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Abstract 
We propose the Forward-Backward Synergistic Acceleration Pursuit (FBSAP) 
algorithm in this paper. The FBSAP algorithm inherits the advantages of the 
Forward-Backward Pursuit (FBP) algorithm, which has high success rate of 
reconstruction and does not necessitate the sparsity level as a priori condition. 
Moreover, it solves the problem of FBP that the atom can be selected only by 
the fixed step size. By mining the correlation between candidate atoms and re-
siduals, we innovatively propose the forward acceleration strategy to adjust the 
forward step size adaptively and reduce the computation. Meanwhile, we ac-
celerate the algorithm further in backward step by fusing the strategy proposed 
in Acceleration Forward-Backward Pursuit (AFBP) algorithm. The experimen-
tal simulation results demonstrate that FBSAP can greatly reduce the running 
time of the algorithm while guaranteeing the success rate in contrast to FBP 
and AFBP. 
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1. Introduction 

The theory of Compressed Sensing (CS) [1] [2] [3] proposed by Candes and Do-
noho in 2006, breaks the limitation that the traditional sampling must satisfy the 
Nyquist frequency and makes it possible to reconstruct low sampling rate signal. 
Therefore, CS is widely used in wireless sensor networks [4] [5], magnetic reson-
ance imaging [6] and video compression [7] etc. 

The major research direction of CS includes signal sparse transformation, de-
sign of measurement matrix and signal reconstruction algorithm. The reconstruc-
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tion algorithms are divided into three categories: greedy algorithms, relaxation 
algorithms and hybrid algorithms. Greedy algorithms are built upon a series of 
locally optimal single-term updates, including Matching Pursuit (MP) [8] and 
Orthogonal Matching Pursuit (OMP) [9] etc. Relaxation algorithms are based on 
convex optimization techniques, which can smooth the 0l  norm and replace it 
with a continuous function that can be handled using classic optimization, in-
cluding Basis Pursuit (BP) [10] and Iterative Reweighted Least-Squares (IRLS) 
[11] etc. Hybrid algorithms include Subspace-Pursuit (SP) [12], Compressive Sam-
pling Matching Pursuit (CoSaMP) [13] and Iterative Hard Thresholding (IHT) 
[14] etc. 

FBP is a novel two-stage greedy approach proposed by N. B. Karahanoglu and 
H. N. Erdogan in reference [15]. It enlarges the estimated support set by α  
atoms in forward step and eliminates β  atoms from the estimated support set 
in backward step. The disadvantage of the FBP is that it can only enlarge and 
reduce the estimated support set with a fixed step size. In view of this, Paper [16] 
proposed Acceleration Forward-Backward Pursuit (AFBP) algorithm, selected 
the high quality atoms again in backward step. Based on this, we propose the 
Forward-Backward Synergistic Acceleration Pursuit (FBSAP) algorithm in this 
paper, which can reduce the atoms selected in the forward step adaptively ac-
cording to the quality of atoms. Thus the algorithm is further accelerated when 
we restructure sparse signals, especially the signals which have large amount of 
data. This greatly improves the practicability of reconstruction algorithms. 

The remainder of the paper is organized as follows. Section 2 briefs the theory 
of CS and the FBP algorithm. Section 3 introduces the acceleration strategy we 
used and the specific process of FBSAP. Section 4 presents the simulation results. 
Finally, conclusion is present in Section 5. 

2. Compressed Sensing Theory and Recovery Algorithm 
2.1. The Theory of Compressed Sensing 

Compressed Sensing aims at restructuring the signal by excavating its sparse 
feature when the information is sampled in very low sampling rate. The sam-
pling process is represented by 

=y xΦ                              (1) 

where x  is a K-sparse one-dimensional signal of length N, K is the number of 
nonzero elements in x . Φ  is a M N×  two-dimensional observation matrix with 
K M N< < . y  is a one-dimensional measurement vector of length M. The pur-
pose of CS is to obtain the signal x  by using the measurement vector y  and the 
observation matrix Φ . 

2.2. The Forward-Backward Pursuit Algorithm 

Without the sparsity K to be known a priori, FBP can reconstruct the sparse 
signal exactly by selecting atoms with fixed forward and backward step size in 
contrast to other reconstruction algorithms. The pseudo code of the FBP is given 
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in Algorithm 1. It expands the estimated support set by selecting α  atoms with 
highest correlation in the forward step and reduces the size of the estimated 
support set by eliminating β  atoms with smallest contributions to the projec-
tion. 
 

