass matrix, K is the stiff matrix, α and 
β are the mass damping and stiff damping coefficients, respectively. The damp-
ing ratio ξi is written as 

( ) 2i i iξ α ω βω= +                         (15) 

where ωi is the ith order circular frequency. The curves of unit step responses to 
different damping ratios of a single degree of freedom system are shown in Fig-
ure 1. It is found that the responses can easily approach to the static solution if ξi 
≥ 1, preferably ξi = 1. As long as αβ ≥ 1, the damping ratio of the system ξi is 
more than 1 from Equation (15). 

Refer to the research by Li et al. [7], the value of mass damping and rigidity 
damping is taken as α = ωmin, β = 1/ωmin, where ωmin is the first order circular 
frequency. By this way, the shocks induced by the higher order frequencies are 
restrained, which can make the explicit solution of dynamic relaxation close to 
the static solution. 

4. Application of the Numerical Methods 

In this section, by using the commercial software LS-DYNA, the FEM and EFG 
quasi-static explicit method are employed to simulate the post-buckling beha-
viors of three typical buckling problems: snap-through buckling, overall buck- 
 

 
Figure 1. Responses of a unit step function under different damping ratios. 
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ling and local buckling. The loading-displacement curves solved by explicit qua-
si-static FEM, implicit FEM and explicit quasi-static EFG method are compared 
and the reliability of explicit quasi-static buckling analysis with the suggested 
computation time, loading function and dynamic relaxation is demonstrated. 

4.1. Example 1: Snap—Through Buckling of a Cylindrical Shell 

A simply supported cylindrical shallow shell subjected to central loading is 
shown in Figure 2. The shell is assumed to be made of steel with uniform elastic 
modulus E = 210 GPa, Poisson’s ratio υ = 0.3 and density ρ = 7850 kg/m3. 
Length, radius, thickness and angle of the shell are L = 100 mm, R = 1000 mm, t 
= 4 mm and θ = 6˚, respectively. A quarter of the shell with symmetric constrain 
is modeled, and the displacement of 0-13mm is applied at point A. This is a typ-
ical example of snap-through buckling; in which the traditional load-controlled 
computing method is inapplicable due to the singularity of tangential stiffness 
matrix at the extreme point. The equilibrium path can be traced by implicit 
arc-length method, and being as a comparison, the accuracy of quasi-static ex-
plicit buckling analysis is studied from the following aspects. 

As a versine displacement is applied and the computation time is specified as 
10T, 20T, 40T, 80T, 160T and 320T, the curves of load-vertical displacement at 
point A are constructed in Figures 3-5. It is shown that the curves from explicit 
calculation are very close to those from implicit calculation before the critical 
load points. There are fluctuations about the implicit results in the rising seg-
ments of post-buckling in the explicit calculation. The shorter is the computa-
tion time, the lower is the fluctuating frequency and the higher is the fluctuating 
amplitude. From the ratio of kinetic energy to internal energy in Figure 6, it can 
be seen that the percentage decreases with the increase of computation time, but 
hardly decreases to 10% just by means of extending computation time. 
 

 
Figure 2. Schematic diagram of cylindrical shell and the arrangement of nodes in EFG. 
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Figure 3. Load-displacement curves under 10T and 20T. 

 

 
Figure 4. Load-displacement curves under 40T and 80T. 

 

 
Figure 5. Load-displacement curves under 160T and 320T. 
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Figure 6. Percentage of kinetic energy to internal energy. 

 
When different loading functions such as linear, parabolic, cycloidal and ver-

sine curves are applied, and the computation time is taken as 20T, the load-dis- 
placement relationships are constructed in Figure 7. It is shown that the critical 
load of each curve is very close. The result from the applied linear displacement 
is the most fluctuant among all curves; and the one from parabolic displace-
ment-loading is well coincident with that from the versine displacement-loading. 
The displacement from cycloidal loading is bigger than other consequences. 
Therefore, the versine or parabolic displacement-loading is more appropriate to 
be used in the quasi-static explicit buckling analysis of thin-walled members. 

