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Abstract 
In this paper, we present a new image compression method based on the di-
rect and inverse F1-transform, a generalization of the concept of fuzzy trans-
form. Under weak compression rates, this method improves the quality of the 
images with respect to the classical method based on the fuzzy transform. 
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1. Introduction 

We present a new image compression method based on the discrete direct and 
inverse F1-transform which is a generalization of the classical fuzzy transform [1] 
[2] identified as F0-transform (for brevity, F-transform). 

The F-transform compression technique [3] is a lossy compression method 
used in image and video analysis [4]-[18] and in data analysis [19]-[25] as well. 
In [26], the concept of the F-transform was extended to the cases with various 
types of fuzzy partitions. In [1] [27], the Fs-transform (s ≥ 1), a generalization of 
the F-transform, was presented: in other terms, the constant components of the 
F-transform were replaced by polynomials in order to capture more information 
of the original function. In particular, the F1-transform was used for the edge 
detection problem [1] [2]. The aim of this paper is to improve the quality of the 
decoded images after their compression via the F1-transform-based method.  

Strictly speaking, we divide images of sizes N × M into smaller images (called 
blocks) of sizes N(B) × M(B) and then we code each block into another one of 
sizes n(B) × m(B), where n(B) < N(B) and m(B) < M(B). The compression is 
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performed by calculating the direct F1-transform components with first degree 
polynomials. Afterwards, we calculate the inverse F1-transform and obtain the 
corresponding decoded blocks, recomposed to obtain the final reconstructed 
image. In Figure 1, we describe this process in detail. 

The compression rate is given by ( ) ( )( ) ( ) ( )( )n B m B N B M Bρ = × × . The 
quality of a decoded image is measured by the Peak Signal to Noise Ratio (PSNR) 
index.  

In Section 2, we recall the definition of h-uniform generalized fuzzy partition 
and the concept of F1-transform. In Section 3, a F1-transform-based compression 
method is presented and it is applied to images considered as fuzzy relations: 
there every image is partitioned into smaller blocks and the direct and inverse 
F1-transforms are calculated for each block. Then the decoded blocks are re-
composed and the PSNR index is calculated. In Section 4, tests are applied to 
grey image datasets and the results are compared with similar results obtained 
by using the classical F-transform compression method. Section 5 contains the 
conclusions. 

2. Generalized Fuzzy Partition and F1-Transform 

We recall the main concepts [2] that will be used in the sequel. We consider a set 
of points (called nodes) 0 1 2 1, , , , , , 2n nx x x x x n+ ≥  of [ ],a b  such that  

0 1 2 1n na x x x x x b+= ≤ < < < ≤ = . We say that the fuzzy sets  
[ ] [ ]1, , : , 0,1nA A a b →  form a generalized fuzzy partition of [ ],a b , if for each 

1,2, ,k n= 
, there exist , 0k kh h′ ′′ ≥  such that 0k kh h′ ′′+ > ,  

[ ] [ ], ,k k k kx h x h a b′ ′′− + ⊆  and the following constraints hold: 
 

 
Figure 1. The F1-transform image compression method. 
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1) (locality) ( ) 0kA x >  if [ ],k k k kx x h x h′ ′′∈ − +  and ( ) 0kA x =  if  
[ ],k k k kx x h x h′ ′′∉ − + , 

2) (continuity) Ak is continuous in [ ],k k k kx h x h′ ′′− + , 

3) (covering) for each [ ],x a b∈ , ( )
1

0
n

k
k

A x
=

>∑ . 