 

3. Forward-Backward Synergistic Acceleration Pursuit  
Algorithm 

3.1. The Acceleration Strategy 

The FBP algorithm can be accelerated by two ways: reducing α  and enlarg-
ing α − β . The strategy mentioned in [16] has the effect of enlarging the 
α − β , but it doesn’t change the number of atoms selected in the forward 
step. 

It is not every atom selected in the forward step correct. The wrong atoms 
are more if the signal is very sparse or after many iterations. A fixed number 
of atoms are selected in every forward step that increases the computation. 
We observed the correlation levels of the observation matrix and residuals at 
first. The results are shown in Figure 1. We found that the correlation levels  
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(a)                                                        (b) 

Figure 1. The correlation levels of the observation matrix and residuals. (a) The correlation level in first iteration; (b) The 
correlation level after some iterations. 

 
present ladder-form. Some atoms have the same correlation level such as 
atoms 2-5, and there is a big ladder between them and the other atoms. The 
ladder is especially obvious after some iterations. The correlation level of 
atom 1 is significantly higher than the others. With the above analysis, it is 
completely unnecessary selecting α  atoms in every iteration. Only need to 
find the last obvious ladder and choose the atoms before it. We can reduce 
α  by this way and accelerate the algorithm. 

We adopt the backward acceleration strategy proposed by [16] in this paper. 
The main idea of this strategy is giving the atoms corresponding weights ac-
cording to the correlation levels between atoms and residuals, and then reset-
ting the atom into support set in backward step if its cumulative weight is 
greater than a threshold, so that we can select multiple atoms in each itera-
tion. 

3.2. Forward-Backward Synergistic Acceleration Pursuit  
Algorithm 

The details of FBSAP are shown in Algorithm 2. First, Calculate the correla-
tion levels between atoms and residuals and represent them as set m , meanwhile, 
calculate the corresponding weights of atoms and save them to set w . Then, 
Calculate the differences between adjacent elements in w  and represent as 
set g . In order to ensure the simplicity and effectiveness of the algorithm, we 
think there is a ladder between im  and +1im  if an element ig  in g  is 
greater than threshold γ . If we cannot find any ladder or the index of the last 
ladder is greater than α , set the forward step size f  as fixed step size α . 
Otherwise, set f  as the index of the last ladder. Next, select f  atoms into 
support set and set the backward step size b  as 1f − . In the backward step, 
we eliminate b  atoms from support set which have the smallest projection 
coefficients. Then reset the atom whose cumulative weight is greater than η  
into support set. 
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4. Experimental Results and Analysis 
4.1. The Effect of Restructuring Sparse Signals 

The reconstruction quality should not be reduced while improve the speed of the 
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algorithm. So the FBSAP is compared with FBP and AFBP in three aspects, exact 
reconstruction rate, average normalized mean squared error (ANMSE) and run-
ning time. The signals we used are Gauss sparse signal and uniform sparse signal. 
The nonzero entries of Gaussian sparse signals are drawn from the standard 
Gaussian distribution. Nonzero elements of the uniform sparse signals are dis-
tributed uniformly in [ ]1,1− . A different observation matrix is drawn from the 
Gaussian distribution with mean 0 and standard deviation 1 N  for each test 
signal. The simulation system information is as follows. Matlab Version: 2016a, 
Operating System: Windows 10(64-bit), CPU: Intel(R) Core(TM) i7-6700HQ 
CPU@2.60 GHz, Memory: 8 GB. 

The length of signal is 512N = . The length of measurement vector is M = 
200. The sparsity K  is between 10 and 90. We repeat 1000 experiments and 
use different sparse signal and measurement matrix for each sparsity K . The 
exact reconstruction rate is the ratio of accurate reconstruction times and total 
experiment times. The condition of accurate reconstruction is 2

2 2
ˆ 10−− ≤x x x , 

where x̂  is the reconstruction vector of x . The ANMSE is represented as  
2

1000
2

2
=1

2

ˆ1ANMSE
1000

i i

i i

−
= ∑

x x

x
                   (2) 

The running time is represented as the total time of 1000 experiments. We set 
maximum support set size max 2K M=  and termination parameter ε −6=10 . 

It is pointed out in [15] that FBP have the best reconstruction effect while 
[ ]0.2 ,0.3M Mα ∈  and 1β α= − . We find that FBP has the highest exact re-

construction rate while 0.3Mα = . So we select 0.3Mα =  and 1β α= −  in 
the tests. [16] points out that algorithm has the best effect while 1 0.07Mη = , 

1 2 3η η η< <  and only consider the first 0.2M  atoms. So we set 1 0.07Mη = , 

2 1 1η η= + , 3 1 2η η= + , 1 0.05s M= , 2 0.1s M= , 3 0.2s M= , 1 2.0w = , w2 = 
1.5, 3 1.0w = . We set the ladder threshold parameter as 0.002γ = . The influ-
ence of γ  will be discuss in 4.3. 