In order to keep the structural responses being quasi-statically damped and 
converged to the static equilibrium state, the dynamic relaxation (DR) method 
has to be used in the explicit buckling analysis. Based on the minimum frequen-
cy of free vibration of the calculated shell, 752.28 Hz determined from model 
analysis, coefficients α and β are calculated as α = 4726.7 and β = 2.12e−4, respec-
tively. The load-displacement curves based on versine load and DR in the case of 
different computation time are plotted in Figure 8. Compared with the curves in 
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displacement reduction obtained by implicit arc-length method cannot be iden-
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used in the explicit solution. However, the load-displacement curve of DR and 
320T is demonstrated to be well enough to express the post-buckling path. The 
kinetic energy is remarkably reduced after the DR is applied as shown in Figure 
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The computation time, loading function and dynamic relaxation are also im-
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kin (EFG) method. The nodes in EFG are appointed based on the grid nodes in  
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Figure 7. Load-displacement curves with different loading functions. 

 

 
Figure 8. Load-displacement curves with DR. 

 

 
Figure 9. Variation of energy with time under 10T. 
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FEM in the package LS-DYNA. Parameters and solution settings of shell are de-
fined by the key words in *SECTION_SHELL_EFG and *CONTROL_EFG. Ac-
cording to the previous explicit FEM, versine load and DR are employed in the 
explicit EFG buckling analysis. The load-displacement curve of 160T solved by 
EFG is contrasted with those from the implicit arc-length method and explicit 
FEM as shown in Figure 10. It can be seen that the load-displacement curves 
from EFG and FEM explicit analysis are almost coincident, and the post-buck- 
ling path is well indicated as implicit solution. Furthermore, the curves from 
EFG are smoother than those from FEM. 
 

 
(a) 

 
(b) 

Figure 10. Load-displacement curves from different computation methods. (a) u = 0 mm 
- 13 mm; (b) u = 6 mm - 12 mm. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-1500

-1000

-500

0

500

1000

1500

2000

2500
P 

(N
)

u (mm)

 Implicit
 Explicit DR FEM
 Explicit DR EFG

6 7 8 9 10 11 12
-1500

-1000

-500

0

500

1000

1500

2000

2500

P 
(N

)

u (mm)

 Implicit
 Explicit DR FEM
 Explicit DR EFG

https://doi.org/10.4236/ojce.2017.73030


L. H. Huang et al. 
 

 

DOI: 10.4236/ojce.2017.73030 443 Open Journal of Civil Engineering 

 

4.2. Example 2: Overall Buckling of Thin-Walled Steel Angle 

Dimensions of a thin-walled steel angle subjected to central loading are shown in 
Figure 11. The steel angle is with uniform elastic modulus E = 206 GPa, Pois-
son’s ratio υ = 0.3 and density ρ = 7850 kg/m3. Thickness, width and length are t 
= 0.7 mm, b = 15.85 mm and L = 180 mm, respectively. Yield strength is 360 
MPa. Based on the previous study, axial versine displacement and DR are ap-
plied in the quasi-static explicit buckling analysis. Post-buckling paths of the 
thin-walled angle clamped at both ends under different computation time are 
contrasted with the results obtained by implicit nonlinear analysis with modified 
Crisfield arc-length method (MC-ALM). 

Based on model analysis, the first frequency of the angle equals 752.28 Hz. 
The damping coefficients α = 2667.4 and β = 3.749e−4. Curves of axial load-ver- 
tical displacement in the case of different computation time 10T, 20T, 40T, 80T, 
160T are plotted in Figure 12. It is shown that the curves from explicit solution 
approach to that from implicit solution with the extending of computation time. 

Before the critical load, the curves obtained by explicit FEM and implicit MC- 
ALM are well coherent, while, after the critical load, the critical load determined 
by the explicit FEM is higher than that from implicit MC-ALM, as shown in 
Figure 12(a). The explicit consequence is close to the implicit result when the 
displacement extends to 0.3 mm and the computation time exceeds 40T, as 
shown in Figure 12(b). The kinetic energy shown in Figure 13 indicates that it 
upgrades rapidly when the axial load exceeds the ultimate point and the sudden 
enlargement of displacement occurs. This is the main factor that causes the dif-
ferent results by explicit method relative to implicit method. 