The fuzzy sets { }1, , nA A  are called basic functions. If the nodes  

0 1 1, , , ,n nx x x x +  are equidistant, i.e. 1k kx x h+ − =  for 0,1,2, ,k n= 
, where 

( ) ( )1h b a n= − + , if 2h h′ >  and the following additional properties hold: 
4) 1 0nh h′ ′′= = , 1 2 1n nh h h h h−′′ ′ ′′ ′ ′= = = = = and ( ) ( )k k k kA x x A x x− = +  for 

each [ ]0,x h′∈  and 2, ,k n= 
,  

5) ( ) ( )1k kA x A x h−= −  and ( ) ( )1k kA x A x h+ = −  for every [ ]1,k kx x x +∈   
and 2, ,k n= 

, then { }1, , nA A  is called an ( ),h h′ -uniform generalized 
fuzzy partition. In this case we can find a function [ ] [ ]0 : 1,1 0,1A − → , called ge-
nerating function, which is assumed to be even, continuous and positive every-
where except on the boundaries, where it vanishes, in such a way we have that 
for 1,2, ,k n= 

: 

( ) [ ]0        ,

 0                       otherwise.

k
k k

k

x x
A x x h x h

A x h
 −  ∈ − +  =   



            (1) 

If h h′= , then the ( ),h h′ -uniform generalized fuzzy partition is said 
h-uniform generalized fuzzy partition. We can extend the notion of h-uniform 
generalized fuzzy partition from an interval to the rectangle [ ] [ ], ,a b c d× , so 
that we have the family of basic functions { }, 1, , , 1, , ; , 2k lA B k n l m n m× = = ≥  , 
where k lA B×  is the product of the corresponding functions from the h1-uniform 
generalized fuzzy partition { }1, , nA A  of [ ],a b  and from the h2-uniform ge-
neralized fuzzy partition { }1, , mB B  of [ ],c d . Then we can say that 
{ }, 1, , , 1, , ; , 2k lA B k n l m n m× = = ≥   is an h-uniform generalized fuzzy parti-
tion of [ ] [ ], ,a b c d× , where 1 2h h h= ⋅ . In the sequel we consider only such 
h-uniform generalized fuzzy partitions.  

Let ( )kA x  be a basic function of [ ],a b  and ( )2 kL A  be the Hilbert space 
of square integrable functions [ ]1 1: ,k kf x x R− + →  (reals) with weighted inner 
product:  

( ) ( ) ( )
1

1

, d
k

k

x

kk
x

f g f x g x A x x
+

−

= ∫  

Likewise, we define the Hilbert space ( )2 k lL A B×  of square integrable in two 
variables functions [ ] [ ]1 1 1 1: , ,k k l lf x x y y R− + − +× →  with weighted inner prod-
uct: 

( ) ( ) ( ) ( )
1 1

1 1

, d d
k l

k l

x y

k lkl
x y

f g f x g x A x B y x y
+ +

− −

= ∫ ∫             (2) 

Two function ( )2, k lf g L A B∈ ×  are orthogonal if , 0klf g = . Let ( )2
p

kL A  
and ( )2

r
lL B , , 0p r ≥  be two linear subspaces of ( )2 kL A  and ( )2 lL B  with 

orthogonal basis given by polynomials ( ){ }
0, ,

i
k i p

P x
= 

 and ( ){ }
0, ,

j
k j r

Q y
= 

, re-
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spectively.  
We consider an integer 0s ≥  and all pairs of integers (i, j) such that 

0 i j s≤ + ≤ . We introduce a linear subspace ( )2
s

k lL A B×  of ( )2 k lL A B×  
having as orthogonal basis the following: 

( ) ( ) ( ){ }
0, , ; 0, , :

,ij i j
kl k l i p j r i j s

S x y P x Q y
= = + ≤

=
 

             (3) 

where s is the maximum degree of polynomials ( ) ( )l
i j

kP x Q y . For s = 1, the or-
thogonal basis of the linear space ( )1

2 k lL A B×  is the following: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }00 0 0 10 1 0 01 0 1
l l l, , , , ,kl k kl k kl kS x y P x Q y S x y P x Q y S x y P x Q y= = = (4) 

Let [ ] [ ]( )2 , ,L a b c d×  be a set of functions [ ] [ ]: , ,f a b c d R× →  such that 
for 1, ,k n= 

, 1, ,l m= 
, [ ] [ ] ( ) ( )1 1 1 1 2 2| , ,k k k k k lf x x y y L A L B− + − +× ∈ × ,  

where the function [ ] [ ]1 1 1 1| , ,k k k kf x x y y− + − +×  is the restriction of f on  
[ ] [ ]1 1 1 1, ,k k k kx x y y− + − +× . Then the following theorem holds: 

