
Journal of Signal and Information Processing, 2017, 8, 152-160
http://www.scirp.org/journal/jsip

ISSN Online: 2159-4481
ISSN Print: 2159-4465

DOI: 10.4236/jsip.2017.83010 July 31, 2017

Adaptive Cache Allocation with Prefetching
Policy over End-to-End Data Processing

Hang Qin1, Li Zhu2*

1Computer School, Yangtze University, Jingzhou, China
2Oujiang College, Wenzhou University, Chashan University, Wenzhou, China

Abstract
With the speed gap between storage system access and processor computing,
end-to-end data processing has become a bottleneck to improve the total per-
formance of computer systems over the Internet. Based on the analysis of data
processing behavior, an adaptive cache organization scheme is proposed with
fast address calculation. This scheme can make full use of the characteristics
of stack space data access, adopt fast address calculation strategy, and reduce
the hit time of stack access. Adaptively, the stack cache can be turned off from
beginning to end, when a stack overflow occurs to avoid the effect of stack
switching on processor performance. Also, through the instruction cache and
the failure behavior for the data cache, a prefetching policy is developed,
which is combined with the data capture of the failover queue state. Finally,
the proposed method can maintain the order of instruction and data access,
which facilitates the extraction of prefetching in the end-to-end data pro-
cessing.

Keywords
End-to-End, Data Processing, Storage System, Cache, Prefetching

1. Introduction

End-to-end processing refers to a system, which performs a business process
from beginning to end, including all intermediate steps, such as data capture,
data processing, analysis, and the generation of outputs. As for the memory and
processor performance gap with a number of access optimization technologies,
including non-blocking cache, prefetching, access instruction related prediction
and so on, these technologies are concerned with how to reduce or tolerate the
delay of access [1] [2]. Consequently, bandwidth optimization is the key to fu-
ture processor performance improvement [3] [4]. Therefore, the optimization of

How to cite this paper: Qin, H. and Zhu,
L. (2017) Adaptive Cache Allocation with
Prefetching Policy over End-to-End Data
Processing. Journal of Signal and Informa-
tion Processing, 8, 152-160.
https://doi.org/10.4236/jsip.2017.83010

Received: July 1, 2017
Accepted: July 14, 2017
Published: July 31, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsip
https://doi.org/10.4236/jsip.2017.83010
http://www.scirp.org
https://doi.org/10.4236/jsip.2017.83010
http://creativecommons.org/licenses/by/4.0/

H. Qin, L. Zhu

153

processor performance from the delay cannot satisfy the current situation, we
must also consider the delay and bandwidth optimization [5] [6].

There are two main types of bandwidth optimization technology: One is to
increase the processor’s transmission bandwidth, including improving the pro-
cessor interface frequency and data path, using on-chip memory controller and
other technologies. The other is to reduce processing unnecessary data transfer.
Therefore, when the cache instruction misses, it is effective to improve the pro-
cessor bandwidth utilization by reducing the unnecessary data transmission of
the processor. Currently, there are many studies on the implementation of the
cache write failure strategy, including write allocate and non-write allocation, in
terms of the strategies to improve the strategy [7] [8]. The advantage of the write
allocation is to save access bandwidth, while the advantage of the non-write al-
location strategy can reduce the blocking frequency of the storage management
queue, and finally reduce the cache port occupancy [9].

In this paper, the performance of the storage system is optimized by analyzing
the memory behaviors, in terms of on the improvement of the value for the pro-
cessor and the access delay and bandwidth of the optimized processor [10] [11].
Then, we develop a series of performance optimization techniques for storage
systems, and give performance evaluation and analysis on the proposed optimi-
zation techniques.

The main contribution of this paper lies in the analysis of the failure behavior
of cache, and a new cache write failure processing strategy, i.e., adaptive output
allocation. This strategy combines the advantages of write allocation and non-
write allocation strategies, thereby improving the processor’s bandwidth utiliza-
tion significantly. Compared with the traditional cache write failure processing
strategy, hardware cost of adaptive cache write allocation strategy is small to
avoid unnecessary data transmission, reduce cache pollution, and decrease the
storage management queue blocking frequency.