Figure 2 shows the reconstruction result for Gauss sparse signals. It is shown 
that the exact reconstruction rate of FBSAP is almost same as AFBP and slightly 
higher than FBP, the ANMSE of FBSAP is slightly lower than FBP and almost 
equals to AFBP. So FBSAP can ensure the success rate of reconstruction. The  
 

 
(a)                                        (b)                                      (c) 

Figure 2. The reconstruction result for Gauss sparse signals. (a) Exact reconstruction rate; (b) ANMSE; (c) Running time. 
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running time is obviously shorter than FBP and AFBP. While the signal is very 
sparse, the running time of AFBP is almost same as FBP. It is mentioned in [16] 
that the size of η  is close to K , there is almost no atom is selected into support 
set through acceleration channel. But FBSAP has good performance, the reason is 
that FBSAP can greatly shorten the forward step size while the signal is very sparse. 

Figure 3 are the result for uniform sparse signal. It is similar to restructuring 
Gauss sparse signal, FBSAP also has obvious acceleration effect while restruc-
tures uniform sparse signal. 

4.2. The Acceleration Effect of FBSAP 

FBSAP is accelerated by shorten forward step size. Therefore, it performs better 
while the size of signal is large. In order to describe the acceleration effect better, 
we define acceleration rate as 

1000

1
1000

1

Ta
Ar

To

i
i

i
i

=

=

=
∑

∑
                           (3) 

where Ta i  is the ith running time of acceleration algorithm, Toi  is the ith run-
ning time of original algorithm. The acceleration rate is lower, the acceleration 
effect is better. 

Figure 4 show the acceleration rate for Gauss sparse signals. Figure 5 are the  
 

 
(a)                                        (b)                                      (c) 

Figure 3. The reconstruction result for uniform sparse signals. (a) Exact reconstruction rate; (b) ANMSE; (c) Running time. 
 

 
(a)                                        (b)                                      (c) 

Figure 4. Acceleration rate for Gauss sparse signals. (a) N = 256, M = 100; (b) N = 512, M = 200; (c) N = 768, M = 300. 
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(a)                                        (b)                                      (c) 

Figure 5. Acceleration rate for uniform sparse signals. (a) N = 256, M = 100; (b) N = 512, M = 200; (c) N = 768, M = 300. 
 
result for uniform sparse signals. The figures show that the acceleration effect of 
FBSAP is better than AFBP for all signal sizes and sparsity levels. The accelera-
tion effect is particularly evident when the size of signal is large and the sparsity 
level is low. For example, while 768N =  and 30K = , the AFPB costs 80 per-
cent of FBP’s running time, But FBSAP only costs 40 percent. With the decrease 
of sparsity, AFBP gradually loses the acceleration effect, but the effect of FBSAP 
become more obvious. 

4.3. The Influence of Ladder Threshold Parameter 

The reconstruction effect is influenced by γ . The selection of γ  depends on 
the height of correlation ladder. If the value of γ  is too large, we will not find 
the accurate ladders, lose many correct atoms, and reduce the success rate of re-
construction. If it is very large, we even cannot find any ladder and completely 
lose the acceleration effect. If it is too small, we will find many no obvious lad-
ders, so that select too many atoms into support set, reduce the algorithm’s 
speed. Therefore, it is very important to select the appropriate γ . 

Figure 6 are the reconstruction effect for Gauss sparse signals. The parameters 
of FBSAP1 to FBSAP4 are 0.0001γ = , 0.001γ = , 0.002γ =  and 0.004γ = . 
We find that the reconstruction speed is fastest while 0.001γ = , but the exact 
reconstruction rate and ANMSE is not good. A large number of experiments 
show that FBSAP has the best reconstruction effect when 0.002γ = . 

5. Conclusion 

We propose the Forward-Backward Synergistic Acceleration Pursuit algorithm 
in this paper. FBSAP is based on FBP and fuses the backward acceleration strat-
egy proposed in AFBP. We adequately explore the correlation between candidate 
atoms and residuals and innovatively propose forward acceleration strategy. By 
adaptively adjusting the forward step size, FBSAP solves the problem that FBP 
can only select a fixed number of atoms in each iteration. We greatly reduce the 
calculation cost by reducing the number of atoms in forward step and only con-
sume about half the time of FBP while ensuring the accuracy of reconstruction. 
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(a)                                        (b)                                      (c) 

Figure 6. The reconstruction effect for Gauss sparse signals with different parameter. (a) Exact reconstruction rate; (b) ANMSE; (c) 
Acceleration rate. 
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