Theorem 1. ([2], lemma 5). Let [ ] [ ]( )2 , ,f L a b c d∈ × . Then the orthogonal 
projection of f  on ( )2

s
k lL A B× , 0s ≥ , is the polynomial of degree s given by 

( ) ( )
0

, ,s ij ij
kl kl kl

i j s
F x y c S x y

≤ + ≤

= ∑                      (5) 

for every ( ) [ ] [ ], , ,x y a b c d∈ × , where the coefficients ij
klc  are given by 

( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 1

1 1

1 1

1 1

2

, , d d

, d d

l k

l k

l k

l k

y x
ij
kl k l

y xij
kl y x

ij
kl k l

y x

f x y S x y A x B y x y
c

S x y A x B y x y

+ +

− −

+ +

− −

=
∫ ∫

∫ ∫
            (6) 

Following [2], let { }, 1, , , 1, , , , 2k lA B k n l m n m× = = ≥   be an h-uniform 
generalized fuzzy partition of [ ] [ ], ,a b c d×  and ( )2 k lf L A B∈ × . For s = 1, the 
orthogonal basis of the linear subspace ( )1

2 k lL A B×  is given by the polyno-
mials: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

00 0 0

10 1 0

01 0 1

, 1

,

,

kl k l

kl k l k

kl k l l

S x y P x Q y

S x y P x Q y x x

S x y P x Q y y y

= =

= = −

= = −

                  (7) 

Let 1
klF  be the orthogonal projection of [ ] [ ]1 1 1 1| , ,k k k kf x x y y− + − +×  on 

( )1
2 k lL A B×  given point wise as 

( ) ( ) ( ) ( )1 00 10 01

0 1
, ,ij ij

kl kl kl kl kl k kl l
i j

F x y c S x y c c x x c y y
≤ + ≤

= = + − + −∑         (8) 

for every ( ) [ ] [ ], , ,x y a b c d∈ × , where the three coefficients 00 10 01, ,kl kl klc c c  are de-
fined by Theorem 1: 

( ) ( ) ( )

( ) ( )

1 1

1 1

1 1

1 1

00

, d d

d d

l k

l k

k l

k l

y x

k l
y x

kl x y

k l
x y

f x y A x B y x y
c

A x x B y y

+ +

− −

+ +

− −

=
∫ ∫

∫ ∫
              (9) 
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( )( ) ( ) ( )

( )( ) ( )

1 1

1 1

1 1

1 1

10

2

, d d

d d

l k

l k

k l

k l

y x

k k l
y x

kl x y

k k l
x y

f x y x x A x B y x y
c

A x x x x B y y

+ +

− −

+ +

− −

−

=

−

∫ ∫

∫ ∫
             (10) 

( )( ) ( ) ( )

( ) ( )( )

1 1

1 1

1 1

1 1

01

2

, d d

d d

l k

l k

k l

k l

y x

l k l
y x

kl x y

k l l
x y

f x y y y A x B y x y
c

A x x B y y y y

+ +

− −

+ +

− −

−

=

−

∫ ∫

∫ ∫
             (11) 

Then the matrix [ ] ( )1 1 1
11, ,nm nmf F F=F  , defined from (8), is called 

F1-transform of the function ( )2 k lf L A B∈ ×  with respect to the h-uniform 
generalized fuzzy partition { }, 1, , , 1, , ; , 2k lA B k n l m n m× = = ≥  . We define 
the inverse F1-transform of the function ( )2 k lf L A B∈ ×  to be a function  

[ ] [ ]1ˆ : , ,nmf a b c d R× →  as 

( )
( ) ( ) ( )

( ) ( )

1

1 1 1

1 1

,
ˆ ,

n m

nm k l
k l

nm n m

k l
k l

F x y A x B y
f x y

A x B y

= =

= =

=
∑∑

∑∑
            (12) 