2. Cache Processing Policy

Cache read failure processing strategy is concerned with how to reduce the dif-
ferent access delay, where it is to improve the processor bandwidth utilization,
and reduce unnecessary data transmission. Currently, the cache processing pol-
icy is usually divided into write allocation and non-write allocation, according to
whether or not a failure block is allocated in the cache when the write fails.
Write allocation strategy, refers to the write failure occurred in the cache alloca-
tion of the corresponding cache block, can write directly to the cache. Non-write
allocation strategy, refers to the write failure occurs, can write low-level storage
system in the corresponding block, and not to the cache. The goal of writing
failure management strategy is to improve the bandwidth of the processor.

The improved non-write allocation strategy is to set the write buffer to check
if the write buffer is full. This method can be some of the same cache row opera-
tion combined to reduce the number of write operations. Setting write buffer
and write-validate cache is similar because not every cache line is filled, write

H. Qin, L. Zhu

154

low-level storage system, the need to be divided into multiple write operations or
with masked write back, still cannot solve the non-write allocation strategy to
waste storage bandwidth.

It is clear that because of the spatial nature of the program execution, some
cache blocks will soon be filled with consecutive instructions, such as the cache
block called the modified one, otherwise known as non-modified one. Because
the entire cache block to amend the entire cache line are filled with modification,
using non-write allocation strategy, write low-level storage system does not need
to split into multiple write or need low-level storage system to provide masked
writing. The write-allocating strategy is used for the full-modified cache block.

The current method of optimizing the write failure strategy is still a write al-
location strategy, and if it is not necessary to split into multiple write operations
to write the lower storage system, do not give full play to the advantages of non-
write distribution strategy.

3. End-to-End Cache Write Allocation in the
Cloud Environment

3.1. Adaptive Cache Write Allocation Strategy

According to the analysis of the failure behavior, the cache block is not necessary
to fill the cache. The whole modified cache block and non-modified cache block
is different, writing low-level storage system does not need to split into multiple
write or masked write, will not waste storage bandwidth, suitable for non-write
allocation strategy.

Adaptive cache write allocation policy, together with the invalid memory
command sent to the memory failure queue to exit the storage management
queue, in the memory queue to complete the stored operation. Since there is al-
ready a cache row size data field in the failover queue to hold the cache access to
the data returned from the lower storage system, it is not necessary to add addi-
tional data field overhead to write the data of the stored instruction in the queue,
the full-modified cache block is collected in the failover queue. The modified
cache block can use non-write allocation strategy, which writes directly to the
lower storage system. If there is the same cache block fetching instruction to en-
ter, the corresponding item is set to fetch instruction, and the switch is used to
write the allocation strategy.

The end-to-end principle is a design framework in computer networking. The
processor delays the critical path. As the processor selected to send out the re-
quest to make a record path delay is relatively long, so does the use of random
strategy to choose. When the processor executes the synchronization instruction
and the cache instruction, it is necessary to clear the access failure queue. All the
items are switched to the write cache, and the corresponding cache block is re-
trieved from the lower storage system.

Figure 1 shows the adaptive cache allocation in the cloud environment, in
terms of VM (virtual machine) and SSD (Solid State Drives) cache over the end-
to-end processing. Consequently, the processing flow of the adaptive cache write

H. Qin, L. Zhu

155

Figure 1. Adaptive cache allocation in the end-to-end cloud environment.

allocation strategy in the end-to-end cloud environment includes the following
steps:

Step 1) The storage management queue sends out the invalid access request to
the access failure queue. Then, the stored instruction writes the data to the data
field of the access failure queue item and exits the storage management queue in
the cloud environment;

Step 2) Determine whether the failure access instruction corresponds to
whether the cache block is hit in the write queue. If yes, the data returned from
the write queue is written with the data field of the corresponding failover queue
item cache block, perform Step 5); otherwise, perform Step 3);

Step 3) Determine whether the fetch instruction or the number of instructions
in the cloud environment:
• If it is fetch instruction, go to Step 4);
• If the collection for the full modification of the cache block, the implementa-

tion of Step 6);
• If it is not collected as a full modification of the cache block, to determine

whether the item is switched to write using the allocation strategy; if yes, the
implementation of Step 4), otherwise, continue to wait in the memory queue
to collect the full-modified cache block.

