
Crystal Structure Theory and Applications, 2017, 6, 25-38 
http://www.scirp.org/journal/csta 

ISSN Online: 2169-2505 
ISSN Print: 2169-2491 

DOI: 10.4236/csta.2017.63003  August 11, 2017 

 
 
 

Interaction of Iron(III)-5,10,15,20-Tetrakis 
(4-Sulfonatophenyl) Porphyrin with 
Chloroquine, Quinine and Quinidine 

Dikima D. Bibelayi1, Pitchouna I. Kilunga1, Albert S. Lundemba1, Matthieu K. Bokolo1,  
Pius T. Mpiana1, Philippe V. Tsalu2*, Juliette Pradon3, Colin C. Groom3, Celine W. Kadima4,  
Luc Van Meervelt5, Zephyrin G. Yav1* 

1Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of Congo 
2Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea 
3The Cambridge Crystallographic Data Centre, Cambridge, UK 
4Department of Chemistry, State University of New York at Oswego, Oswego, USA 
5Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium 

 
 
 

Abstract 
Iron(III)-5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (FeTPPS) is used 
as non-physiological metalloporphyrin model for the natural iron (III)-pro- 
toporphyrin IX (FePPIX) resulting from hemoglobin degradation to investi-
gate ligand binding reactions in aqueous solution. Studies were conducted on 
the interaction of FeTPPS with Chloroquine, Quinine, and Quinidine, which 
are historically the most common quinoline-based drugs used to treat malaria, 
an infectious disease afflicting several hundred millions every year world- 
wide, mainly in tropical regions. Using UV-Visible spectrophotometry, the 
binding reaction was studied at pH 7.40 in purely aqueous solution, and in 
aqueous solution containing NaNO3 at concentration of 0.1 M. Fitted titration 
curves obtained were in agreement with experimental data according to a 
formation scheme of 1:1 complex (1 FeTPPS μ-oxo-dimer: 1 Antimalarial). 
Values of apparent binding constant (K) obtained were between 4.3 × 103 M−1 
to 7.59 × 104 M−1, demonstrating that FeTPPS and the antimalarials formed 
stable complexes. The stability of the complex decreased when NaNO3 was 
added to the solution. This ionic strength dependence was ascribed to elec-
trostatic effects. Quinine and Chloroquine interacted with FeTPPS stronger 
than Quinidine did. Chloroquine showed the strongest affinity to FeTPPS. 
These findings revealed the influence of steric and stereochemical factors. 
Molecular electrostatic potentials (MEP) calculated with Hartree-Fock theory 
argue in favor of π-π and electrostatic interactions between reaction partners 
as driving forces for the complex formation. In the case of FeTPPS: Chloro-
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quine interaction, it is suggested that an intramolecular hydrogen bond is 

formed between phenyl 3SO−  and quinuclidine N-H+ as additional force sta-
bilizing the complex. Analysis of crystallographic data using the Cambridge 
Structural Database (CSD) gave evidence of the hydrogen bond formation 

between phenyl 3SO−  and N-H+ groups in 370 structures. 
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1. Introduction 

Porphyrins and their derivatives are well-investigated molecules because of nu-
merous potential applications from molecular electronics, over sensors and in-
formation storage elements, to medical agents [1] [2]. Ferric porphyrins seem to 
play an important role as receptor of an enormous number of ligands [3] [4] [5] 
[6] [7]. Iron(III)-5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (FeTPPS), 
widely used in medicine to attenuate neurological damages, but also to treat the 
retinopathy of prematurity and for reanimation [8], is a synthetic derivative of 
the natural Iron(III)-protoporphyrin IX (FePPIX) (Figure 1).  

FePPIX has been suggested as drug target of quinoline-based antimalarials [4] 
[9] [10] [11] [12] [13]. FePPIX is the oxidized form of heme released by the ma-
larial parasite during the blood stage. The parasite digests hemoglobin in in-
fected erythrocytes to recuperate the amino acids it needs. Detoxification of free 
heme into the acidic digestive vacuole is achieved by the formation of a polymer 
well known as hemozoin (β-hematin) or malarial pigment [4] [14]. The interac-
tion of quinoline antimalarial with FePPIX plays the important role of bringing  

 