For sake of completeness, we point out the utility of the concept of inverse 
F1-transform which stands in the approximation of the function 

( )2 k lf L A B∈ ×  under certain suitable assumptions. For example, we have the 
following result: 

Theorem 2. ([2], theorem 14). Let  
( ) ( )( ){ }, , 1, , , 1, , , , 2k lA x B y k n l m n m= = ≥   be an h-uniform generalized 

fuzzy partition of [ ] [ ], ,a b c d×  and 1
n̂mf  be the inverse F1-transform of f  

with respect to this fuzzy partition. Moreover let f  be four times continuously 
differentiable on [ ] [ ], ,a b c d×  and Ak (resp., Bl) be four times continuously 
differentiable on [ ],a b  (resp., [ ],c d ). Then the following holds for every 
( ) [ ] [ ], , ,x y a b c d∈ × :  

( ) ( ) ( )1 2ˆ, ,nmf x y f x y O h− =                  (13) 

In other words, the Equality (13) says that we can approximate a function in 
two variables, four times continuously differentiable on [ ] [ ], ,a b c d× , with the 
inverse F1-transform (12) unless to O (h2). 

3. F1-Transform Image Compression Method 

We are interested to the case discrete, i.e. we consider functions in two variables 
which assume a finite number of values in [ ]0,1  like finite fuzzy relations. In-
deed, let R be a grey image of sizes N M× ,  

( ) { } { } [ ]: ,  1, , 1, , 0,1R i j N M∈ × →  , ( ), ijR i j R=  being the normalized 
value of the pixel ( ),P i j , that is ( ) ( ), , levR i j P i j N=  if Nlev is the length of 
the grey scale. Let { }1, , nA A  and { }1, , mB B  be two h-uniform generalized 
fuzzy partitions of [ ] [ ], 1,a b N=  and [ ] [ ], 1,c d M= , respectively, where 1a = , 
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b N= , , 1, 2, , ,kx k k n n N= =   , 1c = , d M= , , 1, 2, , ,ly l l m m M= =   . 
Slightly modifying (8), then we can define the (discrete) F1-transform  

1 1
nm kl n m

R R
×

 =    of R the matrix whose entries are defined as 

1 00 10 01
kl kl kl klR c c i k c j l= + ⋅ − + −                   (14) 

where 00
klc , 10

klc , 01
klc  are given as (by rewriting the Equations (9), (10), (11) in 

the following form, slightly modified): 

( ) ( )

( ) ( )
1 100

1 1

M N

ij k l
j i

kl M N

k l
j i

R A i B j
c

A i B j

= =

= =

=
∑∑

∑∑
                   (15) 

( ) ( )

( )( ) ( )
1 110

2

1 1

M N

ij k l
j i

kl N M

k l
i j

R i k A i B j
c

A i i k B j

= =

= =

−
=

−

∑∑

∑ ∑
                (16) 

( ) ( )

( ) ( )( )
1 101

2

1 1

M N

ij k l
j i

kl N N

k l
i j

R j l A i B j
c

A i B j j l

= =

= =

−
=

−

∑∑

∑ ∑
                (17) 

The Formula (14) is considered as a compressed image of the original image R. 
1
nmR  can be decoded by using the following inverse (discrete) F1-transform 
1 1
NM ij N M

R R
×

 =    defined for every ( ) { } { },  1, , 1, ,i j N M∈ ×   as 

( ) ( )

( ) ( )

1

1 1 1

1 1

n m

kl k l
k l

ij n m

k l
k l

R A i B j
R

A i B j

= =

= =

=
∑∑

∑∑
                  (18) 

We divide the image R of sizes N M×  in sub-matrices RB of sizes ( ) ( )N B M B× , 

called blocks ([26] [28]), each compressed to a block 
( ) ( )

1B
kl n B m B

R
×

    of sizes  

( ) ( )n B m B×  ( ) ( ) ( ) ( )( )3 ,3n B N B m B M B≤ < ≤ < , ( )1, ,k n B=  ,  
( )1, ,l m B=  , via the discrete F1-transform, as Formula (14), of components 