At the point of critical load, stress and deformation contours obtained by im-
plicit method and explicit solutions in the case of various computation time are 
shown in Figure 14 and Figure 15. Larger deformation can be revealed by ex-
plicit FEM when the computation time exceeds 160T. If the dynamic responses 
induced by rapid buckling are well controlled, the post-buckling path of large 
deformation can be precisely indicated by the explicit FEM. The convergence 
time and buckling load based on various solutions are listed in Table 1, where  
 

 
Figure 11. Thin-walled steel angle and the nodes in EFG. 
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(a) 

 
(b) 

Figure 12. Load-displacement curves from different computation methods. (a) u = 0 mm 
- 0.2 mm; (b) u = 0 mm - 15 mm. 
 

 
Figure 13. Energy-time curve under 160T. 
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Table 1. The convergence time and buckling loads with different algorithms. 

 
Implicit  
analysis 

Explicit analysis 

10T 20T 40T 80T 160T 

Buckling loads 3.459 kN 3.92 kN 3.718 N 3.583 kN 3.491 kN 3.432 kN 

Convergence time >10 hours 24 s 45 s 1 min 30 s 3 min 27 s 5 min 56 s 

 

 
Figure 14. Implicit stress-deformation contour. 

 

 
Figure 15. Explicit stress-deformation contour. (a) 20T; (b) 40T; (c) 80T; (d) 160T. 
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the buckling load obtained by the explicit solution under 160T is close to the 
implicit result. However, the convergence time for the determination of buckling 
loads in explicit solution is far less than that in the implicit solution. 

The overall buckling path of the thin-walled steel angle solved by EFG explicit 
method is similar to the results by FEM explicit method, as shown in Figure 16. 
Initially the buckling load determined by EFG is a little smaller than that from 
FEM as shown in Figure 16(a), but with the development of deformation, the 
post-buckling load obtained by EFG explicit method is higher than other results, 
as shown in Figure 16(b). From Table 2, it can be seen that the buckling load 
from EFG explicit method is smaller than other results, and the convergence 
time is higher than the FEM explicit solution. 
 

 
(a) 

 
(b) 

Figure 16. Load-displacement curves with different methods. (a) u = 0 mm - 0.5 mm; (b) 
u = 0 mm - 10 mm. 
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Table 2. Convergence time and buckling loads with different methods. 

 
Implicit  
analysis 

Explicit analysis 

FEM EFG 

Buckling loads 3.459 kN 3.432 kN 3.32 kN 

Convergence time >10 hours 5 m 56 s 43min 

4.3. Example 3: Locally Buckling of Thin-Walled Cylindrical Shell 

A thin-walled cylindrical shell subjected to symmetrically concentrated force at 
midpoint is shown in Figure 17. The shell is assumed to be made of steel with 
yield stress σ = 360 MPa, elastic modulus E = 206 GPa, Poisson’s ratio υ = 0.3 
and density ρ = 7850 kg/m3. Length, radius and thickness are L = 200 mm, R = 
100 mm and t = 1 mm, respectively. Top and bottom are pinned-supported. The 
node arrangement in EFG and mesh in FEM are shown in Figure 18(a). Dis-
placement loads, 0 - 100 mm, are applied on nine nodes as shown in Figure 
18(b). 

As a contrast, implicit MC-ALM has been conducted first. The natural fre-
quency, ω = 1339.5Hz, is known by model study. Quasi-static explicit buckling 
analysis with versine load, DR and different computation time of 10T, 20T, 40T, 
80T and 160T, is carried out. The curves of applied load with respect to radial 
displacement are drawn in Figure 19. It can be seen that the curve solved by im-
plicit MC-ALM has no descending stage since non-convergence is generated for 
locally large deformation at the extreme point. But the post-buckling path can be 
traced by quasi-static explicit FEM. With the increase of computation time, the 
curve from explicit solution with 160T is almost coherent with implicit solution 
before the peak load. The kinetic energy stays in a very low level, as shown in 
Figure 20, which exhibits very weak dynamic response in the quasi-static solu-
tion. 

The locally post-buckling contours in the case of different computation time 
are shown in Figure 21. It manifests that the post-buckling behavior of locally 
large deformation can be clearly revealed by the quasi-static explicit solution 
with sufficient computation time. The comparisons of convergence rate and 
buckling loads listed in Table 3 demonstrate the efficiency and accuracy of the 
quasi-static explicit method in bucking analysis. 