 
Figure 1. Structures of Iron(III)-5,10,15,20-tetraphenyl porphyrin sulfonic acid, Mono-
mer (a) and μ-oxo-Dimer (b). 
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Figure 2. Structures of Chloroquine (a), Quinine (b) and Quinidine (c). 

 
back the porphyrin into solution in order to block FePPIX unities, and to pre-
vent the formation of hemozoin. The binding of FePPIX and its derivate 
Iron(III)-deuteroporphyrin IX (FeDPIX) to quinoline-based antimalarials 
Chloroquine, Quinine and Quinidine (Figure 2) have been demonstrated in vi-
tro using mixtures of water with ethylene glycol, propylene glycol and DMSO [4] 
[11] [12] [15] [16] [17] [18]. It has been shown that the interaction depends on 
steric, stereochemical and electrostatic effects. Quinine is a carbinol-4 quinoline, 
originally derived from the bark of the cinchona tree. Quinidine is a stereoiso-
mer of Quinine. Chloroquine is a 4-aminoquinoline long used in the malaria 
prevention and treatment, as it was cheap and widely available, before the most 
dangerous malarial parasite Plasmodium falciparum started to develop resis-
tance to it.  

It has been suggested that the most important driving forces for the formation 
of the complex are π-π and hydrophobic interactions between the porphyrin 
ring and quinoline ring. The coordination of the iron center of Ferri-porphyrin 
by the alcohol/alkoxy functionality and an intramolecular hydrogen bond 
formed between the protonated quaternary quinuclidine nitrogen atom of a drug 
molecule and the negatively charged propionate side chain of the Ferri-porphyrin 
have been also mentioned as additional forces stabilizing the complex [12] [15] 
[19] [20]. Growing resistance of the Plasmodium to the quinoline antimalarials 
spurred the development of a new antimalarial pharmacological approach based 
on designing new molecules [21] [22]. A new antimalarial chemotherapy has 
been reported based on choline analogues with novel mechanisms of action [7] 
[23]. The authors reported that these drugs are “dual molecules”, structurally 
unrelated to existing antimalarial agents, acting through two mechanisms: they 
interact with the plasmodial phospholipid metabolism and also with the malarial 
FePPIX polymer. However, quantitative studies of the interaction of the iron 
(III) porphyrin FePPIX in pure aqueous solution, the physiological medium, are 
hampered by the tendency of FePPIX to form aggregates considerably larger 
than dimers. In weakly acid and neutral solutions of FePPIX, a stable state can-
not be achieved probably due to colloidal precipitation leading to artefacts in 
quantitative investigations [4] [7] [11] [15] [20] [24]. FeTPPS is sufficiently so-
luble in aqueous solution in a wide pH range due to four very strong acid groups 
(SO3H) compared to two weak acid groups (-CH2CH2CO2H) of FePPIX. Dimeri-
zation of FeTPPS into μ-oxo-Dimer (O-FeTPPS2) can also be well controlled un-
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der experimental conditions in aqueous solution [3] [25] [26]. In this study, we 
report the results of the interaction of the iron porphyrin FeTPPS with Chloro-
quine, Quinine and Quinidine in pure aqueous solution and in aqueous solution 
containing NaNO3. The main goal is to explore the use of FeTPPS as ferric porpo-
hryin model for the natural FePPIX for binding reactions in aqueous solution, the 
biological medium. FeTPPS has been considered as a non-physiological metallo-
porphyrin model for FePPIX. Gibbs E. et al. [27] investigated the interaction of 
Hemopoxin with FeTPPS used as model for FePPIX, which is the presumed target 
of the serum protein in blood stream. The authors demonstrated that hemopoxin 
is capable of binding with either Monomers or μ-oxo-Dimers of FeTPPS. Com-
plexes of FeTPPS with Nitric Oxide and Per-O-methylated-Cyclodextrin have also 
been used as primary models for FePPIX in ferrihemoproteins [5] [6].  