1B
klR  given by 

1 00 10 01B B B B
kl kl kl klR c c i k c j l= + − + −               (19) 

We rewrite (15), (16), (17) as 

( ) ( )
( )( )

( ) ( )
( )( )

1 100

1 1

M B N B
B
ij k l

j iB
kl M B N B

k l
j i

R A i B j
c

A i B j

= =

= =

=
∑ ∑

∑ ∑
               (20) 

( ) ( )
( )( )

( )( ) ( )
( )( )

1 110

2

1 1

M B N B
B
ij k l

j iB
kl N B M B

k l
i j

R i k A i B j
c

A i i k B j

= =

= =

−
=

−

∑ ∑

∑ ∑
            (21) 
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( ) ( )
( )( )

( ) ( )( )
( )( )

1 101

2

1 1

M B N B
B
ij k l

j iB
kl N B M B

k l
i j

R j l A i B j
c

A i B j j l

= =

= =

−
=

−

∑ ∑

∑ ∑
               (22) 

The basic functions ( ){ }1, , n BA A  and ( ){ }1, , m BB B  form an h-uniform 
generalized uniform fuzzy partition of ( )1, N B    and ( )1, M B   , respectively. 
They are generated by the basic functions ( ) ( )0 0.5 1 cos πA x x= +    and 

( ) ( )0 0.5 1 cos πB y y= +   , respectively. Then we have that 

( ) ( ) [ ]

( ) ( ) [ ]

1 1 2
1 1

-1 1
1

π0.5 1 cos         if ,

0                                          otherwise

π0.5 1 cos        if ,

0                                          otherwise

k k k
k

x x x x x
A x h

x x x x x
A x h +

  
+ − ∈  =   



  

+ − ∈  =   



( ) ( ) [ ]1
1

π0.5 1 cos        if ,

0                                          otherwise

n n n
n

x x x x x
A x h −



  
+ − ∈  =   




        (23) 

where ( )n n B= , ( )( ) ( )1 1 1h N B n= − − , ( )11 1 , 2, , 1kx h k k n= + − = −  and 

( ) ( ) [ ]

( ) ( ) [ ]

1 1 2
1 2

-1 1
2

π0.5 1 cos                 if ,

0                                                    otherwise

π0.5 1 cos                 if ,

0                            

t t t
l

y y y y y
B y h

y y y y y
B y h +

  
+ − ∈  =   




 
+ − ∈ =  

( ) ( ) [ ]1
2

                        otherwise

π0.5 1 cos               if ,

0                                                   otherwise

m m m
m

y y y y y
B y h −






  

+ − ∈  =   



    (24) 

where ( )m m B= , ( )( ) ( )2 1 1h M B m= − − , ( )21 1ly h l= + ⋅ − , 2, , 1l m= −
. 

In Figure 2, we show the basic functions (23) for N = 16 and n = 4. 
The compressed block 

( ) ( )
1B
kl n B m B

R
×

    is decoded to a block 
( ) ( )

1B
ij N B M B

R
×

     

of sizes ( ) ( )N B M B×  by using the inverse F1-transform defined for every 
( ) { } { },  1, , 1, ,B Bi j N M∈ ×   as 

( ) ( )
( )( )

( ) ( )
( )( )

1

1 1 1

1 1

n B m B
B

kl k l
B k l

ij n B m B

k l
k l

R A i B j
R

A i B j

= =

= =

=
∑ ∑

∑ ∑
               (25) 

which approximates the original block RB. Making the union of all the decoded 
blocks R1B, we obtain a fuzzy relation (denoted with) R1 of sizes N M× . Then 
we measure the RMSE (Root Mean Square Error) given by 
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Figure 2. Cosine basic functions (N = 16, n = 4) 
 

( )21

1 1RMSE

N M

ij ij
i j

R R

N M
= =

−
=

×

∑∑
                  (26) 

which implies that PSNR is the following: 

10
1

PSNR 20log
RMSE

levN −
=                    (27) 

4. Test Results 

We compare our method with the classical F-transform compression method, 
but here no comparison is made with the one inspired to the Canny method 
used in [2].  