Step 4) Issue an access request to the lower storage system, and wait for the
low-level storage system data to return, the return of the data and the corres-
ponding access to the failure of the queue in the data field of the written in the
cache block;

Step 5) Write the cache with the corresponding entry data queue, execute Step
6);

Step 6) The failover access instruction is processed and exits from the access

H. Qin, L. Zhu

156

failure queue in the cloud environment.

3.2. Advantages

Compared with the existing write failure processing technology, the adaptive
cache write allocation strategy has the following advantages:
• In terms of the write allocation strategy, the invalid storage command sent to

the memory after the failure of the queue, directly from the storage manage-
ment queue. There is no need to wait data in the storage management queue
to return, to reduce the number of invalid storage instructions caused by the
storage management queue congestion occurs frequently.

• Full modification of the cache block does not need to retrieve the corres-
ponding value from the lower storage system to reduce the unnecessary data
transmission. Modify the cache block directly back to the low-level storage
system, to avoid the cache port occupied and replace the cache in the useful
cache block caused by cache pollution.

• Compared with store buffer technology and other design independent sto-
rage instruction buffer, adaptive cache write allocation strategy in the mem-
ory failure queue to collect all modified cache block, both to avoid the addi-
tional hardware overhead, and to avoid the cost of the instruction fetch buf-
fer and the intervening failure queue are interrogated to ensure data consis-
tency.

4. Prefetching Process in the Information Mart
4.1. Implementations

The current strategies to reduce cache failure rates has greatly improved the
performance of storage systems, but because cache’s capacity is much smaller
than memory, and forced failure is difficult avoid, so cache failure still exists
with the performance of the processor system. The optimization of the memory
control strategy can reduce the memory access latency of the processor, but the
ideal access to the processor is the need to spend memory access delay to get the
required data. If the memory fails, the required data has been prefetched back.
Consequently, Figure 2 shows the end-to-end adaptive cache allocation with
implementations in the information mart, concerning big data processing, mas-
sively parallel processing, and populating.

The implementations exacerbate the number of memory access operations,
and have a reduction in the effective bandwidth of the system, resulting in oper-
ations. Since it is a guessing operation of fetching data from an access, it should
affect the processor’s normal access request as little as possible. In order to re-
duce the impact of operation on the normal memory access operation of the
processor, it is necessary to further enhance the efficiency of extraction and the
accuracy, thus improving the processor performance.

Based on the analysis of instruction cache and data cache failure behavior, we
propose a prefetching strategy combined with the access failure queue state. The

H. Qin, L. Zhu

157

Figure 2. End-to-end prefetching implementation architecture.

timing initiating combination combines the status of the failover queue and re-
duces the impact on the processor’s normal access request. The strategy main-
tains the order of instruction and data access, which facilitates the extraction of
streams. Through the flow filter mechanism to improve the accuracy g, reduce
the operation on the system to access the negative impact of bandwidth, effec-
tively improve the performance of the processor system.

4.2. Main Factors

The above process can be done before the processor accesses prefetched data,
which are the data required by the processor and only the data needed by the
processor. In fact, it is difficult to achieve the ideal situation, mainly because the
following main factors:
• Time: As the processor issues a request to the memory for too late, the data

can not arrive in time before the processor needs it. The processor must wait
for the required data to be returned from the lower storage system, causing
the pipeline to halt and performance degradation. Storing data requires add-
ing the necessary memory cells or replacing the data in the cache. If we re-
place the data in the cache method, it may be the processor to use the data to
replace the cache. Data pollution of the original cache data, making this
technology not only did not play the original function, but to the overall per-
formance of the system to bring a negative effect.