2. Experimental Section 
2.1. Chemicals 

FeTPPS acid chloride, Chloroquine diphosphate and Quinidine, and Quinine 
were purchased from Frontier Scientific, Fluka (PA) and Merck (PA), respec-
tively. Tris(hydroxymethyl) aminomethane (TRIS) was from Sigma Aldrich 
(PA). Stock solutions of FeTPPS and antimalarials were prepared in Mil-
liQ-water (MQ-water) and buffered with TRIS. All static measurements were 
carried out in solutions containing 0.01 M buffer. The pH values were measured 
with a glass electrode, which was soaked and kept in aqueous solution of KCl (3 
M) and was calibrated with aqueous standard buffers. A series of titration solu-
tions at pH 7.40 were prepared as previously described [4] [28] in which the 
concentrations of FeTPPS μ-oxo dimer (D), TRIS and NaNO3 were held con-
stant, at 5 × 10−6 M, 0.01 M and 0 or 0.1 M, respectively, while the concentra-
tions of the antimalarial ligand (L) were varied from 0 to 1.5 M.  

2.2. UV-Visible Spectrophotometric Study 

Experimental titration curves were carried out with a Perkin Elmer Lambda 40 
UV-Visible spectrophotometer. Fitted curves were performed using a nonlinear 
least-squares regression based on the scheme describing the formation of a 1:1 
complex (Scheme 1) according to the equation (Scheme 2) previously reported 
by Yav Gushimana et al. [3].  

2.3. Computational Study 

In addition to the experimental studies, a computational study was performed to  
 

KD A DA+ 
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Scheme 1. Model of Binding reaction of μ-oxo-FeTPPS Dimer (D) with antimalarial li-
gand as ligand (A). K is the binding constant related to activities of reaction partners. 
Thus, K is depending on ionic strength. For diluted solutions, K is an apparent binding 

constant related to concentrations: DA
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Scheme 2. Nonlinear least-squares regression equation for the formation of 1:1 complex 
assuming that 0Aε ≅  at wavelength of titration [3], and consequently D D DA DAE C Cε ε= +  
[3]. K, C, E, ε  and d represent the apparent binding constant, the concentration, the 
extinction, the molar absorption coefficient and the optical path, respectively; C˚ is the 
initial total concentration and  o oE d Cε= .  

 
calculate molecular electrostatic potentials (MEP) based on the Hartree-Fock 
theory at basis sets 6 - 31 G(d) and 3 - 21 G implemented in GAUSSIAN09 [29]. 
The value of 0.1 a.u. was used for the isopotential. 

2.4. CSD Analysis 

The Cambridge Structural Database (CSD) Version 5.38 [November 2016] with 
a total of 843,799 structural entries was also used to explore the ability of phenyl 

3SO−  and protonated nitrogen to form hydrogen bond. We used the CSD system 
program ConQuest program for substructure searches and the location of 
non-bonded interactions [30] with the following secondary search criteria: 
atomic coordinates present in the entry and error-free after CSD evaluation; no 
disorder in the crystal structure; no polymeric (catena) bonding; no powder stu-
dies; crystallographic R-factor ≤ 0.10; only organic structures (according to 
standard CSD definitions). The CSD System program Mercury [31] [32] was 
used for 3D structure visualizations. 

3. Results and Discussion 
3.1. UV-Visible Spectrophotometry  

The Figure 3 depicts the absorption of FeTPPS and the antimalarial-based drugs 
between 600 nm to 350 nm. As it is shown, given that the results were the same 
for the three antimalarial-based drugs, only Chloroquine is plotted. 

We can see that (Figure 3) no absorption of quinoline-based antimalarials 
was observed in the visible region as illustrated with Chloroquine, whereas the 
spectrum of FeTPPS has a marked peak in the Soret Band around 413 nm and a 
small peak around 565nm (Figure 3). These peaks correspond very well to those 
at 415 nm and 565 nm, respectively, previously reported for μ-oxo-Dimer of 
FeTPPPS [25]. And the variation of Extinction of FeTPPS at 410 nm in pure 
aqueous solution at pH 7.40 versus concentration is plotted in Figure 4. 

It can be seen that the absorption increases linearly obeying Beer’s Law. This 
behavior demonstrates that only one species predominates in solution under the 
experimental conditions. Fitting of the molar absorption coefficient by the 
least-squares regression provides a value of (1.59 ± 0.02) × 105 M−1∙cm−1, which is 
in good agreement with the value of 1.15 × 105 M−1∙cm−1 previously reported for 
the absorption of FeTPPS μ-oxo-Dimer [25]. Figure 5 shows titration of FeTPPS 
with Quinidine, which illustrates typical spectral changes in the Soret band of 
FeTPPS when the ferriporphyrin was titrated with antimalarial drug.  
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Figure 3. Absorption of FeTPPS and chloroquine between 350 to 600 nm at pH 7.40 25˚C 
and NaNO3 0.1 M. 