For our tests we have considered the CVG-UGR image database extracting 
grey images of sizes 256 × 256 (cfr., http://decsai.ugr.es/cvg/dbimagenes/). For 
brevity, we only give the results for three images as Lena, Einstein and Leopard 
whose sources are given in Figures 3(a)-(c), respectively. 

In Table 1, we show the PSNR of the F-transform and F1-transform methods 
for some values of the compression rate in the image Lena. 

We make the following remarks on Table 1:  
− for weak compression rates the quality of the decoded image under the 

F1-transform method is better than the one obtained with the F-transform 
method; 

− for strong compression rates the quality of the images decoded in the two 
methods is similar; 

− the difference between the two PSNR’s in the two methods overcomes 0.1 for 
ρ > 0.25.  

In Figure 4, we show the trend of the PSNR for the two methods. 
In Figures 5(a)-(d) (resp., Figures 6(a)-(d)), we show the decoded images of 

Lena obtained by using the F-transform (resp., F1-transform) for ρ = 0.0.0625, 
0.16, 0.284444 and 0.444444, respectively. 
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(a)                         (b)                         (c) 

Figure 3. (a) Lena; (b) Einstein; (c) Leopard. 
 

 
Figure 4. PSNR trend for the source image Lena. 
 
Table 1. PSNR of the F-transform and F1-transform methods for some values of the 
compression rate in the image Lena. 

ρ PSNR F-transform PSNR F1-transform (PSNR F1-tr) - (PSNR F-tr) 

0.015625 21.088 21.071 −0.017 

0.035156 23.558 23.541 −0.018 

0.062500 24.551 24.544 −0.007 

0.097656 25.791 25.796 0.005 

0.140625 26.812 26.823 0.011 

0.160000 26.912 26.941 0.029 

0.250000 28.431 28.497 0.066 

0.284444 29.012 29.125 0.113 

0.297521 29.089 29.247 0.158 

0.308642 29.108 29.339 0.231 

0.390625 29.899 30.141 0.242 

0.444444 30.800 31.023 0.223 

0.562500 31.121 31.375 0.254 
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(a)                                 (b) 

   
(c)                                 (d) 

Figure 5. (a) F-tr under ρ = 0.0.0625; (b) F-tr under ρ = 0.16; (c) F-tr decoded (ρ = 
0.284444); (d) F-tr decoded (ρ = 0.444444). 
 

   
(a)                                  (b) 

   
(c)                                  (d) 

Figure 6. (a) F1-tr decoded (ρ = 0.0.0625); (b) F1-tr decoded (ρ = 0.16); (c) F1-tr decoded 
(ρ = 0.284444); (d) F1-tr decoded (ρ = 0.444444). 
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In Table 2 and Figure 7, we show the PSNR obtained using the F-transform 
and F1-transform methods for some values of the compression rate in the image 
Einstein: this table confirms the same results obtained for the image Lena in Ta-
ble 1. 

In Figures 8(a)-(d) (resp., Figures 9(a)-(d)) we show the decoded images of 
Einstein obtained using the F-transform (resp., F1-transform) method for ρ = 
0.0.0625, 0.16, 0.284444 and 0.444444, respectively. 

In Table 3 we show the PSNR values obtained using the F-transform and 
F1-transform methods for some values of the compression rate in the image 
Leopard. 
 

 
Figure 7. PSNR trend for the source image Einstein. 
 
Table 2. PSNR results obtained for the source image Einstein. 