• Position: The data must be stored at a higher level of storage level, in order to
reduce the higher layer of memory access failure rate, so as to achieve shorten
the access data delay, improve the overall performance of the processor.
There are two ways to deal with the data in the high-level memory location,
one is a simple replacement of the original cache data, the other is to increase
a certain amount of storage unit. If we use the former, it may be because the

H. Qin, L. Zhu

158

replacement algorithm is not good and cause cache pollution. If the latter, in
particular, to increase the storage of some storage unit data, it will not occur
before the cache pollution problems.

• Data size: Data granularity is the size of the data that can be transferred by a
request. The size of the data granularity can be a word, a cache line, or several
cache rows, or even a program data object. In general, the size of the data
granularity is closely related to the transmission bandwidth between the
two-tier storage hierarchy and the latency of accessing the lower-level storage
system, of course it also relates to the size of the upper storage system and the
ability of the processor to process the data.

The above main factors are closely related to the internal structure of the pro-
cessor, such as the size of the internal cache of the processor, the organization
mode. The goal is to reduce the cache failure or cache failure without increasing
the hardware complexity and additional delay cost, thereby improving the over-
all performance of the processor.

5. Processor Core-Directed Memory Page
Mode Control Strategy

Based on the analysis of the behavior of program memory and the lack of exist-
ing dynamic memory page mode, we can have a new dynamic page mode con-
trol strategy over the memory mode of controller. When the processor core
sends an access request to the memory controller, it preferentially selects the
same entry as the last access address. When the memory controller has an un-
processed read request, the current access uses open page mode to continue
subsequent read requests.

5.1. Memory Page Mode Control

As for memory page mode control with the dynamic memory page mode, we
can adaptively adjust the page mode according to the instructions of the proces-
sor core, blending the advantages of the open page policy and the close page
policy. The memory controller waits for page mode switching in the absence of
an unprocessed read request to avoid subsequent read request processing.

It shows the processing flow of the memory page mode control strategy. The
followings are the memory control circuit in the read command after the end of
the memory page mode control of the specific steps:

Step 1) After the end of the read command, the page mode control enable bit
is judged. The current access uses the close page mode to perform and proceed
to Step 5); otherwise, Step 2);

Step 2) Determine if there is an unprocessed read request in the memory con-
troller. If the memory controller has an unprocessed read request, proceed to
Step 3); otherwise, Step 4);

Step 3) The current access uses open page mode to continue processing sub-
sequent read requests;

Step 4) Pre-charge that are instructed by the processor core as close page,

H. Qin, L. Zhu

159

based on the processor core’s page mode guidance information;
Step 5) End of end-to-end data processing.

5.2. Benefits

Compared with the prior art, the processor core-guided memory page mode
control strategy has the following advantages:
• The use of dynamic memory page mode control strategy, integration of open

page strategy and close page strategy advantages, can adaptively regulate ac-
cording to the program.

• Comparing the address of the memory entry to the memory queue to the ad-
dress and row address in the access history table, dynamic guidance memory
page mode control, the processor core through the real future access beha-
vior guidance, are better than the existing dynamic memory page mode con-
trol strategy with historical information to predict more accurate.

• Processor core in the send request can combine the memory controller in the
absence of an unprocessed read request, and the page mode switch can avoid
the impact due to pre-charge follow-up.

6. Summary

The data process flow with controlling requires a software platform, which au-
tomates and provides visibility into the data flow end to end. In this paper, the
behavior of cache write failure is analyzed, and the new cache write failure strat-
egy, i.e., adaptive cache write allocation strategy, is proposed under end-to-end
data processing. The strategy which does not need to add additional hardware
overhead is easy to implement in the information mart. As a result, we can col-
lect the modified cache block in the failover queue, use the non-write allocation
policy for the full modification of the cache block, and are able to switch to the
write allocation policy adaptively.