 

 
Figure 4. Absorption of FeTPPS increased linearly (R2 = 0.99953 and SD = 0.01027) with 
the concentration of the porphyrin at 410 nm, pH 7.40, 25˚C and NaNO3 0.1 M. 

 
Figure 5 reveals typical spectral changes induced by the addition of the anti-

malarial ligand in the aqueous solution of FeTPPS. The peaks of FeTPPS around 
413 nm and 565 nm were still observed, but somewhat shifted and markedly 
damped with the increasing of ligand concentration. As illustrated in Figure 3, 
with the wavelength range (350 nm - 600 nm), only FeTPPS absorbs. Thus, any 
change of the peaks of FeTPPS by adding an amount of antimalarial-based drugs 
is the result of interaction. The variation in extinction is caused by the interac-
tion of the FeTPPS μ-oxo-Dimer with the antimalarial. Indeed, Also, there are 
two isosbestic points around 370 nm and 430 nm, respectively, suggesting the 
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complex formation [4] [28]. Mavakala et al. showed Chloroquine and Quinidine 
as the quinoline containing antimalarials with the strongest affinity to FePPIX 
[28]. They also argued that the affinity of the antimalarials depends on ionic 
strength and stereochemical factors. Figure 6 illustrates the experimental titra-
tion curves of FeTPPS with antimalarial drugs.  

The shape of titration curves reveals that the absorbance of the μ-oxo-Dimer 
decreases steeply and becomes relatively steady with the increase of the ligands 
as expected [4] [15] [28] [33] [34]. The complexation parameters were deter-
mined by plotting the titration curves of FeTPPS with antimalarial drugs ac-
cording to the nonlinear least-squares regression equation (Scheme 2). Results 
(Figure 6) are in good agreement with curves fitted according to the formation  

 

 
Figure 5. Spectral changes in the Soret Band when FeTPPS is titrated with increasing 
concentration of Quinidine in pure aqueous solution at pH 7.40 without NaNO3. 

 

 
Figure 6. Spectrophotometric titration of FeTPPS at pH 7.40 (TRIS buffer) with (a) chloroquine and quinidine in aqueous 
solution without NaNO3 (ionic strength ≈ 0) and (b) chloroquine, quinidine and quinine at 0.1 M NaNO3 (ionic strength ≈ 
0.1 M). 
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Table 1. Apparent binding constants (K) obtained from spectrophotometric titration in 
pure aqueous solution at pH 7.40, 25˚C in pure aqueous solution and in solution con-
taining NaNO3. 

[NaNO3] (M) 
K (104 M−1) 

Fe-TPPS-Chloroquine Fe-TPPS-Quinidine Fe-TPPS-Quinine 

0.1 2.92 ± 0.74 0.43 ± 0.08 1.46 ± 0.58 

0.0 7.59 ± 0.62 2.14 ± 0.31 - 

 
of 1:1 complex (one FeTPPS μ-oxo-Dimer: one antimalarial) described by the 
equation (Scheme 2). The values of the molar absorption coefficient at 410 nm 
obtained from the fitted curves were (1.62 ± 0.06) × 105 M−1∙cm−1 and (1.64 ± 
0.03) × 105 M−1∙cm−1 in pure aqueous solution, that is, at 0 M NaNO3 and 0.1 M 
NaNO3, respectively. It is noteworthy that these values are very close to the val-
ues fitted by the least-squares regression (Figure 4) and those reported by Everly 
et al. for FeTPPS μ-oxo-Dimer [25]. The values of the apparent binding constant 
(K) calculated from fitted curves are listed in Table 1. 