Load-displacement curves solved by EFG and FEM explicit solutions are 
compared with the implicit solution, as shown in Figure 22. Before the peak 
point, there is little difference among the three curves. Critical load determined 
by EFG is closer to the implicit result except earlier descending segment oc-
curred. The load-displacement curve from explicit EFG method is also smoother 
than that from the implicit FEM, but longer time is required to converge to de-
termine buckling loads, as listed in Table 4. 
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Figure 17. Geometric model of cylindrical shell. 

 

    
(a)                       (b) 

Figure 18. (a) Nodes in EFG; (b) FEM mesh (4 mm). 
 

 
Figure 19. Load-displacement curves with different computation time. 
 
Table 3. The convergence time and buckling loads with different methods. 

 
Implicit 
solution 

Explicit solution 

10T 20T 40T 80T 160T 

Buckling loads 20.2 kN 19.16 kN 19.15 kN 19.11 kN 19.04 kN 18.99 kN 

Convergence time 1 h 28 m 1 m 52 s 3 m 7 s 7 m 6 s 10 m 51 s 21 m 12 s 
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Figure 20. Energy-time curves with 10T. 

 

    
(a)                                               (b) 

    
(c)                                               (d) 

Figure 21. Explicit stress and deformation contours. (a) 20T; (b) 40T; (c) 80T; (d) 160T. 
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(a) 

 
(b) 

Figure 22. Load-displacement curves with different methods. (a) u = 0 mm - 60 mm; (b) 
u = 0 mm - 100 mm. 
 
Table 4. Convergence time and buckling loads with different methods. 

 
Implicit  
solution 

Explicit solution 

FEM EFG 

Buckling loads 20.2 kN 18.99 kN 19.21 kN 

Convergence time 1 h 28 m 21 m 12 s 3 h 9 m 
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5. Conclusion 

Quasi-static explicit FEM and EFG method for tracing post-buckling path of 
thin-walled members are discussed in this study. Three examples, including 
snap-through, overall and local buckling, are analyzed by implicit, explicit FEM 
and EFG method, separately. It is found that the explicit methods with versine 
displacement loading, dynamic relaxation and sufficient computation time, such 
as more than 160T, offer almost the same consequences as the implicit FEM. The 
consumption of convergent time in explicit solutions is greatly less than that in 
implicit FEM, and there is no convergence problem. The post-buckling behavior 
can be easily uncovered by explicit methods. Since explicit methods are greatly 
affected by dynamic responses, the ratio of kinetic energy to internal energy 
should be controlled within 10%. Applied force loading in the analysis generates 
larger deformation, which can cause the dynamic response out of control. EFG 
quasi-static explicit buckling analysis presents as the same precision as FEM, and 
the load-displacement curves are smoother than those from FEM. However, it 
takes longer computation time than explicit FEM. 

Acknowledgements 

The authors are grateful for the sponsorships by State Key Laboratory of Struc-
tural Analysis for Industrial Equipment (Grant S14204), Liaoning Provincial 
Program for Science and Technology (Grant 2014028004), and the State Key 
Development Program for Basic Research of China (Grant 2015CB057300). 

References 
[1] Crisfield, M. (1981) A Fast Incremental Iterative Solution Procedure That Handles 

“Snap-Through”. Computers & Structures, 13, 55-62.  

[2] Crisfield, M.A. (1991) Nonlinear Finite Element Analysis of Solids and Structures. 
Volume 1: Essentials. Wiley, New York. 

[3] Crisfield, M.A. (1997) Non-Linear Finite Element Analysis of Solids and Structures: 
Advanced Topics. John Wiley & Sons, New York. 

[4] Zhuang, Z. (2005) ABAQUS Nonlinear Finite Element Analysis and Examples. 
Science Press, Beijing. 

[5] Ji, G.M., Sun, G. and Zhang, L. (2013) Quasi-Static Analysis of Stiffed Plate under 
Axial Pressure. Chinese Journal of Mechanical Strength, 35, 308-311.  

[6] Fan, J.P., Zhang, J.J. and Chen, C.Y. (2002) Slow-Dynamic Finite Element Simula-
tion with Explicit Time Integration. Chinese Journal of Computational Mechanics, 
19, 431-437. 

[7] Li, S.C., Ma, D.W. and Zhu, S.K. (2010) Analysis of Rayleigh Damp Parameters in 
Dynamic Relaxation Method. Chinese Journal of Computational Mechanics, 27, 
169-172. 