ρ PSNR F-transform PSNR F1-transform (PSNR F1-tr) - (PSNR F-tr) 

0.015625 22.2701 22.2679 −0.0022 

0.035156 23.4968 23.4952 −0.0016 

0.062500 24.3781 24.3764 −0.0017 

0.097656 25.6269 25.6265 −0.0004 

0.140625 26.9260 26.9320 0.0006 

0.160000 28.0048 28.0186 0.0138 

0.250000 29.3003 29.4154 0.1151 

0.284444 30.0018 30.1252 0.1234 

0.297521 30.4054 30.5377 0.1323 

0.308642 30.5415 30.7242 0.1827 

0.390625 31.0126 31.1888 0.1762 

0.444444 32.3841 32.6976 0.3135 

0.562500 33.2661 33.5678 0.3017 
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(a)                               (b) 

  
(c)                               (d) 

Figure 8. (a) F-tr decoded (ρ = 0.0.0625); (b) F-tr decoded (ρ = 0.16); (c) F-tr decoded (ρ 
= 0.284444); (d) F-tr decoded (ρ = 0.444444). 
 

  
(a)                               (b) 

  
(c)                                (d) 

Figure 9. (a) F1-tr decoded (ρ = 0.0.0625); (b) F1-tr decoded (ρ = 0.16); (c) F1-tr decoded 
(ρ = 0.284444); (d) F1-tr decoded (ρ = 0.444444). 
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Table 3 confirms the results obtained for the images Lena and Einstein: the 
quality of the decoded image obtained by using the F1-transform is better than 
the one obtained using the F-transform for weak compression rates. In Figure 
10, we show the trend of the PSNR index obtained by using the two methods. 

In Figures 11(a)-(d) (resp., Figures 12(a)-(d)), we show the decoded images 
of Leopard obtained by using the F-transform (resp., F1-transform) method for ρ 
= 0.0.0625, 0.16, 0.284444, 0.444444, respectively. 

In Figure 13, we show the trend of the difference of PSNR by varying the 
compression rate for all the images in the dataset above considered. 
 

 
Figure 10. PSNR trend for the source image Leopard. 
 
Table 3. PSNR results obtained for the source image Leopard. 

ρ PSNR F-transform PSNR F1-transform (PSNR F1-tr) - (PSNR F-tr) 

0.015625 17.2997 17.3183 0.0186 

0.035156 18.6483 18.6726 0.0243 

0.062500 19.6883 19.7067 0.0184 

0.097656 20.0131 20.0375 0.0244 

0.140625 22.4336 22.4470 0.0134 

0.160000 22.9203 22.9892 0.0689 

0.250000 24.4041 24.5474 0.1433 

0.284444 25.0750 25.2096 0.1346 

0.297521 25.2229 25.3673 0.1444 

0.308642 25.4181 25.6597 0.2416 

0.390625 26.1470 26.3948 0.2478 

0.444444 26.6971 26.9762 0.2791 

0.562500 27.7235 28.0978 0.3743 

20

21

22

23

24

25

26

27

28

29

0 0.1 0.2 0.3 0.4 0.5 0.6

PS
N

R

ρ

F1

F



F. Di Martino et al. 
 

191 

   
(a)                                (b) 

   
(a)                                 (b) 

Figure 11. (a) F-tr decoded (ρ = 0.0.0625); (b) F-tr decoded (ρ = 0.16); (c) F-tr decoded 
(ρ=0.284444); (d) F-tr decoded (ρ=0.444444). 
 

   
(a)                                (b) 

  
(a)                                (b) 

Figure 12. (a) F1-tr decoded (ρ = 0.0.0625); (b) F1-tr decoded (ρ = 0.16); (c) F1-tr decoded 
(ρ = 0.284444); (d) F1-tr decoded (ρ = 0.444444). 
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Figure 13. PSNR trend for all the images in the dataset considered. 
 

Summarizing, we can say that the presence of the coefficients of the F1-transform 
is negated by noise introduced during the strong compressions, while this effect 
increases considerably using weak compressions rates. 

5. Conclusion 

We give an image compression method based on the direct and inverse F1-transform. 
The results show that the PSNR of the reconstructed images with the 
F1-transform-based compression method is better than the one obtained with 
the F-transform-based compression. In the tested dataset of images, we find that 
the difference between the two corresponding PSNR values is greater than 0.1 
(resp., 0.25) for ρ = 0.25 (resp., ρ ≈ 0.5). In the next papers, we shall use the 
F1-transform in data analysis problems. 
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