The values of the apparent binding constant (Table 1) reveal that FeTPPS 
forms stable complexes with Chloroquine, Quinine and Quinidine in aqueous 
solution as well as FePPIX and its derivative FeDPPIX do in mixtures of water 
with organic solvents like glycol and DMSO. Values K of (0.33 ± 0.06) × 105 M−1 
and (0.11 ± 0.03) × 105 M−1 have been obtained for the complex formation of 
FePPIX with Chloroquine and Quinine, respectively, in 50% water-propylene 
glycol mixture at pH 7.40 [28] [34]. Kai F. et al. [13] reported constants of dissoci-
ation for the complex formed between Chloroquine and FePPIX μ-oxo-dimer at 
pH 6.5 and pH 9 of 3.9 × 10−6 M−1 and 4.1 × 10−6 M−1, respectively, which cor-
respond to 2.6 × 105 M−1 and 2.4 × 105 M−1 in terms of binding constant. FeTPPS 
has the strongest affinity to Chloroquine in comparison to Quinine and Quini-
dine under the same experimental conditions. The affinity of FeTPPS to Quinine 
and Chloroquine decreases in aqueous solution when NaNO3 is added. These 
findings are similar to those for the binding of FePPIX and its derivate FeDPIX 
to quinoline antimalarials [15] [28] [33] [34]. It can be assumed that similar 
forces are involved in the interaction of FePPIX, FeDPIX and FeTPPS with the 
quinoline-based antimalarials considering that these ferriporphyrins have simi-
lar molecular structures. The main forces driving the complexation, as sug-
gested, are π-π stacking between the quinoline ring and the porphyrin ring, hy-
drophobic interactions, and electrostatic interactions [4] [19] [20] [28] [33] [34] 
[35]. De Villiers et al. [20] demonstrated that additional forces providing further 
stability of complexes between ferriporphyrins and carbinol-4 quinoline drugs 
are the possible coordination of the iron (III) by the alcohol/alkoxy functionality 
and a hydrogen bond formed between the protonated quinuclidine nitrogen 
atom and the propionate side chain. The strong affinity of Chloroquine to ferri-
porphyrins suggests that the complex is stabilized by the flexible aliphatic 
side-chain of Chloroquine, which is less crowded than the stiff quinuclidine 
group of Quinine and Quinidine [4] [20] [28]. The decrease of the FeTPPS affin-
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ity to Quinine and Chloroquine by addition of NaNO3 illustrates the dependence 
of the complex stability on ionic strength. The influence of ionic strength on the 
complex stability was also found by investigations in polar mixtures of water 
with ethylene—or propylene glycol [15] [28] [34]. However, no effects of ionic 
strength, which is characteristic of electrostatic interactions, have been observed 
in mixtures of water and DMSO probably due the weak polarity of the medium 
[18]. One could attribute the decrease of affinity to the influence of the ionic 
strength on the formation of FeTPPS μ-oxo-Dimer. However, no major spectral 
change of FeTPPS absorption is observed in aqueous solution containing NaNO3 
compared to the absorption in solution without NaNO3 (Figure 3 and Figure 5). 
Moreover, the values of the molar absorption coefficient fitted from titration are 
consistent with the value of the molar absorption coefficient of the FeTPPS 
μ-oxo-Dimer reported by Everly et al. [25]. In aqueous solution at pH value of 
7.40, the acid phenylsulfonic group of FeTPPS is dissociated in anionic form and 
H+ as the value of the dissociation constant pKa is 4.8 [25]. Investigations on the 
acid dissociation of protonated nitrogen atoms of quinoline antimalarials in 
aqueous solution provided two apparent constants, pKa1 and pKa2, [36] [37]. 
The authors found, respectively, pKa1 and pKa2 values of 8.08 and 10.16 for 
Chloroquine, 3.67 and 7.95 for Quinine and 3.50 and 7.81 for Quinidine. Ac-
cording to these pKa1 and pKa2 values, two nitrogen atoms of Chloroquine are 
protonated and only, one nitrogen atom (pKa2) of Quinine and Quinidine is 
protonated according to values of pKa2 at pH 7.40. Thus, the observation that 
the addition of NaNO3 at high concentration in solution decreases the electros-
tatic interactions can be ascribed to shielding effects of Na+ and 3NO−  counter- 
ions on interacting charged groups in FeTPPS and antimalarial molecules [15] 
[28] [33]. In comparison to FePPIX and FeDPIX, two additional negative groups 
are provided to FeTPPS by phenylsulfonate side chains. However, no enhance-
ment of electrostatic interactions and, consequently, no increased affinity of 
FeTPPS to antilamarial drugs is observed as expected. Contrary, K values of 
FeTPPS complexes are lower than those of FePPIX and FeDPIX complexes. This 
behavior demonstrates the main role played by steric effects on complex stabili-
ty.  