[8] Lee, K., Han, S. and Hong, J.W. (2014) Post-Buckling Analysis of Space Frames Us-
ing Concept of Hybrid Arc-Length Methods. International Journal of Non-Linear 
Mechanics, 58, 76-88.  

[9] Liu, G.R., Chen, X.L. and Reddy, J.N. (2002) Buckling of Symmetrically Laminated 

https://doi.org/10.4236/ojce.2017.73030


L. H. Huang et al. 
 

 

DOI: 10.4236/ojce.2017.73030 452 Open Journal of Civil Engineering 

 

Composite Plates Using the Element-Free Galerkin Method. International Journal 
of Structural Stability and Dynamics, 2, 281-294.  
https://doi.org/10.1142/S0219455402000634 

[10] Chinnaboon, B., Chucheepsakul, S. and Katsikadelis, J.T. (2007) A BEM-Based 
Meshless Method for Elastic Buckling Analysis of Plates. International Journal of 
Structural Stability and Dynamics, 7, 81-99.  
https://doi.org/10.1142/S0219455407002162 

[11] Liew, K.M., Peng, L.X. and Kitipornchai, S. (2006) Buckling of Folded Plate Struc-
tures Subjected to Partial In-Plane Edge Loads by the FSDT Meshfree Galerkin Me-
thod. International Journal for Numerical Methods in Engineering, 65, 1495-1526.  
https://doi.org/10.1002/nme.1505 

[12] Tamijani, A.Y. and Kapania, R.K. (2010) Buckling and Static Analysis of Curvili-
nearly Stiffened Plates Using Mesh-Free Method. AIAAJ, 48, 2739-2751.  
https://doi.org/10.2514/1.43917 

[13] Peng, L.X. and Yang, L.F. (2012) Critical Buckling Load Calculation of Ribbed 
Plates by the First-Order Shear Deformation Theory and the Moving-Least Square 
Approximation. Engineering Mechanics, 29, 42-48.  

[14] Xiang, P. and Liew, K.M. (2011) Predicting Buckling Behavior of Microtubules 
Based on an Atomistic-Continuum Model. International Journal of Solids and 
Structures, 48, 1730-1737.  

[15] Lu, H., Cheng, H.S., Cao, J. and Liu, W.K. (2005) Adaptive Enrichment Meshfree 
Simulation and Experiment on Buckling and Post-Buckling Analysis in Sheet Metal 
Forming. Computer Methods in Applied Mechanics and Engineering, 194, 2569- 
2590.  

[16] Li, S., Hao, W. and Liu, W.K. (2000) Numerical Simulations of Large Deformation 
of Thin Shell Structures Using Meshfree Methods. Computational Mechanics, 25, 
102-116. https://doi.org/10.1007/s004660050463 

[17] Lin, J., Naceur, H., Laksimi, A. and Coutellier, D. (2013) Post-Buckling Analysis of 
Thin-Walled Structures Using the SPH Method. AIP Conference Proceedings, 
1532, 701-707. https://doi.org/10.1063/1.4806898 

[18] LS-DYNA, Livermore Software Technology Corporation. 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ojce@scirp.org 

https://doi.org/10.4236/ojce.2017.73030
https://doi.org/10.1142/S0219455402000634
https://doi.org/10.1142/S0219455407002162
https://doi.org/10.1002/nme.1505
https://doi.org/10.2514/1.43917
https://doi.org/10.1007/s004660050463
https://doi.org/10.1063/1.4806898
http://papersubmission.scirp.org/
mailto:ojce@scirp.org

	FEM and EFG Quasi-Static Explicit Buckling Analysis for Thin-Walled Members
	Abstract
	Keywords
	1. Introduction
	2. Formulation of Quasi-Static Explicit FEM and EFG Algorithms
	3. Factors in Quasi-Static Explicit Buckling Analysis
	4. Application of the Numerical Methods
	4.1. Example 1: Snap—Through Buckling of a Cylindrical Shell
	4.2. Example 2: Overall Buckling of Thin-Walled Steel Angle
	4.3. Example 3: Locally Buckling of Thin-Walled Cylindrical Shell

	5. Conclusion
	Acknowledgements
	References