References
[1] Wang, Y.G., et al. (2016) Design and Evaluation of the Optimal Cache Allocation

for Content-Centric Networking. IEEE Transactions on Computers, 65, 95-107.
https://doi.org/10.1109/TC.2015.2409848

[2] Mayuresh, K., et al. (2017) ROBUS: Fair Cache Allocation for Data-Parallel Work-
loads. Proceedings of the 2017 ACM International Conference on Management of
Data, Chicago, 14-19 May 2017.

[3] Xu, M., et al. (2016) Analysis and Implementation of Global Preemptive Fixed-
Priority Scheduling with Dynamic Cache Allocation. 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), Vienna, 11-14 April
2016, 1-12. https://doi.org/10.1109/RTAS.2016.7461322

[4] Herdrich, A., et al. (2016) Cache QoS: From Concept to Reality in the Intel Xeon
Processor E5-2600 v3 Product Family. 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Barcelona, 12-16 March 2016,
657-668. https://doi.org/10.1109/HPCA.2016.7446102

[5] Son, D.O., et al. (2016) A New Prefetch Policy for Data Filter Cache in Energy-
Aware Embedded Systems. 2016 Information Science and Applications (ICISA),

https://doi.org/10.1109/TC.2015.2409848
https://doi.org/10.1109/RTAS.2016.7461322
https://doi.org/10.1109/HPCA.2016.7446102

H. Qin, L. Zhu

160

1409-1418. https://doi.org/10.1007/978-981-10-0557-2_134

[6] Jo, D., et al. (2016) Enhanced Rolling Cache Architecture with Prefetch. IEEE Inter-
national Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, 26-28 Oc-
tober 2016, 1-3. https://doi.org/10.1109/ICCE-Asia.2016.7804786

[7] Maurice, C., et al. (2017) Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. NDSS, San Diego, CA, US.

[8] Tao, M.X., et al. (2016) Content-Ceintric Sparse Multicast Beamforming for Cache-
Enabled Cloud RAN. IEEE Transactions on Wireless Communications, 15, 6118-
6131. https://doi.org/10.1109/TWC.2016.2578922

[9] Liu, F.F., et al. (2016) Catalyst: Defeating Last-Level Cache Side Channel Attacks in
Cloud Computing. 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Barcelona, 12-16 March 2016, 406-418.
https://doi.org/10.1109/HPCA.2016.7446082

[10] Inci, M.S., et al. (2016) Cache Attacks Enable Bulk Key Recovery on the Cloud. In-
ternational Conference on Cryptographic Hardware and Embedded Systems, 368-
388. https://doi.org/10.1007/978-3-662-53140-2_18

[11] Arteaga, D., et al. (2016) CloudCache: On-Demand Flash Cache Management for
Cloud Computing. Proceedings of the 14th Usenix Conference on File and Storage
Technologies (FAST), Santa Clara, 22-25 February 2016, 355-369.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsip@scirp.org

https://doi.org/10.1007/978-981-10-0557-2_134
https://doi.org/10.1109/ICCE-Asia.2016.7804786
https://doi.org/10.1109/TWC.2016.2578922
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1007/978-3-662-53140-2_18
http://papersubmission.scirp.org/
mailto:jsip@scirp.org

	Adaptive Cache Allocation with Prefetching Policy over End-to-End Data Processing
	Abstract
	Keywords
	1. Introduction
	2. Cache Processing Policy
	3. End-to-End Cache Write Allocation in the Cloud Environment
	3.1. Adaptive Cache Write Allocation Strategy
	3.2. Advantages

	4. Prefetching Process in the Information Mart
	4.1. Implementations
	4.2. Main Factors

	5. Processor Core-Directed Memory Page Mode Control Strategy
	5.1. Memory Page Mode Control
	5.2. Benefits

	6. Summary
	References