3.2. Molecular Electrostatic Potentials 

The calculation of molecular electrostatic potential surfaces revealed that there 
are regions of negative charges and positive charges in the ferriporphyrins and 
the antimalarial molecule as expected. Marked negative charges (in red) are 
around the carboxylic groups of propionate side chains of FePPIX and sulfonic 
groups of sulfonate side chains of FeTPPS, but also around oxygen and nitrogen 
atoms of antimalarials (Figure 7). 

These charged sites are probably responsible for electrostatic interactions be-
tween FeTPPS and antimalarial drugs enhanced in aqueous solution. However, 
Figure 3 also shows that the steric mesophenylsulfonic groups of FeTPPS are 
symmetrically disposed, all orthogonal to the porphyrin plane. Thus, electrostat- 
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Figure 7. (a) MEP of FeTPPS at HF/3-21G(d), (b) MEP of Quinine at HF/6-31G(d), (c) MEP of Chloro-
quine at HF/6-31G(d). 

 

 
Figure 8. C(T3)- 3SO− ...H-N+ Hydrogen bonding in CSD. 

 
ic interactions as well as the π-π stacking between the quinoline ring of antima-
larials and the porphyrin ring of FeTPPS can be hampered by steric effects.  

3.3. CSD Analysis 

The complete CSD (all entries, with no secondary filters applied) contained 
17,755 3SO−  compounds of which 5924 (33.4%) were organic and 11,831 
(66.6%), metal-organic complexes. When the secondary search criteria of Sec-
tion 2.3 were applied, the total falls to 9112 structures of which 3848 (42.2%) 
were organic and 5264 (57.8%), metal-organic. Searches of organo-sulfonate 
compounds and, especially, on those compounds featuring mono-coordinate 

3SO−  atoms in X- 3SO−  bonds revealed 3843 structures containing X- 3SO−  
bonding in the CSD (a further 5 structures have X= 3SO−  subset). In the X- 3SO−  
subset, 3090 bonds (80.4%) are C- 3SO− , 674 (17.5%) are O-SO3

− and the re-
maining 79 bonds (2.1%) featured X=N, P, F, S or Se. An initial CSD survey 
showed that 2214 X- 3SO−  compounds, with X assigned as any atom type, 
formed hydrogen bonds to strong O-H or N-H donors. The most abundant X 
type was a carbon atom with 1639 (74.0%) compounds forming hydrogen bonds, 
while in 1117 compounds, the substituent was phenyl group. There were 821 
compounds of this last group forming hydrogen bonds to N-H donors, in which 
370 (45.1%) compounds formed hydrogen bonds to protonated N-H+ donors as 
illustrated in the Figure 8 (Refcode: ANEYOI). 
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CSD searches provided many crystal structures forming relatively strong—

3SO− … H-N+ hydrogen bonds with median values of normalized lengths be-
tween 1.65 to 2.72 Å. This suggests that an additional hydrogen bond between 
the protonated quinuclidine nitrogen atom of Chloroquine and the negatively 
charged sulfonate side chain of FeTPPS molecule is also possible, which increas-
es the complex stability.  

4. Conclusion 

The binding of FeTPPS to Chloroquine, Quinine and Quinidine in aqueous so-
lution was investigated using UV-Visible spectrophotometry in conjunction 
with quantum mechanical calculations and (Cambridge Structural Database) 
CSD analysis. The results of the study show that FeTPPS can be used as ferric 
porphyrin model for the natural FePPIX for binding reactions in aqueous solu-
tion, the physiological medium. Indeed, spectrophotometric titration curves are 
well described by 1:1 binding scheme of FeTPPS dimer with the quinoline con-
taining antimarials chloroquine, Quinine and quinidine. K values obtained sup-
port the formation of stable complexes. They also revealed that the stability of 
the complex depends not only on structural factors such as steric and stereoiso-
meric factors, but also on ionic strength. Thus, the complexation of FeTPPS with 
Chloroquine, Quinine, and Quinidine seems to be very similar to the complexa-
tion of FePPIX. In the light of this finding and results of ab initio calculations, it 
can be assumed that the main driving forces for the complexation of FeTPPS 
with quinoline-based antimalarials are also π – π interactions more or less en-
hanced by structural factors and electrostatic effects. This work will be extended 
to the formation of complexes in acidic pH range aqueous solution as the bio-
logical activity of the drugs in vivo occurs in the acidic digestive vacuole of the 
malaria parasite.  
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